EE 471: Transport Phenomena in Solid State Devices

Lecture 1
 Introduction to Solid State Electronics

Bryan Ackland
Department of Electrical and Computer Engineering
Stevens Institute of Technology
Hoboken, NJ 07030

Ubiquity of Solid State Electronics

All enabled by incredibly small, rugged, high performance, low power solid state
 (semiconductor) electronics

Solid State Devices

- Electronic systems consist of thousands (often millions, sometimes billions) of active solid state electronic components
- diodes
- bipolar transistors
- MOS transistors
- photo-detectors
- LEDs, lasers
- solar cells
- flash (floating gate) transistors
- Each of these active components exhibits a nonlinearity which can be used to respond to, control and amplify electrical signals

Analog \& Digital Amplification

DIGITAL

Circuit voltage represents one of two states: ' 0 ' and ' 1 '

MIXED SIGNAL: Analog and digital in same circuit (chip)

Electronic Amplification - Vacuum Tube

- Diode: John Fleming 1904
- signal rectification
- Triode: Lee DeForest 1907
- first electronic amplifier

- limited by size, power, fragility, microphonics and lifetime

ENIAC - The first electronic computer (1946)

- 100 kHz clock
- 20 words memory
(100 bytes)
- 5000 operations/sec

10 feet tall, 30 tons 1,000 square feet of floor- space
More than 70,000 resistors
10,000 capacitors
6,000 switches
18,000 vacuum tubes
Requires 150 kilowatts of power;

Periodic Table \& Semiconductors

Lanthanides	57 La	58 Ce	59 Pr	$\begin{gathered} 60 \\ \mathrm{Nd} \end{gathered}$	$\begin{aligned} & \hline 61 \\ & \mathrm{Pm} \end{aligned}$	62 Sm	$\begin{aligned} & 63 \\ & \mathrm{Eu} \end{aligned}$	$\begin{gathered} 64 \\ \mathrm{Gd} \end{gathered}$	65 Tb	66 Dy	67 Ho	$\begin{aligned} & \hline 68 \\ & \mathrm{Er} \end{aligned}$	69 Tm	70 Yb	71 Lu
Actinides	89 Ac	90	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98	99 Es	100	101	102 No	103 Lr

History of Solid State Devices

- Cat's Whisker - Jagadish Bose (1901)
- thin metal wire in contact with semiconductor crystal (PbS, SiC)
- point contact diode (primitive Schottky)
- used as radio detector
- did not understand how it worked
- Junction Diode - Russel Ohl (1940)
- observed photoelectric effect and rectifying properties of silicon rod
- explained operation in terms of "P-N barrier"

from Russel Ohl patent application
"light sensitive electric device"

Transistor Age...

1947: Bardeen and Brattain create point-contact transistor

First solid state amplifying device (gain=18)
but not manufacturable

Junction Transistor

1948: Shockley develops idea of a sandwich junction transistor - based on minority carrier injection

F/G 1

1951: Bell Labs announces manufacturable germanium transistor using grown junctions

1954: Gordon Teal (Texas Instruments) develops first silicon junction transistor

MOS (Field Effect) Transistor

1926: Lilienfeld proposes and patents idea of controlling conduction through semiconductor film via a metal plate, separated from semiconductor by insulating layer

1945: Shockley explores concept of fieldeffect transistor - unsuccessful experiments with Bardeen

1960: Atallah \& Khang (Bell Labs) demonstrate silicon MOS transistor

- low gain, slow
- recognized ease of manufacture

early Fairchild PMOS transistor

The Integrated Circuit

Jack Kilby, working at Texas Instruments, invented a monolithic "integrated circuit" in July 1959.

He constructed the flip-flop shown in the patent drawing above.

Planar transistors

In mid 1959, Noyce develops the first true IC using planar transistors:

- Reverse biased pn junctions for isolation
- Diode-isolated silicon resistors and
- SiO_{2} insulation
- Evaporated metal wiring on top

This enabled designers to place and connect multiple transistors on silicon die using sophisticated "printing process"

First Digital ICs - early 60's

1961: TI and Fairchild introduced first logic IC's: dual flip-flop with 4 transistors (cost $\sim \$ 50$)

1963: Densities and yields improve. This circuit has four flip-flops.

Early Analog ICs

1965: Fairchild $\mu \mathrm{A} 709$ Operational Amplifier: 13 bipolar transistors, open loop gain 70,000

1968: Fairchild μ A741 Operational Amplifier: 20 bipolar \& 11 resistors plus 30pF compensation capacitor

1971: Signetics 555 Timer: 24 transistors \& 15 resistors

Continuing Development early 70's

1970: Intel starts selling a 1 k bit RAM.

1971: Ted Hoff at Intel designed the first microprocessor.

The 4004 had 4-bit busses and a clock rate of 108 KHz. It had 2300 transistors and was built in a 10 um process.

Continuing Development - Microprocessor

1972: 8008 introduced.
3,500 transistors supporting
a byte-wide data path.

1974: Introduction of the 8080 - first "truly usable microprocessor"

8 -bit data, 16 -bit address bus (up to 64 kB memory)
 6,000 transistors in a 6 um process. Clock rate was 2 MHz .

Exponential Growth

Planar "printing process" enabled continuing reductions in process "line width" which has led to increased density in transistors/mm²

What has brought about this extraordinary growth?

Huge investments in and major advances in:
-Solid State Physics
-Materials Science
-Lithography and fab
-Device modeling
-Circuit design and layout
-Architecture design
-Algorithms
-CAD tools

Cost of building 65 nm fab was around $\$ 3 \mathrm{~B}$!
Cost of building 22nm fab is around \$7B !
Cost of building 10 nm fab is around \$12B !

Analog vs. Digital Revisited

Few large transistors High voltage (~15V)
Low speed High power (per transistor) "Ideal" transistor behavior

Well suited to analog

Many small transistors Low voltage ($\sim 0.5 \mathrm{~V}$) High speed
Low power (per transistor)
"Non-ideal" transistor behavior
Well suited to digital

High Performance Digital: Intel i5-45 nm

- Introduced 2009 (2.6 GHz)
- Level 3 cache: 8MB
- 4 cores / 4 threads
- Transistors: 774 Million
- 95 W

UMTS/GSM Transceiver with Digital Baseband

- Qualcom mixed-signal "system on chip"
- RF transceiver
- A/Ds, D/As
- Digital baseband
- Audio/Video codec
- Multimedia processing
- Power management
- 65nm CMOS

IEEE ISSCC 2011

IBM Server Class Microprocessor

- 22 nm SOI process
- 12 cores 4.5 GHz
- 4.2B transistors
- 6 MB L2 / 96 MB L3
- 7.6 Tb/s I/O BW
- 649 mm2 die

IEEE ISSCC 2014

Moore's Law

- In 1965, Gordon Moore noted that the number of transistors on a chip approximately doubled every 12 months.

- He made a prediction that IC cost effective component count would continue to double every 12 months

Moore's Law - how it checked out

Technology Directions: SIA Roadmap

Year	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 4}$
Feature size (nm)	180	130	100	70	50	35
Logic trans/cm ${ }^{2}$	6.2 M	18 M	39 M	84 M	180 M	390 M
Cost/trans (mc)	1.735	.580	.255	.110	.049	.022
\#pads/chip	1867	2553	3492	4776	6532	8935
Clock (MHz)	1250	2100	3500	6000	10000	16900
Chip size (mm ${ }^{2}$)	340	430	520	620	750	900
Wiring levels	$6-7$	7	$7-8$	$8-9$	9	10
Power supply (V)	1.8	1.5	1.2	0.9	0.6	0.5
High-perf pow (W)	90	130	160	170	175	183

- Roadmap has become a self-fulfilling prophecy!

Microprocessor Clock Frequency

ISSCC Trends Report 2010

Microprocessor Power Projection 2000

- Increasing processing speed thru clock rate is power prohibitive Solution today is use of parallelism (\#processors, \#threads)

Courtesy, Intel

Transistors shipped per year

Decades of Progress

Intel 4004 Processor (1978)

$6^{\text {th }}$ Generation Intel Core Processor (2015)

Processor

 4004 to 14 nmTechnology Linewidth
Performance
Price per Transistor

\uparrow60,000x
Transistor Energy Efficiency

What does 700x Scaling Look Like?

Contact 1978

Ten 14 nm SRAM Cells 2014 $\longmapsto 1 \mathrm{um}$

Moore's Law: A Path Forward. William Holt, ISSCC 2016

Where do we go from here?

- CMOS is reaching its physical limits
- ITRS projects 5 nm technology in 2020
- Silicon crystal is 0.5 nm - atoms are 0.2 nm apart
- Gate oxides 5 Si atoms thick
- Quantum behavior
- Power dissipation and interconnect delays limit performance (not intrinsic device speed)
- BUT - prophets of CMOS demise have always been wrong

New technologies are being explored

- carbon nanotubes (ballistic transport)
- spintronics (based in electron spin)
- Nanowire FET

- 3D-IC
- organic transistors
- semiconducting polymers

- any new technology will require enormous investment to "catch-up" to CMOS

