EE 471: Transport Phenomena in Solid State Devices Spring 2018

Lecture 1 Introduction to Solid State Electronics

Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030

Ubiquity of Solid State Electronics

All enabled by incredibly small, rugged, high performance, low power solid state (semiconductor) electronics

Pacemake

2

Solid State Devices

- Electronic systems consist of thousands (often millions, sometimes billions) of active solid state electronic components
 - diodes
 - bipolar transistors
 - MOS transistors
 - photo-detectors
 - LEDs, lasers
 - solar cells
 - flash (floating gate) transistors
- Each of these active components exhibits a nonlinearity which can be used to respond to, control and amplify electrical signals

Analog & Digital Amplification

MIXED SIGNAL: Analog and digital in same circuit (chip)

Electronic Amplification – Vacuum Tube

- Diode: John Fleming 1904
 signal rectification
- Triode: Lee DeForest 1907
 - first electronic amplifier

- Used mainly in analog applications:
 - radio, TV, communication, radar, telephone networks
 - limited by size, power, fragility, microphonics and lifetime

ENIAC - The first electronic computer (1946)

- 100 kHz clock
- 20 words memory(~ 100 bytes)
- 5000 operations/sec

10 feet tall, 30 tons 1,000 square feet of floor- space More than 70,000 resistors 10,000 capacitors 6,000 switches 18,000 vacuum tubes Requires 150 kilowatts of power;

Periodic Table & Semiconductors

Ι	II										IIb	III	IV	V	VI	VII	VIII
1 H																	2 He
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg											13 A1	14 Si	15 P	16 S	17 C1	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pđ	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71										71							
Lanthanides			La	Ce	Pr	Nd	Pm	Sm	Eu	Gđ	ТЪ	Dy	Ho	Er	Tm	УЪ	Lu
Actinides			89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

History of Solid State Devices

- Cat's Whisker Jagadish Bose (1901)
 - thin metal wire in contact with semiconductor crystal (PbS, SiC)
 - point contact diode (primitive Schottky)
 - used as radio detector
 - did not understand how it worked
- Junction Diode Russel Ohl (1940)
 - observed photoelectric effect and rectifying properties of silicon rod
 - explained operation in terms of "P-N barrier"

from Russel Ohl patent application "light sensitive electric device"

Transistor Age...

1947: Bardeen and Brattain create point-contact transistor

First solid state amplifying device (gain=18)

but not manufacturable

Junction Transistor

- 1948: Shockley develops idea of a sandwich junction transistor
 - based on minority carrier injection
- 1951: Bell Labs announces manufacturable germanium transistor using grown junctions

1954: Gordon Teal (Texas Instruments) develops first silicon junction transistor

MOS (Field Effect) Transistor

- 1926: Lilienfeld proposes and patents idea of controlling conduction through semiconductor film via a metal plate, separated from semiconductor by insulating layer
- 1945: Shockley explores concept of fieldeffect transistor – unsuccessful experiments with Bardeen
- 1960: Atallah & Khang (Bell Labs) demonstrate silicon MOS transistor
 - low gain, slow
 - recognized ease of manufacture

early Fairchild PMOS transistor

The Integrated Circuit

Jack Kilby, working at Texas Instruments, invented a monolithic "integrated circuit" in July 1959.

He constructed the flip-flop shown in the patent drawing above.

Planar transistors

In mid 1959, Noyce develops the first true IC using planar transistors:

- Reverse biased pn junctions for isolation
- Diode-isolated silicon resistors and
- SiO₂ insulation
- Evaporated metal wiring on top

This enabled designers to place and connect multiple transistors on silicon die using sophisticated "printing process"

First Digital ICs – early 60's

1961: TI and Fairchild introduced first logic IC's: dual flip-flop with 4 transistors (cost ~\$50)

1963: Densities and yields improve. This circuit has four flip-flops.

Early Analog ICs

1965: Fairchild μA709 Operational Amplifier: 13 bipolar transistors, open loop gain 70,000

1968: Fairchild μA741 Operational Amplifier: 20 bipolar & 11 resistors *plus 30pF compensation capacitor*

1971: Signetics 555 Timer: 24 transistors & 15 resistors

Continuing Development early 70's

1970: Intel starts selling a 1k bit RAM.

1971: Ted Hoff at Intel designed the first microprocessor.

The 4004 had 4-bit busses and a clock rate of 108 KHz. It had 2300 transistors and was built in a 10 um process.

Continuing Development – Microprocessor

1972: 8008 introduced.

3,500 transistors supporting a byte-wide data path.

1974: Introduction of the 8080 – first "truly usable microprocessor"

8-bit data, 16-bit address bus (up to 64kB memory)

6,000 transistors in a 6 um process.

Clock rate was 2 MHz.

Exponential Growth

Planar "printing process" enabled continuing reductions in process "line width" which has led to increased density in transistors/mm²

Huge investments in and major advances in:

- •Solid State Physics
- Materials Science
- •Lithography and fab
- •Device modeling

- •Circuit design and layout
- •Architecture design
- •Algorithms
- •CAD tools

Cost of building 65nm fab was around \$3B ! Cost of building 22nm fab is around \$7B ! Cost of building 10nm fab is around \$12B !

Analog vs. Digital Revisited

Well suited to digital

High Performance Digital: Intel i5–45 nm

- Introduced 2009 (2.6 GHz)
- Level 3 cache: 8MB
- 4 cores / 4 threads
- Transistors: 774 Million
- 95 W

UMTS/GSM Transceiver with Digital Baseband

Qualcom mixed-signal "system on chip"

- RF transceiver
- A/Ds, D/As
- Digital baseband
- Audio/Video codec
- Multimedia processing
- Power management
- 65nm CMOS

IEEE ISSCC 2011

22

IBM Server Class Microprocessor

- 22 nm SOI process
- 12 cores 4.5 GHz
- 4.2B transistors
- 6 MB L2 / 96 MB L3
- 7.6 Tb/s I/O BW
- 649 mm² die

Moore's Law

 In 1965, Gordon Moore noted that the number of transistors on a chip approximately doubled every 12 months.

He made a prediction that IC cost effective component count would continue to double every 12 months ²⁴

Moore's Law – how it checked out

Actual growth has been a doubling every 18-24 months 25

Year	1999	2002	2005	2008	2011	2014
Feature size (nm)	180	130	100	70	50	35
Logic trans/cm ²	6.2M	18M	39M	84M	180M	390M
Cost/trans (mc)	1.735	.580	.255	.110 .049		.022
#pads/chip	1867	2553	3492	4776	6532	8935
Clock (MHz)	1250	2100	3500	6000	10000	16900
Chip size (mm^{2})	340	430	520	620	750	900
Wiring levels	6-7	7	7-8	8-9	9	10
Power supply (V)	1.8	1.5	1.2	0.9	0.6	0.5
High-perf pow (W)	90	130	160	170	175	183

Roadmap has become a self-fulfilling prophecy!

Microprocessor Clock Frequency

ISSCC Trends Report 2010

Microprocessor Power Projection 2000

• Increasing processing speed thru clock rate is power prohibitive

Solution today is use of parallelism (#processors, #threads)

Courtesy, Intel

Transistors shipped per year

Source: Dataquest/Intel, 8/02

Decades of Progress

Intel 4004 Processor (1978)

6th Generation Intel Core Processor (2015)

Processor		4004 to 14nm
Wafer Size	↑	36x area
Technology Linewidth	$\mathbf{\Lambda}$	700x
Performance	1	3,500x
Price per Transistor	$\mathbf{\Lambda}$	60,000x
Transistor Energy Efficiency	1	90,000x

Moore's Law: A Path Forward. William Holt, ISSCC 2016 30

What does 700x Scaling Look Like?

Moore's Law: A Path Forward. William Holt, ISSCC 2016 31

Where do we go from here?

- CMOS is reaching its physical limits
- ITRS projects 5nm technology in 2020
- Silicon crystal is 0.5nm atoms are 0.2nm apart
- Gate oxides 5 Si atoms thick
- Quantum behavior
- Power dissipation and interconnect delays limit performance (not intrinsic device speed)
- BUT prophets of CMOS demise have always been wrong

New technologies are being explored

- carbon nanotubes (ballistic transport)
- spintronics (based in electron spin)
- Nanowire FET
- 3D-IC
- organic transistors
 - semiconducting polymers
- any new technology will require enormous investment to "catch-up" to CMOS

