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Transient Response

e DC analysis tells us V, if V;, iIs constant

e Transient analysis tells us V,,(t) in response to a
change in V,,
* Requires solving differential equations

* Input is usually considered to be a step or ramp

— From GND to Vp or vice versa




Delay Definitions
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Delay Definitions (cont.)

e t.4: falling contamination delay

— minimum time from input
crossing Vpp/2 to falling
output crossing Vpp/2

t.q, - risSing contamination delay

— minimum time from input
crossing Vpp/2 to rising
output crossing Vpp/2 |

e R A

e t.4:avg. contamination delay
o tpd = (tcdr + tcdf)/ 7




Delay in CMQOS Circuits

« A switching CMOS gate generates output current in
response to changing input voltages

* All nodes have some finite capacitance (to ground)
— gate capacitance
— parasitic source/drain (diode) capacitance
— parasitic wiring capacitance

e Transient waveforms found by solving:

Crode ® (AVipge/dt) = Z Ik node |2,node
‘ X
for each node In circuit |1 node—— — I3,node
| .Vnode
Cnode

V



Inverter Step Response

» Find step response of inverter driving C,,.4

Vin(t) = u(t - ty)*Vpp Vin®
Vourlt < 1) = Vpp j

dVout(t)/dt — - Idsn(t)/cload

0 fort<t,

Idsn(t): ) (ﬁlzm)°(VDD_Vt)2 for Voue> Voo — Vi [ -

IB '(VDD_Vt_Vout(t)/ 2m)'vout(t) for Vout < VDD - Vt



Simulated Inverter Delay

« Solving differential equations by hand is too hard

« SPICE simulator solves the equations numerically
« Uses more accurate |-V models too!

But simulations take time to write!
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Delay Estimation

 We would like to be able to easily estimate delay

— For exploration of design space, don’t need to be as accurate as
simulation

— Want a techniqgue where its easier to ask “What if?”

 The step response usually looks like a 15t order RC
response with a decaying exponential.

« Can we model conducting transistor as effective resistance?
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Effective Resistance

« Simplification: treat transistor as resistor
— Replace I4(Vye, Vo) with effective resistance R

— lgs = V4/R or O depending on gate voltage

* Pick R to best model dynamic response of gate
— Too inaccurate to predict current at any given time
— But good enough to predict gate delay
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Capacitance

* Input to CMOS gate presents effectively infinite input
resistance

 The dominant load in CMOS circuits is capacitance

« Capacitance exists wherever there are two conductors
separated by a thin insulator

« Gate to channel capacitor is very important
— Creates channel charge necessary for operation

e Source and drain have capacitance to body

— Parasitic capacitance across reverse-biased diode depletion
region
— Called diffusion capacitance because it is associated with
source/drain diffusion
* Long interconnect wires also have parasitic capacitance

to the substrate
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Gate Capacitance

o Gate is top plate of capacitor

 Assume bottom plate is source
— In cut-off, bottom plate is actually the body

— In linear mode, bottom plate is channel which is connected to
source and drain

— In saturation, bottom plate is channel connected to source
e C,~¢g WL, , =C,.W.L=C W (forL=L_,)

oxe oxe* permicron

IS typically about 1-2 fF/um of width

g

permicron

(0).¢ L-—-e
< L >» SiO, gate oxide

n+ n+ - _
(good insulator, €, = 3.9¢,)
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Diffusion Capacitance

» Diffusion (source/drain) solated . -
region is resistive and Diffusion 1 s
- g
capacitive (to body) c oc
. node — g
e Capacitance depends on
area and perimeter Shared
i Diffusion
* Use small as possible ~C,
diffusion nodes Coue=Cs
« Comparable to C, for min.
contacted diffusion Merged
Diffusion
* Use C,/2 for merged ~Cy2

« Varies with process Crode = C4f2 _ 2 v,
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RC Delay Model

« Use equivalent circuits for MOS transistors
— Ideal switch + capacitance and ON resistance
— Unit nMOS has resistance R, capacitance C
— Unit pMOS has resistance 2R, capacitance C

« Capacitance (gate & diffusion) proportional to width

* Resistance inversely proportional to width

d
— S—lec
kC
RS g S 2Rk
d & d IHC
gk «—» g1 ok «—» g%
S gk(_; — s - TkC
kC
S g d
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RC Values

« Capacitance
« C=C,=Cs=Cy=2fF/um of gate width in 0.6 um
e Gradually decline to 1 fF/um in nanometer techs.
* Resistance
e R~5-10 KQeum in 0.6 um process
* Improves with shorter channel lengths
e Unit transistors

* May refer to minimum contacted device (4 A/ 2 L)
 Or maybe W=1 um device (doesn’t matter as long as you are consistent)

AMI TSMC | TSMC IBM IBM
0.6pum 250nm | 180nm 130nm 65nm
R, (kQ.um) 9.2 4.0 2.7 2.5 1.3
R, (kQ.42) 7.7 8.0 7.5 9.6 10
R, (kQ.um) 19.9 8.9 6.5 6.4 2.9
R, (k.4}) 16.6 17.8 18.1 24.7 22.3 14




RC Values

« Estimate the delay of a fanout-of-1 inverter

e Set size (width) of PMOS to 2 x unit size to have equal pull-
up (rising) and pull-down (falling) drive resistance

R
[ . _
L1 J_ —2C T —2C
2y 2 1T 2C —2C
A ] <> Y -—»
1 1 1 Rz —=¢
H C
RS = C E[, - C
v <
v L !

T = 6°RC LD
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Example: 3-input NAND

o Sketch a 3-input NAND with transistor widths chosen to
achieve effective (worst case) rise and fall resistances equal
to a unit inverter (R).

<& B B

16



3-input NAND Capacitors

« Annotate the 3-input NAND gate with gate and diffusion
capacitance.

j[zjfc g £° w[z -

2C —2C —2C

Vg 17



3-input NAND Capacitors

« Annotate the 3-input NAND gate with gate and diffusion

capacitance.
& e T
- 3 1 9C
T oC
VAl 3 3C
T1C = Vv
AV 3 7 3C
T oC V
v v
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Rise & Fall Delay

 What are worst-case rise and fall delays?

T 3
B EZ B EZ ﬁ o R/3 ;}:90 s ?%;C
T 5C gj R/3 %%30 L
@4 3C | R/3
gSC % aC R/3ij$3c %30
— 3C
g > g7 Falling

« How can we estimate delay of these networks?
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T with multiple RC components

R Hs) = —
1r S) =
— VW Vout 1+ sRC
T=RC
Vbop(— C |:>
\4
Ri n, R T="7
AN — M-Vt .
VDDéL) T—C; TG, Hs) =17 s[R,C,+ (R, + R,).C2] + s?R,C,R,C,

« Second order response is too complicated
» defeats whole purpose of simplifying to an RC network

e Can approximate to:
TRTTT,= R1C1 + (R1+R2)-C2 20



Elmore Delay

e ON transistors modeled as resistors

o Pullup or pulldown network represented as an RC tree
* root of tree is driving voltage source (often VDD or GND)
* resistors are branches
» leaves are capacitors at ends of branches

 Elmore delay to any target (node j) in the branch:

where: l

— irepresents all the nodes in the branch
- C;1s the capacitance at node i

- Ry lIs the resistance of the shared path from the source to node; and
from the source to the target node;

 Elmore delay is conservative

i 21
— over-estimates the delay



Shared Path

R‘l R2 RS RN

M AN—E A AN
— C1 — 02 — CQL,} ow — CN
N v N v

* delay to node N is:
R,C; + (R+R,).C, + ... + (R;+R,+...+R,).Cy

* delay to node 2 is:
Ri1C; + (R11Ry).Cy + (R1+R,).(C5+Cyt...+C)
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Example: EImore Delay

o (Calculate delay from source to all nodes in circuit:

F

——C

3R \V4
2R

G A

2C —— . — C

3R v R v R
H 2R A B C
T—W—
— C C__- 92— 3R —— C — _3C

source
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3-input NAND: pull-down delay

« Estimate worst-case rising and falling delay of 3-input NAND
driving h identical gates. -
f@ G|E2 % Y
3

9C 7 5hC
] ‘%nz ‘\JJ
= . B 3 —3C
o C &%C
3 &
h copies %
— T Worst case pull-down delay occurs when

R3S L(9+5h)C ABC goes from (110) to (111)

2/
e s JTac tpar = BOE) + BOE+5) + (9 +5MCIE +E+5)

1

RI3 S Lac t,ar = (12 4+ 5h)RC
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3-input NAND: pull-up delay

« Estimate worst-case rising and falling delay of 3-input NAND
driving h identical gates. )
4@2 @|E2 % Y
3

_j A oC EShC
: \@& & 5 ac
milsy mg
—
h copies - 3 g SC
T "%
R
?TY Worst case pull-up delay occurs when
R/3 ; ;r{g +5h)C ABC goes from (111) to (110)
Ny
L
R/3 % —vrgc tper = [(9 + 5R)CI(R) + BO(R) + BO)(R)
Ny

Tac t,qr = (15 + 5h)RC
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Delay Components

* Delay has two parts

— Parasitic delay
e 150r12RC
* Independent of load

— Effort delay
« 5h RC
» Proportional to load capacitance
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Falling Contamination Delay

« Best-case (contamination) delay can be substantially less
than propagation delay:

if top NMOS is last to turn on: ﬁz CiEz ; % Y
| A T 9C T 5hC
l.e. ABC goes from (011) to (111) 3 Lny &
B ,  —3C
Y 0
1 C 3 23C
R3S L@ +sh)C g
N2
N4
R/3 3

< compare to: t,qr = (12 + 5h)RC
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Rising Contamination Delay

Fastest response if all pMOS turn on simultaneously:

l.e. ABC goes from (111) to (000)

A (@ G@ C?’j*gc—:;shc RéRéRé

B L /N2 Y

3, L ¢ (9 + 5h)C
C 3]_—'@ 3C A4

&

tear = (3 +32h)RC

compare to: t,; = (15 +5h)RC
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Diffusion Capacitance

 We assumed contacted diffusion on every s/ d.
— but shared on series nMOS chain

« Good layout minimizes diffusion area

 Good NAND3 layout shares one diffusion contact
— Reduces output capacitance by 2C

 Merged un-contacted diffusion also helps

vodll

JEC. e 4
Shared ok _c‘”:ﬁ —°||:2 |—° —E.
Gmntacted___,_,_..ﬁ = | =
Diffusion § i Isolated 3 —vv'_
%é Contacted 3 T ——=—15C
Merged Diffusion
Llnv::.::lntar::ten:l_h““""nllh - :'—
Diffusion " 3 5C
J_J_ s ‘;|7
T e
T'5C1.5C 3C
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Layout Comparison

 Which layout is better?

DD DD

f==

GND GND
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Example: Gate delays

ForthegateY = A.B+C.D

a) Draw the schematic

b) Size the transistors to give pullup and pulldown strength equal to unit
Size inverter

c) Annotate with effective R of each transistor and C of each node

d) Calculate worst case rising & falling propagation delay while driving h
similar gates

e) Calculate best case rising & falling contamination delay while driving h
similar gates
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