EE 471: Transport Phenomena in Solid State Devices

HW9

Due: $5 / 3 / 18$

Please show all working (including equations you use to calculate your answers).
 All numerical answers should include units

Calculate numerical answers to 3 sig. figs.

Consider the circuit below in which gate sizes have already been set. The size of each gate is a measure of the capacitance at each input in units of C , the capacitance of a unit sized transistor. Assume that the input B is random and uniformly distributed, that $\mathrm{P}_{\mathrm{A}}=0.7$ and that $\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\mathrm{D}}=0.2$.

1. For each node in the circuit, determine the probability P that the node is equal to ' 1 ' (6 pts)
2. Determine activity factor α for each node in circuit (8 pts)
3. What is the capacitance at each node in the circuit (ignoring internal gate nodes) in units of C? (11 pts)
4. If C (unit sized transistor) $=1.1 \mathrm{fF}$ and $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$, what is dynamic power dissipation when running at 650 MHz ? (5 pts)
