EE 471: Transport Phenomena in Solid State Devices Spring 2018

Lecture 12 CMOS Delay & Transient Response

Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030

Adapted from Lecture Notes, David Mahoney Harris CMOS VLSI Design

Transient Response

- DC analysis tells us V_{out} if V_{in} is constant
- Transient analysis tells us V_{out}(t) in response to a change in V_{in}
- Requires solving differential equations
- Input is usually considered to be a step or ramp
 - From GND to V_{DD} or vice versa

Delay Definitions

- **t**_{pdr} : rising propagation delay
 - maximum time from input crossing $V_{DD}/2$ to rising output crossing $V_{DD}/2$
- t_{pdf}: falling propagation delay
 - maximum time from input crossing $V_{DD}/2$ to falling output crossing $V_{DD}/2$
- t_{pd}: average propagation delay
 t_{pd} = (t_{pdr} + t_{pdf})/2
- **t**_r : *rise time*
 - from output crossing 0.2 V_{DD} to 0.8 V_{DD}
- t_f: fall time
 - from output crossing 0.8 V_{DD} to 0.2 V_{DD}

Delay Definitions (cont.)

- t_{cdf}: falling contamination delay
 - minimum time from input crossing $V_{DD}/2$ to falling output crossing $V_{DD}/2$
- **t**_{cdr}: *rising contamination delay*
 - $\underline{\text{minimum}}$ time from input crossing V_{DD}/2 to rising output crossing V_{DD}/2
- $\mathbf{t_{cd}}$: avg. contamination delay - $\mathbf{t_{pd}} = (\mathbf{t_{cdr}} + \mathbf{t_{cdf}})/2$

Delay in CMOS Circuits

- A switching CMOS gate generates output current in response to changing input voltages
- All nodes have some finite capacitance (to ground)
 - gate capacitance
 - parasitic source/drain (diode) capacitance
 - parasitic wiring capacitance
- Transient waveforms found by solving:

Inverter Step Response

• Find step response of inverter driving C_{load}

$$V_{in}(t) = u(t - t_0) \cdot V_{DD}$$

$$V_{out}(t < t_0) = V_{DD}$$

$$dV_{out}(t) / dt = -I_{dsn}(t) / C_{load}$$

$$I_{dsn}(t) = \begin{cases} 0 \quad \text{for } t < t_0 \\ (\beta/2m) \cdot (V_{DD} - V_t)^2 \quad \text{for } V_{out} > V_{DD} - V_t \\ \beta \cdot (V_{DD} - V_t - V_{out}(t)/2m) \cdot V_{out}(t) \quad \text{for Vout} < V_{DD} - V_t \end{cases}$$

Simulated Inverter Delay

- Solving differential equations by hand is too hard
- SPICE simulator solves the equations numerically
- Uses more accurate I-V models too!
- But simulations take time to write!

Delay Estimation

- We would like to be able to easily estimate delay
 - For exploration of design space, don't need to be as accurate as simulation
 - Want a technique where its easier to ask "What if?"
- The step response usually looks like a 1st order RC response with a decaying exponential.
- Can we model conducting transistor as effective resistance?

- Simplification: treat transistor as resistor
 - Replace $I_{ds}(V_{ds}, V_{gs})$ with effective resistance R
 - $I_{ds} = V_{ds}/R$ or 0 depending on gate voltage
- Pick R to best model dynamic response of gate
 - Too inaccurate to predict current at any given time
 - But good enough to predict gate delay

Capacitance

- Input to CMOS gate presents effectively infinite input resistance
- The dominant load in CMOS circuits is capacitance
- Capacitance exists wherever there are two conductors separated by a thin insulator
- Gate to channel capacitor is very important
 - Creates channel charge necessary for operation
- Source and drain have capacitance to body
 - Parasitic capacitance across reverse-biased diode depletion region
 - Called diffusion capacitance because it is associated with source/drain diffusion
- Long interconnect wires also have parasitic capacitance to the substrate

Gate Capacitance

- Gate is top plate of capacitor
- Assume bottom plate is source
 - In cut-off, bottom plate is actually the body
 - In linear mode, bottom plate is channel which is connected to source and drain
 - In saturation, bottom plate is channel connected to source
- $C_g \approx \varepsilon_{ox}.W.L/t_{oxe} = C_{oxe}.W.L = C_{permicron}.W$ (for $L = L_{min}$)
- $C_{permicron}$ is typically about 1-2 fF/µm of width

11

Diffusion Capacitance

- C_{sb}, C_{db}
- Diffusion (source/drain) region is resistive and capacitive (to body)
- Capacitance depends on area and perimeter
- Use small as possible diffusion nodes
- Comparable to C_g for min. contacted diffusion
- Use C_g/2 for merged
- Varies with process

RC Delay Model

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- Capacitance (gate & diffusion) proportional to width
- Resistance inversely proportional to width

RC Values

- Capacitance
 - $C = C_g = C_s = C_d = 2 \text{ fF}/\mu \text{m}$ of gate width in 0.6 μm
 - Gradually decline to 1 fF/ μ m in nanometer techs.
- Resistance
 - R \approx 5-10 K\Omega•µm in 0.6 µm process
 - Improves with shorter channel lengths
- Unit transistors
 - May refer to minimum contacted device $(4 \lambda / 2 \lambda)$
 - Or maybe W=1 μm device (doesn't matter as long as you are consistent)

	АМІ 0.6µm	TSMC 250nm	TSMC 180nm	IBM 130nm	IBM 65nm
R_n (k Ω .µm)	9.2	4.0	2.7	2.5	1.3
R_n (kΩ.4λ)	7.7	8.0	7.5	9.6	10
R_{p} (k Ω .µm)	19.9	8.9	6.5	6.4	2.9
R_p (kΩ.4λ)	16.6	17.8	18.1	24.7	22.3

14

RC Values

- Estimate the delay of a fanout-of-1 inverter
- Set size (width) of PMOS to 2 x unit size to have equal pullup (rising) and pull-down (falling) drive resistance

Example: 3-input NAND

 Sketch a 3-input NAND with transistor widths chosen to achieve effective (worst case) rise and fall resistances equal to a unit inverter (R).

3-input NAND Capacitors

• Annotate the 3-input NAND gate with gate and diffusion capacitance.

3-input NAND Capacitors

• Annotate the 3-input NAND gate with gate and diffusion capacitance.

• What are worst-case rise and fall delays?

• How can we estimate delay of these networks?

τ with multiple RC components

- Second order response is too complicated
 - defeats whole purpose of simplifying to an RC network
- Can approximate to:

$$\tau \approx \tau_1 + \tau_2 = R_1 C_1 + (R_1 + R_2).C_2$$

Elmore Delay

- ON transistors modeled as resistors
- Pullup or pulldown network represented as an RC tree
 - root of tree is driving voltage source (often VDD or GND)
 - resistors are branches
 - leaves are capacitors at ends of branches
- Elmore delay to any target (node j) in the branch:

$$t_{pdj} = \sum_{i} R_{sij} \cdot C_i$$

where:

- *i* represents <u>all</u> the nodes in the branch
- C_i is the capacitance at node *i*
- R_{sij} is the resistance of the <u>shared path</u> from the source to *node_i* and from the source to the target *node_j*
- Elmore delay is conservative
 - over-estimates the delay

Shared Path

- delay to node N is: $R_1C_1 + (R_1+R_2).C_2 + ... + (R_1+R_2+...+R_n).C_N$
- delay to node 2 is: $R_1C_1 + (R_1+R_2).C_2 + (R_1+R_2).(C_3+C_4+...+C_N)$

Example: Elmore Delay

• Calculate delay from source to all nodes in circuit:

3-input NAND: pull-down delay

 Estimate worst-case rising and falling delay of 3-input NAND driving *h* identical gates.

Worst case pull-down delay occurs when ABC goes from (110) to (111)

 $t_{pdf} = (3C)\left(\frac{R}{3}\right) + (3C)\left(\frac{R}{3} + \frac{R}{3}\right) + [(9+5h)C]\left(\frac{R}{3} + \frac{R}{3} + \frac{R}{3}\right)$ $t_{pdf} = (12+5h)RC$

3-input NAND: pull-up delay

 Estimate worst-case rising and falling delay of 3-input NAND driving h identical gates.

h copies

Worst case pull-up delay occurs when ABC goes from (111) to (110)

 $t_{pdr} = [(9+5h)C](R) + (3C)(R) + (3C)(R)$

 $t_{pdr} = (15 + 5h)RC$

Delay Components

$$t_{pdf} = (12 + 5h)RC$$

$$t_{pdr} = (15 + 5h)RC$$

- Delay has two parts
 - Parasitic delay
 - 15 or 12 RC
 - Independent of load
 - Effort delay
 - 5h RC
 - Proportional to load capacitance

Falling Contamination Delay

 Best-case (contamination) delay can be substantially less than propagation delay:

if top nMOS is last to turn on: **i.e. ABC goes from (011) to (111)**

$$\begin{array}{c} F^{Y} \qquad (9+5h)C \\ n_{2} \\ R/3 \\ n_{1} \\ R/3 \\ R/3 \\ F^{Y} \\ R/3 \\ Compare to: \end{array}$$

 $t_{pdf} = (12 + 5h)RC$

Rising Contamination Delay

Fastest response if all pMOS turn on simultaneously:

i.e. ABC goes from (111) to (000)

$$t_{cdr} = \left(3 + \frac{5}{3}h\right)RC$$

compare to: $t_{pdr} = (15 + 5h)RC$

Diffusion Capacitance

- We assumed contacted diffusion on every s / d.
 - but shared on series nMOS chain
- Good layout minimizes diffusion area
- Good NAND3 layout shares one diffusion contact
 - Reduces output capacitance by 2C
- Merged un-contacted diffusion also helps

Layout Comparison

• Which layout is better?

Example: Gate delays

```
For the gate Y = \overline{A.B + C.D}
```

- a) Draw the schematic
- b) Size the transistors to give pullup and pulldown strength equal to unit size inverter
- c) Annotate with effective R of each transistor and C of each node
- d) Calculate worst case rising & falling propagation delay while driving *h* similar gates
- e) Calculate best case rising & falling contamination delay while driving *h* similar gates