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• CMOS transistors are fabricated on silicon wafer
– mechanical support
– electrical ground plane
– epitaxial layer: “single crystal” substrate (< 0.2 defects/cm2)

CMOS Wafers

Courtesy IBM
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• Lithography process similar to printing press
– glass masks and UV light 

CMOS Fabrication

• On each step, different materials 
are deposited or etched according 
to one of these masks

• As process line width shrinks:
– smaller transistors & wires
– faster transistors
– lower power transistors

• Easiest to understand by viewing both top and cross-
section of wafer in a simplified manufacturing process

Wikipedia
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• Typically use p-type substrate for nMOS transistors
• Requires n-well for body of pMOS transistors

CMOS Fabrication
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• Substrate must be tied to GND and n-well to VDD
• Metal to lightly-doped semiconductor forms poor 

connection called Shottky Diode
• Use heavily doped well & substrate contacts / taps / ties

Well and Substrate Taps
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• Transistors and wires are defined by masks
• Cross-section taken along dashed line

Inverter Layout
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• 6 masks
– n-well
– polysilicon
– n+ diffusion
– p+ diffusion
– contact
– metal

Detailed Mask Views
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• Start with blank wafer
• Build inverter from the bottom up
• First step will be to form the n-well
• Cover wafer with protective layer of SiO2 (oxide)
• Remove layer where n-well should be built
• Implant or diffuse n dopants into exposed wafer
• Strip off SiO2

Fabrication Steps

p substrate
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• Grow SiO2 on top of Si wafer
• 900 – 1200°C with H2O or O2 in oxidation furnace

Oxidation

p substrate

SiO2
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• Spin on photoresist
• Photoresist is a light-sensitive organic polymer
• Softens where exposed to UV light
• Expose photoresist through n-well mask

Photoresist

p substrate

SiO2

Photoresist

UV light

n-well mask 
(top-view)
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• Strip off exposed photoresist with developer
– organic solvent

• Leaves exposed SiO2 in pattern determined by n-well 
mask

• How do we make 65 nm patterns with UV-light where 
𝜆𝜆 = 193 𝑛𝑛𝑛𝑛 ? 

Lithography

p substrate

SiO2

Photoresist



Dry 
Lithography

Wet 
Lithography

𝜆𝜆 = 193 𝑛𝑛𝑛𝑛

𝜆𝜆 = 135 𝑛𝑛𝑛𝑛

Wet Lithography

12• Wavelength reduced by refractive index of water



Optical Proximity Correction

• Mask pattern is modified to compensate for diffraction effects
• CAD tools have software to generate these patterns

• typically based on library of pre-computed shapes
13

(drawn)

(actual)
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• Etch oxide with hydrofluoric acid (HF)
• Seeps through skin and eats bone; nasty stuff!!!
• Only attacks oxide where resist has been exposed

Etch

p substrate

SiO2

Photoresist
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• Strip off remaining photoresist
• Use mixture of acids called piranah etch

– mixture of H2SO4 and H2O2 

• Necessary so resist doesn’t melt in next step

Strip Photoresist

p substrate

SiO2
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• n-well is formed by counter-doping with arsenic (donor 
impurity) using diffusion or ion implantation

• Diffusion
– Place wafer in furnace with arsine

• AsH3 – lethal at a few ppm – really nasty stuff!
– Heat until As atoms diffuse into exposed Si

• Ion Implanatation
– Blast wafer with beam of As ions
– Ions blocked by SiO2, only enter exposed Si

Form n-well

p substrate
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• Strip off the remaining oxide using HF
• Back to bare wafer with n-well

• Subsequent masks involve similar series of steps

Strip Oxide
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• Deposit very thin layer of gate oxide
– 40 Å (~13 atomic layers) at 180nm node
– 20 Å (6-7 atomic layers) at 130nm node
– 12 Å (4-5 atomic layers) at 65nm node

• Chemical Vapor Deposition (CVD) of silicon layer
– Place wafer in furnace with Silane gas (SiH4)  - pyrophoric
– Forms many small crystals called polysilicon
– Heavily doped to be good conductor

Gate Oxide and Polysilicon

Thin gate oxide
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Polysilicon Structure
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• Use same lithography process to pattern polysilicon

Polysilicon

Polysilicon

p substrate

Thin gate oxide
Polysilicon

n well
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• Grow another layer of SiO2

• Use oxide masking to expose where n+ dopants should 
be diffused or implanted

• N-diffusion forms nMOS source/drain, and n-well 
contact

N+ Diffusion / Implantation

p substrate
n well
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• Pattern oxide and form n+ regions
• Self-aligned process where gate blocks diffusion
• Polysilicon is better than metal for self-aligned gates 

because it doesn’t melt during later processing

Self-Aligned Process

p substrate
n well

n+ Diffusion
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• Counter-dope with donor impurities
• Historically dopants were diffused
• Usually ion implantation today
• But these n+ regions are still called diffusion

N+ Diffusion (cont.)

n well
p substrate

n+n+ n+
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• The dominant doping method
• Excellent control of dose (ions/cm2)
• Good control of implant depth with ion 

energy (KeV to MeV)
• Repairing crystal damage and dopant 

activation requires annealing, which can 
cause dopant diffusion and loss of depth 
control.

Ion Implantation
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• Strip off oxide to complete patterning step

N+ Diffusion (cont.)

n well
p substrate

n+n+ n+
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• Similar set of steps form p+ diffusion regions for pMOS
source and drain and substrate contact

• Boron atoms are implanted in the unmasked silicon

P+ Diffusion / Implant

p+ Diffusion
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• This concludes what is called “front end” of process
– forming the transistors

• Now we need to wire together the devices (“back end”)
• Cover chip with thick field oxide

– Permanent insulating layer

Field Oxide
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• Etch oxide where contact cuts are needed
• Allows connection to poly and source/drain regions

Contacts

Contact
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• A layer of tungsten is grown over surface
• Etched away to leave only contact holes filled with 

tungsten
• Tungsten conforms better (than Al) to geometry of small 

holes

Tungsten Plugs

Tungsten

Thick
Field
Oxide
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• Sputter on aluminum over whole wafer
– Patterned and plasma etched to remove excess metal, leaving wires
– Aluminum (metal 1) wires connect (via plugs) to source/drain regions
– M1 also connects to poly (not shown in this example)

Metallization – Metal 1
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Field
Oxide

Metal 1
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• Suppose we want to connect our first layer metal (M1) 
to a higher metal routing layer (M2)

• Grow another layer of SiO2 as an insulating dielectric
• Etch VIA holes (VIA1) to connect M2 to M1
• Fill with Tungsten

More Tungsten Plugs

Thick
Field
Oxide

Metal 1

More
Oxide

Tungsten  VIA1
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• Pattern and plasma etch second layer of metal (M2)
• M2 connects to M1 through VIA1
• If there is a third layer of metallization, M2 connects to 

M3 through VIA2 (not shown)
• M2 cannot connect (directly) to poly or diffusion

Second Layer of Metallization – M2 
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Contacts & Vias

Diffusion Poly Gate Poly Wire Metal1 Metal2

Diffusion    contact 
Poly Gate     
Poly Wire    contact 

Metal1 contact  contact  VIA1

Metal2    VIA1 

diffusion
poly gate
poly wire
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• Need at least 3-4 layers of metal to support dense 
custom (hand-drawn) layout.

• Automatic place & route tools rely on multiple metal 
layers to create dense designs with good power & clock 
distribution and minimum parasitics.

• Modern processes have 5-10 layers of metal
– upper layers often Cu (rather than Al_)
– each layer requires via and a metal pattern mask

Higher Metallization Layers

cross-section showing 11 
metallization layers
(Courtesy IBM)
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• Chips are built with set of masks
• Layout designers job is to define patterns for each mask
• Layout is specified using a number of “layers”

– Layout layers are mapped to mask levels

• Some layers correspond directly to specific masks 
– e.g. poly, metal1, contact

• Other layers might be combined to create a mask
– e.g.    (difflayout AND npluslayout) ⇒ NDIFFmask

(difflayout AND ppluslayout) ⇒ PDIFFmask

• Other layers may be added to assist CAD tools
– e.g. designating ndiff wire as diffusion resistor

Mask vs. Layout
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Mask to Layout
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• Would like to make objects (transistors, wires etc.) as 
small as possible
– to increase speed, decrease cost & power

• Object size and spacing is limited by precision of 
photolithography & manufacturing process

• Need “Design Rules” to constrain layout engineer
– ensure design is manufacturable

Process Limitations and Design Rules

layout on-chip wiring
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• Design Rules set minimum size and spacing for each 
layer to give acceptable yield (e.g. M1 min width = 230nm)

• Design Rules also specify spacing between objects on 
different layers (e.g. min distance of contact from gate = 200nm)

• Design Rules typically expressed in µm or nm.
• Each CMOS process typically characterized by feature 

size f = minimum distance between source and drain
• Set by minimum width of polysilicon (e.g. 180nm)

• Feature size improves 30% every 3 years or so

Layout & Design Rules

≥ 230 nm

≥ 200 nm
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• We can simplify design by adopting a conservative set 
of rules normalized to minimum feature size f

• Express rules in terms of λ = f/2
– e.g. for 180nm process, λ = 90nm

• For example MOSIS SCMOS rules:

• Layout can be scaled to new process by simply 
changing value of λ

λ based Design Rules

3λ

3λ

2λ

2λ

3λ

1λ

1.5λ
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• A simpler (more conservative) set to get you started:

Simplified Design Rules: Conductors

Metal1 Metal2 N Diffusion P Diffusion Poly

4λ 4λ 4λ 4λ 4λ 4λ 4λ 4λ λ 3λ
2λ
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Contact Design Rules
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λ

Layout Cross-section
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Via Design Rules
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λ

Layout Cross-section
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• Creating NMOS devices:

• This produces minimum size device:   W = 4λ,   L=2λ

Simplified Design Rules (cont.)

diffusion region 
becomes S/D 

regions

poly gate crosses 
diffusion region, 
separating S/D

4λ

2λ

S/D S/D

G

contacts connect 
M1 to gate and 

S/D regions

4λ 4λ4λ

2λ

4λ
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• PMOS device created in same way:

Simplified Design Rules (cont.)

6λ

6λ

4λ

2λ

4λ4λ

n-well

• PMOS device often wider to 
match drive strength of 
NMOS:  (W = 8λ, L = 2λ)

• PMOS device surrounded by 
nwell (at least 6 λ)

• NMOS device must be 
separated from nwell by at 
least 6λ

8λ
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• Layout can be very time consuming
– can waste a lot of time trying to squeeze last micron out

• Layout more efficient if we design gates to fit together 
nicely

• Build a library of standard cells

Gate Layout

VDD

GND

YA
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• VDD and GND run horizontally & should 
abut 
– standard height cell

• nMOS horizontally at bottom and pMOS at 
top

• Polysilicon runs vertically to connect 
transistor gates

• All gates include well and substrate 
contacts

• Adjacent gates should satisfy design rules
– extend VDD and GND rails by 2λ

• Layout can be built on 8λ x 8λ grid with 
metal1 wiring tracks between nMOS and 
pMOS devices.

Standard Cell Design Methodology

YA

VDD

GND
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• A wiring track is the space required for a wire
• 4 λ width, 4 λ spacing from neighbor = 8 λ pitch
• Transistors also consume one wiring track

Wiring tracks

4λ 4λ 4λ
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• Wells must surround transistors by 6 λ
• Implies 12 λ between opposite transistor flavors
• Leaves room for one wire track

Well Spacing

4λ
6λ

6λ

4λ

4λ
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Building Gates: Transistors in Series

• Transistors can be placed in series by simply 
overlaying their common source/drain region
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Building Gates: Transistors in Parallel

• Transistors can be placed in parallel by using a 
combination of source/drain overlap and metal 
interconnect
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Y
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Example: NAND3

VDD

GND

A B C

Y

32λ

40λ

• Try to find placement of 
transistors that maximizes 
use of common vertical 
polysilicon and common 
source/drain overlap

• Estimate area by counting 
wiring tracks

• Area of this Nand3 is:
40λ x 32λ = 1280 λ2
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Stick Diagrams

• Stick diagrams are layout topologies that assume an 
underlying grid
– allow quick exploration of alternate layout strategies
– not drawn to scale – actual dimensions are defined by grid

• Simply drawn with color pencils or markers:
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Example: O3AI

• Sketch a stick diagram for O3AI and estimate area.

Y = ( A + B + C) • D



54

Example: XOR gate

• 𝑌𝑌 = 𝐴𝐴 𝑥𝑥𝑥𝑥𝑥𝑥 𝐵𝐵 = 𝐴𝐴. �𝐵𝐵 + 𝐴̅𝐴.𝐵𝐵 = 𝐴𝐴.𝐵𝐵 + 𝐴̅𝐴. �𝐵𝐵 VDD
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XOR gate layout with M1

𝐴𝐴 𝐵𝐵

𝐴̅𝐴 �𝐵𝐵

How to 
complete the 
wiring?

Paths are 
blocked by 
horizontal and 
vertical M1
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XOR gate layout with M1 & M2

𝐴𝐴 𝐵𝐵

𝑀𝑀𝑀
𝑉𝑉𝑉𝑉𝑉𝑉𝑉

Horizontal M1 
and vertical M2 
keep wiring 
channels open
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Transistor Sizing

• In most layouts, transistors are not all of same size
– pMOS has about ½ drive of same size nMOS
– series/parallel combinations lead to different drive strength

• Transistor dimensions specified as Width / Length
• Minimum size is 4λ / 2λ, sometimes called 1 unit

– e.g. in f = 0.5 µm process, this is 1.0 µm wide, 0.5 µm long
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Impact of Sizing on Layout

• Adding sized transistors complicates 
simple 8λ x 8λ grid 

• Still useful for draft layout and 
approximate area calculations

• When estimating area, add (w-1).4λ
in height to accommodate a 
transistor of width w.

• Add extra contacts when possible
– Improved contact resistance
– Improves yield
– Many designers will use two-contact 

transistor as “minimum width” device

VDD

GND

YA

4λ
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