
EE 471: Transport Phenomena in Solid State Devices
Spring 2018

Lecture 2
Electrons and Holes in Semiconductors

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from Modern Semiconductor Devices for Integrated Circuits,  Chenming Hu, 2010



Silicon Crystal Structure

• Most semiconductor materials 
used in microelectronics are 
crystalline

• Unit cell of silicon crystal is 
cubic
– contains 18 silicon atoms 

arranged in tetrahedral (diamond) 
bonding pattern
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• Each silicon atom has four nearest neighbors



Bond Model of Silicon Crystal

• Silicon is a Group IV material – 4 valence electrons
• Valence electrons shared with 4 nearest neighbors

– each pair of electrons forms covalent bond
• At low temperature (≈ absolute zero) no free electrons to 

conduct electric current
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Conduction Electrons in Pure Silicon

• At any temperature above absolute zero, electron has 
thermal energy kT

• Finite probability that an electron will break loose from its 
bond and become a conduction electron

• Energy required to break loose ≈ 1.1 eV
• At room temperature (300°K), kT ≈ 26 meV
• Number that break free at room temp. is 1 in 2x1013
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Holes

• When an electron breaks loose and becomes a conduction 
electron it leaves behind a vacancy called a hole

• Another valence electron may jump across to fill the hole
– as a result the hole “moves” to another location
– alternative way for electrons to move around and conduct current

• Hole can be viewed as a positively charged carrier
– bubble in a liquid analogy

• In pure (intrinsic) silicon, # conduction electrons = # holes5
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Other Semiconductors
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Adding Dopants: N-type Silicon

• Suppose we replace one silicon atom with an arsenic 
(group V) atom: 

• Contributes one extra electron which is weakly held
– energy to break loose (ionization energy) ≈ 100 mev
– free to wander at room temperature (almost 100% ionization)
– electron leaves behind a positive As+ ion – but no hole
– impurities (dopants) such as arsenic are called donors
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Adding Dopants: P-type Silicon

• Similarly, if we introduce a boron (group III) atom: 

• Can accept an extra electron which creates a hole
– leads to a negative B─ ion – but no conduction electron
– impurities (dopants) such as boron are called acceptors
– if one in million Si atoms is replaced by an acceptor, number 

of holes available to conduct current increases by a factor of 
5x106 (same is true for donors and electrons)

– property of semiconductors: large changes in conductivity 
through the addition of trace amounts of dopant material 8
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Energy Band Model

• When two atoms of silicon are in close proximity
– splitting of the energy levels of the outer electron shells

• When many atoms are in close proximity
– discrete energy levels are replaced by bands of energy 

states separated by gaps between the bands
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Highest (nearly filled) band: valence band

Lowest (nearly empty) band: conduction band

Filled lower bands

Band gap



Measuring Band Gap Energy

• When light is absorbed by semiconductor, electron-hole pairs 
are created  - conductivity increases

• Photon energy must be greater than Eg
– at longer λ, photon is not absorbed and material is transparent
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Material InSb Ge Si GaAs GaP ZnSe Diamond

Eg (eV) 0.18 0.67 1.12 1.42 2.25 2.7 6
λ cutoff (nm) 6900 1800 1100 870 550 460 210



Donor and Acceptor Levels

• N-type silicon has a donor energy level
– Donor ionization energy = Ec – Ed ≈ 50 meV

• P-type silicon has an acceptor energy level
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Conductors, Insulators and Semiconductors

• Totally filled and totally empty bands do not allow current flow
– Metal conduction band is half-filled

• Semiconductors differ from insulators in that:
– they have narrower band-gap
– conductance dramatically increased through impurity doping 12

Eg = 1.1 eV
Ec

Ev

Semiconductor

Silicon
σ = 1.5 x 10-5 (Ω.cm)-1

Eg = 9 eV

Ec

Ev

Insulator

Silicon Dioxide
σ = 10-18 (Ω.cm)-1
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Energy of Electrons & Holes 

• Higher position in band diagram represents a higher electron 
energy
– Minimum conduction electron energy is Ec

– Any energy above Ec represents electron kinetic energy
• Lower position in band energy represents a higher hole energy

– Requires energy to move hole downward
• equivalent to moving an electron upward

– Minimum hole energy is Ev 13
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Distribution of Electrons & Holes 

• Electrons & holes carry negative and positive charge (± q) 
respectively

• To determine electrical properties of a semiconductor we need 
to know number of electrons and holes available for conduction

• Quantum mechanics allows us calculate:
– Density of energy states in the conduction and valence bands
– Probability that a particular state will be occupied

14

Ec

Ev○

• • • • • • • • • • • •

○ ○ ○ ○
○
○○ ○ ○ ○ ○



Energy States

• Energy band is a collection of discrete energy states
– each state can hold 0 or 1 electron (hole)

• If we count number of states in small energy range ∆E in 
the conduction band in a given volume of material:
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𝐷𝐷𝑐𝑐 𝐸𝐸 ≡
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠 𝑖𝑖𝑛𝑛 ∆𝐸𝐸

∆𝐸𝐸 × 𝑣𝑣𝑜𝑜𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛



Density of States

• Analysis of available quantum states yields:

• Density of states increases as we move away from band edge
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𝐷𝐷𝑐𝑐 𝐸𝐸 ≡
8𝜋𝜋𝑛𝑛𝑛𝑛 2𝑛𝑛𝑛𝑛 𝐸𝐸 − 𝐸𝐸𝑐𝑐
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8𝜋𝜋𝑛𝑛𝑝𝑝 2𝑛𝑛𝑝𝑝 𝐸𝐸𝑣𝑣 − 𝐸𝐸

ℎ3
, 𝐸𝐸 ≤ 𝐸𝐸𝑣𝑣



Effective Mass of Electron (Hole)

• mn is effective mass of electron within the crystal lattice

• mp is effective mass of hole within the crystal lattice

• In silicon:

where 𝑛𝑛0 = 9.11 × 10−31 𝑘𝑘𝑘𝑘 is the rest mass of electron

• Note: Any formula with a mass term in it, must be evaluated in 
full SI units (kg, meters, joules etc.)
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𝐷𝐷𝑐𝑐 𝐸𝐸 ≡
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𝑛𝑛𝑛𝑛 = 1.08 × 𝑛𝑛0 𝑛𝑛𝑝𝑝 = 0.56 × 𝑛𝑛0



Distribution of Carriers in States

• Now need to determine distribution of electrons (holes) 
into these available states
– i.e. probability of each state being occupied

• If there are N electrons (holes) in a system, then at T=0, 
the N electrons (holes) will occupy the N lowest energy 
levels.
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• For T>0, some electrons (holes) 
will move to higher energy states 
leaving vacancies at lower energy 
states

f(E)

E

1.0

EF

T=0

T>0
T=0

T>0



Vibrating Sand Analogy

• Elevation of sand particles represent energy of electrons in 
conduction band under agitation of thermal energy

• At equilibrium (after constant shaking for a time), there is a finite 
probability that an energy state (i.e. height above table) will be 
occupied by a sand particle. 
– higher the energy state (height above table) the lower the probability

• Similarly, in silicon at thermal equilibrium, there is a finite 
probability that an electron will be elevated to a particular energy 
state
– higher the energy state, the lower the probability
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Fermi-Dirac Probability Function

• If we have a system in thermal equilibrium, in which there 
are a large number of indistinguishable particles and at 
most one particle is permitted in each quantum state:

• f(E) is the probability that a state at energy E is occupied 
by an electron

• EF is called Fermi energy or Fermi level
• Note: There is only one Fermi level in a system at thermal 

equilibrium
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𝑜𝑜 𝐸𝐸 =
1

1 + 𝑛𝑛(𝐸𝐸−𝐸𝐸𝐹𝐹)/𝑘𝑘𝑘𝑘



Fermi Function at Different Temperatures

• For T=0:
– f(E) = 1 for E < EF

– f(E) = 0 for E > EF

• For T>0, non-zero probability that some energy states 
above EF will be occupied by electrons and some states 
below EF will be empty

• f(EF) = 0.5 at all temperatures
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𝑜𝑜 𝐸𝐸 =
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𝑇𝑇 = 0

𝑇𝑇 = 𝑇𝑇1

𝑇𝑇 = 𝑇𝑇2 > 𝑇𝑇1



Exercise: Where is the Fermi level?
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E3 = 0 eV

E2 = -1 eV

E1 = -4 eV

Suppose we have a 
one-electron system

T=0

T>0



Boltzmann Approximation

• For (E ─ EF) >> kT :

• For (E ─ EF) << kT :

• Approximation is within 5% accuracy for |E ─ EF| > 3kT 
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𝑜𝑜 𝐸𝐸 =
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1 + 𝑛𝑛(𝐸𝐸−𝐸𝐸𝐹𝐹)/𝑘𝑘𝑘𝑘

𝑜𝑜(𝐸𝐸) ≈ 𝑛𝑛−(𝐸𝐸−𝐸𝐸𝐹𝐹)/𝑘𝑘𝑘𝑘

𝑜𝑜(𝐸𝐸) ≈ 1 − 𝑛𝑛−(𝐸𝐸𝐹𝐹−𝐸𝐸)/𝑘𝑘𝑘𝑘

EF 𝑬𝑬

𝒇𝒇(𝑬𝑬)

𝑜𝑜(𝐸𝐸) ≈ 𝑛𝑛−(𝐸𝐸−𝐸𝐸𝐹𝐹)/𝑘𝑘𝑘𝑘

𝑜𝑜(𝐸𝐸) ≈ 1 − 𝑛𝑛−(𝐸𝐸𝐹𝐹−𝐸𝐸)/𝑘𝑘𝑘𝑘

EF+3kTEF-3kT



Electron & Hole Distribution

• Distribution of electrons in conduction band n(E) is:
(Density of states) x (Probability that state is occupied by electron)

• Similarly, distribution of holes in valence band
24

𝑛𝑛 𝐸𝐸 = 𝐷𝐷𝑐𝑐 𝐸𝐸 .𝑜𝑜(𝐸𝐸)

p 𝐸𝐸 = 𝐷𝐷𝑣𝑣 𝐸𝐸 . [1 − 𝑜𝑜 𝐸𝐸 ]

D(E)

f(E) n(E)

p(E)



Total Electron Concentration

• Electron concentration (n) is total number of electrons (per 
unit volume) available for conduction

• Introduce a new variable: x = (E ─ Ec)/kT

and using ••• 25
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Total Electron Concentration (cont.)

• We get:

• where

• Nc is called effective density of states of conduction band
– as if there were a total of  Nc states in conduction band
– all Nc states existed at energy Ec
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𝑛𝑛 = 𝑁𝑁𝑐𝑐 . 𝑛𝑛−(𝐸𝐸𝑐𝑐−𝐸𝐸𝐹𝐹)/𝑘𝑘𝑘𝑘

𝑁𝑁𝑐𝑐 ≡ 2.
2𝜋𝜋𝑛𝑛𝑛𝑛𝑘𝑘𝑇𝑇

ℎ2

3/2



Total Hole Concentration

• Similarly, we get the concentration of holes (i.e. number per 
unit volume) present in valence band:

• where

• Nv is called effective density of states of valence band
• For Si at 300°K:  Nc = 2.8x1019 cm-3, Nv = 1.04x1019 cm-3

• Note: as EF moves up towards Ec, n increases (while p
decreases); as EF moves down towards Ev, p increases 
(while n decreases)
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𝑝𝑝 = 𝑁𝑁𝑣𝑣 . 𝑛𝑛−(𝐸𝐸𝐹𝐹−𝐸𝐸𝑣𝑣)/𝑘𝑘𝑘𝑘

𝑁𝑁𝑣𝑣 ≡ 2.
2𝜋𝜋𝑛𝑛𝑝𝑝𝑘𝑘𝑇𝑇
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Fermi Level and Carrier Concentrations

• These two equations tell us total carrier (electron or hole) 
concentration (n or p) (in thermal equilibrium) for a given 
Fermi level

• Can also use them to calculate the Fermi level given a 
carrier concentration

• If

then

• Similarly 

• Example: Where is EF if n = 1017 cm-3 ?
Where is EF if p = 1014 cm-3 ?
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𝑛𝑛 = 𝑁𝑁𝑐𝑐 . 𝑛𝑛−(𝐸𝐸𝑐𝑐−𝐸𝐸𝐹𝐹)/𝑘𝑘𝑘𝑘

(𝐸𝐸𝑐𝑐−𝐸𝐸𝐹𝐹) = 𝑘𝑘𝑇𝑇. 𝑣𝑣𝑛𝑛 �𝑁𝑁𝑐𝑐 𝑛𝑛

(𝐸𝐸𝐹𝐹−𝐸𝐸𝑣𝑣) = 𝑘𝑘𝑇𝑇. 𝑣𝑣𝑛𝑛 �𝑁𝑁𝑣𝑣 𝑝𝑝



Fermi Energy vs. Doping Concentration
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(𝐸𝐸𝑐𝑐−𝐸𝐸𝐹𝐹) = 𝑘𝑘𝑇𝑇. 𝑣𝑣𝑛𝑛 �𝑁𝑁𝑐𝑐 𝑛𝑛

(𝐸𝐸𝐹𝐹−𝐸𝐸𝑣𝑣) = 𝑘𝑘𝑇𝑇. 𝑣𝑣𝑛𝑛 �𝑁𝑁𝑣𝑣 𝑝𝑝



Fermi Energy vs. Temperature
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(𝐸𝐸𝑐𝑐−𝐸𝐸𝐹𝐹) = 𝑘𝑘𝑇𝑇. 𝑣𝑣𝑛𝑛 �𝑁𝑁𝑐𝑐 𝑛𝑛

(𝐸𝐸𝐹𝐹−𝐸𝐸𝑣𝑣) = 𝑘𝑘𝑇𝑇. 𝑣𝑣𝑛𝑛 �𝑁𝑁𝑣𝑣 𝑝𝑝



np Product & Intrinsic Carrier Concentration

• Note that EF can’t be both close to Ec and Ev
– n and p cannot both be large numbers

• For a given material and temperature, n.p is independent 
of EF and therefore of dopant concentrations

• For intrinsic silicon (i.e. no dopants) we know n = p ≡ ni

• In silicon:  ni ≈ 1.0 x 1010 at room temperature
31

𝑛𝑛.𝑝𝑝 = 𝑁𝑁𝑐𝑐 . 𝑛𝑛 ⁄−(𝐸𝐸𝑐𝑐−𝐸𝐸𝐹𝐹) 𝑘𝑘𝑘𝑘.𝑁𝑁𝑣𝑣 . 𝑛𝑛
⁄−(𝐸𝐸𝐹𝐹−𝐸𝐸𝑣𝑣) 𝑘𝑘𝑘𝑘 = 𝑁𝑁𝑐𝑐 .𝑁𝑁𝑣𝑣 . 𝑛𝑛−𝐸𝐸𝑔𝑔/𝑘𝑘𝑘𝑘

𝑛𝑛.𝑝𝑝 = 𝑛𝑛𝑐𝑐2

𝑛𝑛𝑐𝑐 = 𝑁𝑁𝑐𝑐 .𝑁𝑁𝑣𝑣 . 𝑛𝑛 ⁄−𝐸𝐸𝑔𝑔 2𝑘𝑘𝑘𝑘



Carrier Concentrations

• What are the electron and hole concentrations in N-type 
silicon at 300°K if donor concentration ND = 1015 cm-3 ?

Assuming full ionization: n = 1015 cm-3

• With a temperature increase of 60°C:
– n remains the same
– p increases by a factor of 2300 
– because ni increases exponentially with temperature

• In N-type silicon,  many more electrons that holes
– electrons are called the majority carriers
– holes are called minority carriers
– in P-type, holes are majority carriers 32

𝑝𝑝 =
𝑛𝑛𝑐𝑐2

𝑛𝑛
≈

1020

1015
= 105𝑐𝑐𝑛𝑛−3



Intrinsic Fermi Level

• Where is Fermi level in intrinsic silicon?
• Since n = p,    (Ec – EF) ≈ (EF – Ev)
• Intrinsic Fermi level Ei is approx. in middle of band gap

– not exactly because 𝑁𝑁𝑐𝑐 ≠ 𝑁𝑁𝑣𝑣

• For silicon, this last term is very small (≈ 12.9 meV)

• Normally assume Ei is mid-gap in silicon

33

𝐸𝐸𝑐𝑐 = 𝐸𝐸𝑐𝑐 −
𝐸𝐸𝑔𝑔
2
− 𝑘𝑘𝑇𝑇. 𝑣𝑣𝑛𝑛

𝑁𝑁𝑐𝑐
𝑁𝑁𝑣𝑣



Ionization of Dopant Atoms

• We have assumed that donor and acceptor atoms are 
completely ionized – is this accurate?
– If Ed is a few kT above EF, then donor level will be almost empty
– If Ea is a few kT below EF, then acceptor level will be almost full

• Suppose we have silicon doped with 1017 cm-3 of P atoms
• First assume all donors are ionized, i.e. n = Nd = 1017cm-3

Ed is located 45 meV below Ec

EF is located 146 meV below Ec

So Probability of non-ionization = 
1

1 + 0.5𝑛𝑛 ⁄𝐸𝐸𝑑𝑑−𝐸𝐸𝐹𝐹 𝑘𝑘𝑘𝑘 =
1

1 + 0.5𝑛𝑛 ⁄146−45 𝑚𝑚𝑚𝑚𝑚𝑚 26𝑚𝑚𝑚𝑚𝑚𝑚
= 3.9%

34

Ec

Ev

Ed EF

146 meV45 meV



Extrinsic Semiconductor

• Extrinsic semiconductor is one in which controlled 
amounts of dopant atoms have been added to change the 
electron & hole concentrations from their intrinsic value

• Potentially four kinds charged species :
– electrons, holes, positive donor ions and negative acceptor ions

• Assuming complete ionization, charge neutrality requires:

• Substituting gives:
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da NpNn +=+
2
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 −
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Extrinsic Simplifications

• Very rarely is Na ≈ Nd

• For (i.e. N-type)

• Furthermore, if , then and

• For (i.e. P-type)

• Furthermore, if , then and 
36

iad nNN >>−

ad NNn −=

nnp i
2=

ad NN >> 𝑛𝑛 = 𝑁𝑁𝑐𝑐 𝑝𝑝 = ⁄𝑛𝑛𝑐𝑐2 𝑁𝑁𝑐𝑐

𝑁𝑁𝑏𝑏 − 𝑁𝑁𝑐𝑐 ≫ 𝑛𝑛𝑐𝑐

da NNp −=

pnn i
2=

𝑁𝑁𝑏𝑏 ≫ 𝑁𝑁𝑐𝑐 𝑝𝑝 = 𝑁𝑁𝑏𝑏 𝑛𝑛 = ⁄𝑛𝑛𝑐𝑐2 𝑁𝑁𝑏𝑏



Example: Counter-doping

• What are n and p concentrations in Si with 
Nd = 6 x 1016 cm-3 and Na = 2 x 1016cm-3 ?

• What if we add another 6 x 1016 cm-3 of 
acceptors? 

(a) n = Nd – Na = 4 x 1016 cm-3

p = ni
2/n = 1020/(4 x 1016) = 2.5 x 103 cm-3

(b) Na = (2 x 1016) + (6 x 1016) = 8 x 1016

p = Na – Nd = 2 x 1016 cm-3

n = ni
2/p = 1020/(2 x 1016) = 5 x 103 cm-3

37



Example Problems
• How many silicon atoms are there per unit cell?
• How many silicon atoms are there per cubic centimeter?
• If Si atomic weight is 28.1 and Avogadro’s number is 6.02 x 1023

atoms per mole, what is the density of Si in gm/cm3

• In silicon,  mn = (1.08 x (9.11 x 10-31)) kg. Determine the number 
of quantum states per cm-3 in silicon between Ec and (Ec+kT) at 
300°K

• What is the probability that an energy level 3kT above the Fermi 
level will be occupied by an electron?

• Silicon at 300°K contains an acceptor impurity concentration of 
Na = 1016 cm-3. Determine the concentration of donor impurity 
atoms that must be added to move the Fermi energy  to be 
200meV below the conduction band edge. 38
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