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CMOS - a Low Power Technology

e CMOS developed in 1970’s as a low power technology
— (almost) no DC current when gate is not switching
— no static power dissipation

« CMOS replaces NMOS in 1980’'s as dominant digital
technology

— NMOS designs dissipated about 200uW/gate
— Power dissipation no longer an issue!

« CMOS process technology evolves to provide:
— more transistors per chip (Moore’s Law)
— faster switching speed (few MHz = hundreds of MHZz)

e 1992 DEC announces Alpha 64-bit microprocessor
— triumph of high speed CMOS digital design
— first 200MHz processor, 1.7M transistors
— 30W power dissipation
— Power dissipation is once again an issue!




Why Power Matters: Package & System Cooling

 Need to remove heat from high performance chips
— max. operating temperature silicon transistors: 150 — 200 °C

Chip on PC board can dissipate 2-3 watts

With suitable heatsink, maybe 10 watts

With forced-air cooling (fans), up to 150W

With sophisticated liquid cooling, maybe 1000W



Why Power Matters: Battery Size & Weight

« Today, we see more hand-held battery operated devices

« Unlike CMOS technology, battery technology has seen
only modest improvements over last few decades
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Why Power Matters: Power Distribution

 Power Supply and Ground design
— If VDD=1.0V, a 100W chip draws 100 amps!
— Many package pins required
— Virtex-6 1924-pin package:
o 220 power and 484 GND pins
— On-chip wiring distribute this current
— Electro-migration issues

* On-chip noise and system reliability
— Large currents switched through package and PCB inductance

e Environmental Concerns

— Computers and consumer electronics account for 15% of
residential energy consumption



Back to Basics: Power & Energy

 Power is drawn from a voltage source attached to the
Vpp and GND pins of a chip.

« Instantaneous Power: P(’[) — | (’[)V (t) (watts)

T
 Energy: E = j P(t)dt (joules)
0
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 Average Power: P . — ? — ?J- P(t)dt
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Back to Basics: Power in Circuit Elements

_I._
« Power Supply: Vgg@ T lIop Rioo (t) =15 (t)VDD
4 2
. Vo (t
« Resistor VR%l R Py(t)= RR( ) =1 ()R
+ Capacitors don't
« Capacitor ‘ft:%c lh::c dVidt disgipa:te power!

— but they do store energy:

_Bv\ V(@) EC=T|(t)\/(t)dt=TCC;—\t/V(t)dt




Power Dissipation in CMOS

e P = +P

total — denamic

static

° Dynamlc power. denamic = I:)switching + I:)shortcircuit
— Switching load capacitances

— Short-circuit current

 Static POWET. I:)static = (Isub + Igate T Ijunct T Icontention)VDD
— Subthreshold leakage
— Gate leakage
— Junction leakage

— Contention current



Dynamic Power: Charging a Capacitor

 When the gate output rises from GND to V!

— Energy stored in capacitor is

S Vbp
Ec =7C Vo :lll
— But energy drawn from the supply IS Vin‘[] P J_Vc:-ut
14T CL
Eyop j t)\/DDdt—jC VDDdt J ¢
0

VDD

— CLVDD J' dV = CLV[fD iIndependent of size of transistors!
0

— Half the energy from V is dissipated in the pMOS transistor as
heat, other half stored in capacitor

 When the gate output falls from V5 to GND

— Stored energy in capacitor is dumped to GND
— Dissipated as heat in the nMOS transistor



Switching Waveforms

Example: Vg
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Switching Waveforms

1"
Pswitching = TJ ipp(t)Vppdt V_D_D ‘
0 .
#IDD(t) .
_ o =T
pD | .

- — lpp (t) dt B

" "total charge drawn i TC
__VYpp
= X | from power supply ] %7 N

intime T

VDD _

— X [T fswCVppl

_ 2
Pswitching — C-VDD -fs*w

Note: Pgyiiching IS INdependent of drive strength
of the nMOS and pMOS transistors 1



Activity Factor

e Suppose the system clock frequency = f
* Most gates do not switch every clock cycle
o Letf,, = af, where a = activity factor

— o = Py_,; : probability that a signal switches from 0 to 1 in any
clock cycle

— If the signal is the system clock, o = 1

— If the signal switches once per cycle, a = 0.5

— If the signal is random (clocked) data, o = 0.25
— Static CMOS logic has (empirically) o = 0.1

* Dynamic power of a circuit: (summing over all the nodes in the circuit)

_ 2
Pswitching — VDD fz ;. Ci
[

12




Dynamic Power Example

1 billion transistor chip
— 50M logic transistors
* Average width: 12 A
 Activity factor = 0.1
— 950M memory transistors
e Average width: 4 A
 Activity factor = 0.02
— 65 nm, 1.0V process (A = 25nm)
— C =1 fF/um (gate) + 0.8 fF/um (diffusion)

« Estimate dynamic power consumption @ 1 GHz.
Neglect wire capacitance and short-circuit current.
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Reducing Switching Power

P =aCV,,° f

switching

e S0 try to minimize:
— Activity factor
— Capacitance
— Supply voltage
— Frequency

14



Activity Factor Estimation

e Let P, = probability (node i =1)
and P, = (1 — P, = probability (node i = 0)

e o, = prob. that node i makes a transition from O to 1, so

* ai:Ei.Pi =(1—P) P
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Activity Factor Estimation

e For randomdata, a =0.50.5=0.25

0.3

ol RN
a; 0.15 // E \\
0.(;5 / i \
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2o oo o

!

« Data is often not completely random
— e.g. upper 9 bits of 16-bit word representing somebody’s age

o Data propagating through ANDs and ORs has lower
activity factor
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Example: Switching Probability of NOR2
A
For NOR2, P, =P, P, B i)‘*Y

* Py=(1-Py)=(1-Pa*Py) : i Y
0 0 1
e oy =PyeP, 0 1 0
— = — = 1 0 0

= (Pa* Pg)(1—Pae* Pg)
1 1 0

f P, =Pg=0.5 P, =0.25, ay = 3/16 = 0.19
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Switching Probabilities (Static Gates)

Gate Py
AND?2 P,Pp
AND3 P,PpP.

OR2 1-P4Pp
NAND?2 1-P,4Pp
NOR2 P,Pp
XOR2 P4Pp+ P4Pp

« Remember o, =P, ¢ Py
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Example: 4-input AND gate

 Assume all inputs have P=0.5

P=15/16

A__ P=1/16
B__ a=15/256 0=15/256
C— Y
D—

P=3/4

A— a=3/16 P=1/16
B — D‘ﬂw%
C —DD_I P=3/4 Y

D a=3/16

P=3/4 P=1/4

B P=7/8 P=1/8 P=15/16 P=1/16
A _: a=3/ 16I: a=3/16 a=7/64 a=7/64 a=15/256 a=15/256
B — N >: ‘ > )O_ ‘ >O

 Which has the lowest power? 19



Number of Stages vs. Power

 Power depends on activity and capacitance at each
node

« Generally fewer stages usually mean less power

e Compare this to delay

— frequently add stages to improve delay

« Tradeoff between speed and power

20



Beware of Glitches!

o Extra transitions caused by finite propagation delay

g: n3 Cri n5 no6 n7
D—: I: Y
A \C\\ |
B ) Suppose input changes
c / / from ABCD =*“1101"to “0111" ?
D
Ng % Glitching occurs whenever a node
makes more transitions than
Ny ((\,\

R necessary to reach its final value
Tf%imhes\‘.
Ng | | L . .
— . : Glitching can raise the activity
S N 2% ) factor of a gate to greater than 1!
N ’ 21
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Clock Gating

e Another way to reduce the activity is to turn off the clock
to registers in unused blocks

— Saves clock activity (o = 1)
— Eliminates all switching activity in the block
— Requires determining if block will be used

clk  Clock
Gater
B
Logic
Enable
Latch 1

Registers

22



Capacitance

« Extra capacitance slows response and increases power
— Always try to reduce parasitic and wiring capacitance

— Good floorplanning to keep high activity communicating gates
close to each other

— Drive long wires with inverters or buffers rather than complex gates

« Gate sizing and number of stages

— Designing network for minimum delay will
usually result in a high-power network.

— Small increase in delay (e.g. by reducing the #
of stages) can give large reduction in power

— There are no closed form solutions to
determine gate sizes that minimize power
under a delay constraint.

I | |

I |
— Can be solved numerically 0 10 20 30 40 50

Energy

Delay

O =~ N WP 0o N 00 O
U N T TN NN T SR
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Voltage

« Power dissipated in gate is P, = o..f.C,.Vp?

« Energy per switching event* is E.=P_/(2.a.f) = (C,.Vpp?)/2
— Power & Energy can be significantly reduced by decreasing Vg
 Butdelay of gateis D = (C_. AV)/I
= (CL-Vpo)/[(B/2)-(Vop-V?]
— Decreasing Vg increases delay

e Circuit can be made (almost) arbitrarily low power at the
expense of performance — not very useful

* switching event is defined as a transition from 0—17 or 7—0
24



Energy-Delay Product

* Introduce metric energy-delay product (EDP)
= (energy per switching event) X (gate delay)

k.C,* Vpp>
EDP = E;.D = :
(Vop — Vi)
100
90 \
80 \
o | Vy=0.4V
| \ /
normalized 60
units 50 \ / el
—cNErgY
0 \\ // EDP
30
o N~
, >
0 / . . . . .
o o5 1 15 2 25 3 35
VDD

e Minimum EDP at Vyp = 3.V, (for long channel process) .



Frequency

e Suppose we can do a task in T sec. on one processor

e Canwe doitin T/2 sec. on two processors?
— If application has sufficient intrinsic parallelism

« How about doing it in T sec. on two processors running at
half clock frequency?

Proc. at _ Proc. at Proc. at
V volts, f Hz = V volts, f/2 Hz | + | V volts, f/2 Hz
= P watts = P/2 watts = P/2 watts

* This gives no net power savings.

« Butspeed < (Vpp — V7)?/Vpp, SO if we reduce clock

frequency, we can also reduce Vpp: .



Reduced Frequency & Voltage

1.8

L6 V:=0.5
1.4 In this example,
Rel. ] / reducing speed by
Speed 02 < factor of 50%
0.4 // allows voltage
> - | | Vop (volts)  reduction of ~35%
0 0.5 1 1.5 2 2.5 3

Proc. at _ Proc. at 0.65V Proc. at 0.65V
V volts, f Hz = volts, f/2 Hz + volts, f/2 Hz
= P watts ~ 0.2 P watts ~ (0.2 P watts

« Parallelism with reduced f and V,, leads to lower power

— diminishing returns as V,p approaches V;
27



Dynamic Power Dissipation Example

A_12 ® bo Y
B — ?;120

« A NAND2 gate of size (input capacitance) 12C is driving an
iInverter of size 36C which in turn drives a load of 120C
units of capacitance. Assume the inputs A, B are
iIndependent and uniformly distributed. What is the dynamic
switching power dissipation of this gate if the gate
capacitance C of a unit sized transistor is 0.1fF, Vpis 1.0V
and the operating frequency is 1GHz?

28



Short-Circuit Power

* Finite slope of the input signal
— sets up a direct current path between V5 and GND for a short
period during switching when both the NMOS and PMOS devices
are conducting.

B VDD

Al e

_ 1 VOUT
VIN -

—va ok
\V

Esc = tSC'VDD'ISC

* Depends on duration (slope) of the input transition, t.,

e lsc which is determined by

— saturation current of the P and N transistors
» depends on sizes, process technology, temperature, etc.

— ratio between input and output slopes (a function of C,) 29



Slope Engineering

Small Capacitive Load Large Capacitive Load
T VDD T VDD
_ql: lsc _ql:iIISCzO
Vﬂ Vour
VIN - VIN -
-9 .
V | V
V V
e OQOutput fall time significantly e Qutput fall time significantly
shorter than input rise time longer than input rise time
o Qutput “tracks” input as per o Qutput transition lags input
DC transfer function * WhenV =Vgy, Vg is still

« Large lgc when V= Vg very small, so small |5
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Impact of C, on lg

2.3 500 psec input slope

C, =20 fF

C, = 100 fF

time ( 1010 sec)

« When C, is small, I Is large!

— Short circuit dissipation is minimized by matching the rise/fall
times of the input and output signals - slope engineering.

e Typically less than 10% of dynamic power if rise/fall
times are comparable for input and output .



Static Power Dissipation

« Static power is consumed even when chip is quiescent

— l.e. powered up but not running

 Leakage consumes power from current passing through
normally off devices

— sub-threshold current
— gate leakage current

— diode junction leakage current

32



Leakage Sources
‘ l %—— __Junction leakage

—4. ¢

gate leakage --.__ rz&

V sub-threshold leakage

» Leakage currents are very small (per transistor basis)

— prior to 130 nm, not usually an issue (except in sleep mode of
battery operated devices)

— but when multiplied by hundreds of millions of nanometer devices,
can account for as much as 1/3 of active power

« Allincrease exponentially with temperature %



Sub-threshold Leakage

 Shockley model assumes |y = 0 when V¢ <V,
« Butin real transistors, I, = 100nA x (W /L) when V4 =V,
« ForV, <V, |y decreases exponentially with V

M where S is sub-threshold slope = 100mV/decade
IdS — IO 10 S

* In nanometer processes, as we reduce Vyp, we also
reduce V, to maintain good on-current
— But reducing V, increases the off-current

VDD
| Max. “on current”. I, = B/2mVpp — Vt)2

I Min. “off current”: Loy, = [,10007VD)/S
GND 34




Sub-threshold Leakage

« Tradeoff between “on current” (performance) and “off
current” (static power dissipation) as we adjust V,

» Typical values for off-current in 65nm with V=1V
l,# = 100 NnA/um @ V,=0.3V

I, = 10 NA/um @ V,=0.4V
s =1 NA/Jum @ V,=05V

35



Stack Effect

« Series OFF transistors have less leakage 1
— for N1 to have any leakage, V, > 0 B
— s0 N2 has negative V 0~| N2
— leakage through 2-stack reduces ~10x v
— leakage through 3-stack reduces further "
04| N1
 Leakage and delay trade off \V/

— Aim for low leakage in sleep and
low delay in active mode

e Toreduce leakage:
— Increase V. multiple V,
« Use low V, only in speed critical circuits

— Increase V.: stack effect
 Input vector control in sleep 36



Gate & Junction Leakage

 Gate leakage extremely strong function of t,, and V

— Negligible for older processes

— Approaches sub-threshold leakage at 65 nm
« An order of magnitude less for pMOS than nMOS

« Control gate leakage in the process using t,, > 10 A
— High-k gate dielectrics help
— Some processes provide multiple t,,
« e.g. thicker oxide for 3.3 V /O transistors
« Junction leakage usually negligible

— becoming little more significant in nanometer processes

« Control gate & junction leakage in circuits by limiting Vg
37



Power Gating

 Turn OFF power to blocks when they are idle to save

Ieakage Header Switch
Vi Transistors

}

: _ /
Sleep—H—4f—t ‘1

— Gatg outputs to prevent invalid _ Sa—— __; S
logic levels to next block = Gated L\ B
7 Block L@

v Outlet

Isolation

* Voltage drop across sleep transistor degrades
performance during normal operation
— Size the transistor wide enough to minimize impact

o Switching wide sleep transistor costs dynamic power
— Only justified when circuit sleeps long enough

38



Voltage & Frequency Control

 Run each block at the lowest possible voltage and
frequency that meets performance requirements

e Multiple Voltage Domains
— Provide separate supplies to different blocks
— Level converters required when crossing from low to high Vg

domains
. . Switching
 Dynamic Voltage Scaling Vin—=| Voltage
: i = Reqgulator
— Adjust Vp and f according to workload Voltage Control l""
DD
Freq Control
WDI’HlDEiEjF
;Temperature

39
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