EE 471: Transport Phenomena in Solid State Devices

Lecture 13
 CMOS Power Dissipation

Bryan Ackland
Department of Electrical and Computer Engineering Stevens Institute of Technology

Hoboken, NJ 07030

Adapted from Digital Integrated Circuits: A Design Perspective, Rabaey et. al., 2003 and Lecture Notes, David Mahoney Harris CMOS VLSI Design

CMOS - a Low Power Technology

- CMOS developed in 1970's as a low power technology
- (almost) no DC current when gate is not switching
- no static power dissipation
- CMOS replaces NMOS in 1980's as dominant digital technology
- NMOS designs dissipated about $200 \mu \mathrm{~W} /$ gate
- Power dissipation no longer an issue!
- CMOS process technology evolves to provide:
- more transistors per chip (Moore's Law)
- faster switching speed (few $\mathrm{MHz} \Rightarrow$ hundreds of MHz)
- 1992 DEC announces Alpha 64-bit microprocessor
- triumph of high speed CMOS digital design
- first 200MHz processor, 1.7M transistors
- 30W power dissipation
- Power dissipation is once again an issue!

Why Power Matters: Package \& System Cooling

- Need to remove heat from high performance chips
- max. operating temperature silicon transistors: $150-200^{\circ} \mathrm{C}$
- Chip on PC board can dissipate 2-3 watts
- With suitable heatsink, maybe 10 watts
- With forced-air cooling (fans), up to 150 W

- With sophisticated liquid cooling, maybe 1000W

Why Power Matters: Battery Size \& Weight

- Today, we see more hand-held battery operated devices
- Unlike CMOS technology, battery technology has seen only modest improvements over last few decades

"Mobile Computing Environment", Paradiso et. al. Pervasive Computing, IEEE 2005
- Expected battery lifetime increase over the next 5 years: 30 to 40\%

Why Power Matters: Power Distribution

- Power Supply and Ground design
- If VDD=1.0V, a 100 W chip draws 100 amps!
- Many package pins required
- Virtex-6 1924-pin package:
- 220 power and 484 GND pins
- On-chip wiring distribute this current
- Electro-migration issues
- On-chip noise and system reliability
- Large currents switched through package and PCB inductance
- Environmental Concerns
- Computers and consumer electronics account for 15% of residential energy consumption

Back to Basics: Power \& Energy

- Power is drawn from a voltage source attached to the $V_{D D}$ and GND pins of a chip.
- Instantaneous Power: $P(t)=I(t) V(t)$
(watts)
- Energy:

$$
E=\int_{0}^{T} P(t) d t \quad \text { (joules) }
$$

- Average Power:

$$
P_{\mathrm{avg}}=\frac{E}{T}=\frac{1}{T} \int_{0}^{T} P(t) d t
$$

Back to Basics: Power in Circuit Elements

- Power Supply:

$P_{V D D}(t)=I_{D D}(t) V_{D D}$
$\stackrel{+}{V_{R}} \leqslant \mid I_{R}$
$P_{R}(t)=\frac{V_{R}^{2}(t)}{R}=I_{R}^{2}(t) R$
- Resistor
- Capacitor
- but they do store energy:

$$
\begin{aligned}
E_{C} & =\int_{0}^{\infty} I(t) V(t) d t=\int_{0}^{\infty} C \frac{d V}{d t} V(t) d t \\
& =C \int_{0}^{V_{C}} V(t) d V=\frac{1}{2} C V_{C}^{2}
\end{aligned}
$$

Power Dissipation in CMOS

- $P_{\text {total }}=P_{\text {dynamic }}+P_{\text {static }}$
- Dynamic power: $P_{\text {dynamic }}=P_{\text {switching }}+P_{\text {shortcircuit }}$
- Switching load capacitances
- Short-circuit current
- Static power: $P_{\text {static }}=\left(I_{\text {sub }}+I_{\text {gate }}+I_{\text {junct }}+I_{\text {contention }}\right) V_{D D}$
- Subthreshold leakage
- Gate leakage
- Junction leakage
- Contention current

Dynamic Power: Charging a Capacitor

- When the gate output rises from GND to V_{DD} :
- Energy stored in capacitor is

$$
E_{C}=\frac{1}{2} C_{L} V_{D D}^{2}
$$

- But energy drawn from the supply is

$$
\begin{aligned}
E_{V D D} & =\int_{0}^{\infty} I(t) V_{D D} d t=\int_{0}^{\infty} C_{L} \frac{d V}{d t} V_{D D} d t \\
& =C_{L} V_{D D} \int_{0}^{V_{D D}} d V=C_{L} V_{D D}^{2} \quad \text { independent of size of transistors! }
\end{aligned}
$$

- Half the energy from V_{DD} is dissipated in the pMOS transistor as heat, other half stored in capacitor
- When the gate output falls from $V_{D D}$ to GND
- Stored energy in capacitor is dumped to GND
- Dissipated as heat in the nMOS transistor

Switching Waveforms

- Example: $\mathrm{V}_{\mathrm{DD}}=1.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{fF}, \mathrm{f}=1 \mathrm{GHz}$

Switching Waveforms

$$
\begin{aligned}
& P_{\text {switching }}=\frac{1}{T} \int_{0}^{T} i_{D D}(t) V_{D D} d t \\
& =\frac{V_{D D}}{T} \int_{0}^{T} i_{D D}(t) d t \\
& =\frac{V_{D D}}{T} \times\left[\begin{array}{c}
\text { total charge drawn } \\
\text { from power supply } \\
\text { in time } T
\end{array}\right] \\
& =\frac{V_{D D}}{T} \times\left[T f_{\text {sw }} C V_{D D}\right] \\
& P_{\text {switching }}=C \cdot V_{D D}^{2} \cdot f_{\text {sw }}
\end{aligned}
$$

Note: $P_{\text {switching }}$ is independent of drive strength of the nMOS and pMOS transistors

Activity Factor

- Suppose the system clock frequency = f
- Most gates do not switch every clock cycle
- Let $\mathrm{f}_{\mathrm{sw}}=\alpha \mathrm{f}$, where $\alpha=$ activity factor
$-\alpha=P_{0 \rightarrow 1}$: probability that a signal switches from 0 to 1 in any clock cycle
- If the signal is the system clock, $\alpha=1$
- If the signal switches once per cycle, $\alpha=0.5$
- If the signal is random (clocked) data, $\alpha=0.25$
- Static CMOS logic has (empirically) $\alpha \approx 0.1$
- Dynamic power of a circuit: (summing over all the nodes in the circuit)

$$
P_{\text {switching }}=V_{D D}^{2} \cdot f \cdot \sum_{i} \alpha_{i} \cdot C_{i}
$$

Dynamic Power Example

- 1 billion transistor chip
- 50M logic transistors
- Average width: 12λ
- Activity factor $=0.1$
- 950M memory transistors
- Average width: 4λ
- Activity factor $=0.02$
$-65 \mathrm{~nm}, 1.0 \mathrm{~V}$ process $(\lambda=25 \mathrm{~nm})$
$-\mathrm{C}=1 \mathrm{fF} / \mu \mathrm{m}$ (gate) $+0.8 \mathrm{fF} / \mu \mathrm{m}$ (diffusion)
- Estimate dynamic power consumption @ 1 GHz. Neglect wire capacitance and short-circuit current.

Reducing Switching Power

$$
P_{\text {switching }}=\alpha C V_{D D}{ }^{2} f
$$

- So try to minimize:
- Activity factor
- Capacitance
- Supply voltage
- Frequency

Activity Factor Estimation

- Let $\mathrm{P}_{\mathrm{i}}=$ probability (node $i=1$)

$$
\text { and } \bar{P}_{i}=\left(1-P_{i}\right)=\text { probability }(\text { node } i=0)
$$

- $\alpha_{i}=$ prob. that node i makes a transition from 0 to 1 , so
- $\alpha_{i}=\bar{P}_{i} \cdot P_{i}=\left(1-P_{i}\right) \cdot P_{i}$

Activity Factor Estimation

- For random data, $\alpha=0.5 \cdot 0.5=0.25$

- Data is often not completely random
- e.g. upper 9 bits of 16-bit word representing somebody's age
- Data propagating through ANDs and ORs has lower activity factor

Example: Switching Probability of NOR2

- For NOR2, $\mathrm{P}_{\mathrm{Y}}=\overline{\mathrm{P}}_{\mathrm{A}} \cdot \overline{\mathrm{P}}_{\mathrm{B}}$

- $\bar{P}_{Y}=\left(1-P_{Y}\right)=\left(1-\bar{P}_{A} \cdot \bar{P}_{B}\right)$
- $\alpha_{Y}=P_{Y} \cdot \bar{P}_{Y}$

$$
=\left(\bar{P}_{A} \cdot \bar{P}_{B}\right) \bullet\left(1-\bar{P}_{A} \cdot \bar{P}_{B}\right)
$$

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

- If $P_{A}=P_{B}=0.5, P_{Y}=0.25, \alpha_{Y}=3 / 16 \approx 0.19$

Switching Probabilities (Static Gates)

Gate	P_{Y}
AND2	$P_{A} P_{B}$
AND3	$P_{A} P_{B} P_{C}$
OR2	$1-\bar{P}_{A} \bar{P}_{B}$
NAND2	$1-P_{A} P_{B}$
NOR2	$\bar{P}_{A} \bar{P}_{B}$
XOR2	$P_{A} \bar{P}_{B}+\bar{P}_{A} P_{B}$

- Remember $\alpha_{Y}=\overline{P_{Y}} \bullet P_{Y}$

Example: 4-input AND gate

- Assume all inputs have $\mathrm{P}=0.5$

- Which has the lowest power?

Number of Stages vs. Power

- Power depends on activity and capacitance at each node
- Generally fewer stages usually mean less power
- Compare this to delay
- frequently add stages to improve delay
- Tradeoff between speed and power

Beware of Glitches!

- Extra transitions caused by finite propagation delay

Suppose input changes from $A B C D=$ "1101" to "0111" ?

Glitching occurs whenever a node makes more transitions than necessary to reach its final value

Glitching can raise the activity factor of a gate to greater than 1!

Clock Gating

- Another way to reduce the activity is to turn off the clock to registers in unused blocks
- Saves clock activity ($\alpha=1$)
- Eliminates all switching activity in the block
- Requires determining if block will be used

Capacitance

- Extra capacitance slows response and increases power
- Always try to reduce parasitic and wiring capacitance
- Good floorplanning to keep high activity communicating gates close to each other
- Drive long wires with inverters or buffers rather than complex gates
- Gate sizing and number of stages
- Designing network for minimum delay will usually result in a high-power network.
- Small increase in delay (e.g. by reducing the \# of stages) can give large reduction in power
- There are no closed form solutions to determine gate sizes that minimize power under a delay constraint.
- Can be solved numerically

Voltage

- Power dissipated in gate is $\mathrm{P}_{\mathrm{av}}=\alpha . \mathrm{f} . \mathrm{C}_{\mathrm{L}} \cdot \mathrm{V}_{\mathrm{DD}}{ }^{2}$
- Energy per switching event* is $\mathrm{E}_{\mathrm{s}}=\mathrm{P}_{\mathrm{av}} /(2 . \alpha . \mathrm{f})=\left(\mathrm{C}_{\mathrm{L}} \cdot \mathrm{V}_{\mathrm{DD}}{ }^{2}\right) / 2$
- Power \& Energy can be significantly reduced by decreasing V_{DD}
- But delay of gate is $\mathrm{D}=\left(\mathrm{C}_{\mathrm{L}} \cdot \Delta \mathrm{V}\right) / /$

$$
\approx\left(\mathrm{C}_{\mathrm{L}} \cdot \mathrm{~V}_{\mathrm{DD}}\right) /\left[(\beta / 2) \cdot\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{t}}\right)^{2}\right]
$$

- Decreasing V_{DD} increases delay
- Circuit can be made (almost) arbitrarily low power at the expense of performance - not very useful
* switching event is defined as a transition from $0 \rightarrow 1$ or $1 \rightarrow 0$

Energy-Delay Product

- Introduce metric energy-delay product (EDP)
$=($ energy per switching event) X (gate delay)

$$
E D P=E_{S} \cdot D=\frac{k \cdot C_{L}{ }^{2} \cdot V_{D D}{ }^{3}}{\left(V_{D D}-V_{t}\right)^{2}}
$$

- Minimum EDP at $\mathrm{V}_{\mathrm{DD}}=3 . \mathrm{V}_{\mathrm{t}}$ (for long channel process)

Frequency

- Suppose we can do a task in T sec. on one processor
- Can we do it in T/2 sec. on two processors?
- if application has sufficient intrinsic parallelism
- How about doing it in T sec. on two processors running at half clock frequency?

Proc. at
V volts, $f \mathrm{~Hz}$
$=P$ watts
:---:
V volts, $f / 2 \mathrm{~Hz}$
$=P / 2$ watts
:---:
V volts, $f / 2 \mathrm{~Hz}$
$=P / 2$ watts

- This gives no net power savings.
- But speed $\propto\left(V_{D D}-V_{T}\right)^{2} / V_{D D}$, so if we reduce clock frequency, we can also reduce $V_{D D}$:

Reduced Frequency \& Voltage

- Parallelism with reduced f and $V_{D D}$ leads to lower power
- diminishing returns as $V_{D D}$ approaches V_{T}

Dynamic Power Dissipation Example

- A NAND2 gate of size (input capacitance) 12C is driving an inverter of size 36C which in turn drives a load of 120C units of capacitance. Assume the inputs A, B are independent and uniformly distributed. What is the dynamic switching power dissipation of this gate if the gate capacitance C of a unit sized transistor is $0.1 \mathrm{fF}, \mathrm{V}_{\mathrm{DD}}$ is 1.0 V and the operating frequency is 1 GHz ?

Short-Circuit Power

- Finite slope of the input signal
- sets up a direct current path between $V_{D D}$ and GND for a short period during switching when both the NMOS and PMOS devices are conducting.

$$
\mathrm{E}_{\mathrm{sc}} \approx \mathrm{t}_{\mathrm{sc}} \cdot \mathrm{~V}_{\mathrm{DD}} \cdot \mathrm{I}_{\mathrm{SC}}
$$

- Depends on duration (slope) of the input transition, t_{sc}
- $I_{s c}$ which is determined by
- saturation current of the P and N transistors
- depends on sizes, process technology, temperature, etc.
- ratio between input and output slopes (a function of C_{L})

Slope Engineering

Small Capacitive Load

- Output fall time significantly shorter than input rise time
- Output "tracks" input as per DC transfer function
- Large I_{SC} when $\mathrm{V}_{\mathrm{IN}} \approx \mathrm{V}_{\mathrm{Sw}}$

Large Capacitive Load

- Output fall time significantly longer than input rise time
- Output transition lags input
- When $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SW}}, \mathrm{V}_{\mathrm{dsp}}$ is still very small, so small I_{sc}

Impact of C_{L} on I_{SC}

- When C_{L} is small, $I_{S C}$ is large!
- Short circuit dissipation is minimized by matching the rise/fall times of the input and output signals - slope engineering.
- Typically less than 10% of dynamic power if rise/fall times are comparable for input and output

Static Power Dissipation

- Static power is consumed even when chip is quiescent
- i.e. powered up but not running
- Leakage consumes power from current passing through normally off devices
- sub-threshold current
- gate leakage current
- diode junction leakage current

Leakage Sources

- Leakage currents are very small (per transistor basis)
- prior to 130 nm , not usually an issue (except in sleep mode of battery operated devices)
- but when multiplied by hundreds of millions of nanometer devices, can account for as much as $1 / 3$ of active power
- All increase exponentially with temperature

Sub-threshold Leakage

- Shockley model assumes $\mathrm{I}_{\mathrm{ds}}=0$ when $\mathrm{V}_{\mathrm{gs}} \leq \mathrm{V}_{\mathrm{t}}$
- But in real transistors, $I_{d s} \approx 100 n A \times(W / L)$ when $\mathrm{V}_{\mathrm{gs}}=\mathrm{V}_{\mathrm{t}}$
- For $\mathrm{V}_{\mathrm{gs}}<\mathrm{V}_{\mathrm{t}}$, I_{ds} decreases exponentially with V_{gs}

$$
I_{d s}=I_{0} 10^{\frac{\left(V_{g s}-V_{t}\right)}{S}} \quad \text { where } \mathrm{S} \text { is sub-threshold slope } \approx 100 \mathrm{mV} / \text { decade }
$$

- In nanometer processes, as we reduce V_{DD}, we also reduce V_{t} to maintain good on-current
- But reducing V_{t} increases the off-current

Max. "on current": $\quad I_{s a t}=\beta / 2 m\left(V_{D D}-V_{t}\right)^{2}$

Min. "off current": $\quad I_{\text {sub }}=I_{0} 10^{\left(0-V_{t}\right) / S}$

Sub-threshold Leakage

- Tradeoff between "on current" (performance) and "off current" (static power dissipation) as we adjust V_{t}
- Typical values for off-current in 65 nm with $\mathrm{V}_{\mathrm{DD}}=1 \mathrm{~V}$

$$
\begin{array}{ll}
\mathrm{I}_{\text {off }}=100 \mathrm{nA} / \mu \mathrm{m} @ \mathrm{~V}_{\mathrm{t}}=0.3 \mathrm{~V} \\
\mathrm{I}_{\text {off }}=10 \mathrm{nA} / \mu \mathrm{m} & @ \mathrm{~V}_{\mathrm{t}}=0.4 \mathrm{~V} \\
\mathrm{I}_{\text {off }}=1 \mathrm{nA} / \mu \mathrm{m} & @ \mathrm{~V}_{\mathrm{t}}=0.5 \mathrm{~V}
\end{array}
$$

Stack Effect

- Series OFF transistors have less leakage - for N1 to have any leakage, $\mathrm{V}_{\mathrm{x}}>0$
- so N2 has negative V_{gs}
- leakage through 2 -stack reduces $\sim 10 x$
- leakage through 3-stack reduces further
- Leakage and delay trade off
- Aim for low leakage in sleep and low delay in active mode
- To reduce leakage:
- Increase V_{t} : multiple V_{t}
- Use low V_{t} only in speed critical circuits
- Increase V_{s} : stack effect
- Input vector control in sleep

Gate \& Junction Leakage

- Gate leakage extremely strong function of t_{ox} and V_{gs}
- Negligible for older processes
- Approaches sub-threshold leakage at 65 nm
- An order of magnitude less for pMOS than nMOS
- Control gate leakage in the process using $\mathrm{t}_{\mathrm{ox}}>10 \AA$
- High-k gate dielectrics help
- Some processes provide multiple $\mathrm{t}_{\text {ox }}$
- e.g. thicker oxide for 3.3 V I/O transistors
- Junction leakage usually negligible
- becoming little more significant in nanometer processes
- Control gate \& junction leakage in circuits by limiting V_{D}

Power Gating

- Turn OFF power to blocks when they are idle to save leakage
- Use virtual V_{DD} ($\mathrm{V}_{\mathrm{DDV}}$)
- Gate outputs to prevent invalid logic levels to next block

- Voltage drop across sleep transistor degrades performance during normal operation
- Size the transistor wide enough to minimize impact
- Switching wide sleep transistor costs dynamic power
- Only justified when circuit sleeps long enough

Voltage \& Frequency Control

- Run each block at the lowest possible voltage and frequency that meets performance requirements
- Multiple Voltage Domains
- Provide separate supplies to different blocks
- Level converters required when crossing from low to high V_{DD} domains
- Dynamic Voltage Scaling
- Adjust $V_{D D}$ and faccording to workload

