EE 471: Transport Phenomena in Solid State Devices Spring 2018

Lecture 3 Transport in Semiconductors

Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030

Adapted from Modern Semiconductor Devices for Integrated Circuits, Chenming Hu, 2010

Thermal Motion

- Carriers (conduction electrons, holes) have a finite kinetic energy which is a function of temperature
- For conduction electrons, kinetic energy = $(E E_c)$

average electron kinetic energy = $\frac{\text{total kinetic energy}}{\text{number of electrons}}$

$$=\frac{\int f(E).D(E).(E-E_c)dE}{\int f(E).D(E)dE}$$

• Substituting and using Boltzmann approximation:

average kinetic energy $=\frac{3}{2}.kT$

- Same result for holes
- Statistical mechanics: kT/2 per degree of freedom

Thermal Velocity

$$\frac{1}{2}m_n \cdot v_{th}^2 = \frac{3}{2} \cdot kT$$

where m_n is effective electron mass, v_{th} is thermal velocity

$$v_{th} = \sqrt{\frac{3kT}{m_n}}$$

• At 300°K, and using $m_n = 0.26 m_0$

$$v_{th} = \sqrt{\frac{3 \times 1.38 \times 10^{-23} \text{J/K} \times 300 \text{K}}{0.26 \times 9.1 \times 10^{-31} \text{kg}}}$$

 $= 2.3 \times 10^5 \text{ m/sec} = 2.3 \times 10^7 \text{cm/sec}$

 ≈ 670 times speed of sound in air or 1/1000 speed of light

Scattering

- Electrons and holes move in a zig-zag pattern due to collisions or scattering of atoms in the crystal
- At thermal equilibrium, net thermal velocity is zero
 - does not generate DC current, but does generate noise
- mean free time between collisions ≈ 0.1 ps at 300°K
- mean distance between collisions ≈ 25 nm
 - about 50x lattice constant

Non-equilibrium conditions

Hot-point probe: distinguishes N and P-type semiconductor

Thermo-electric generator : converts heat to electric power

Or a thermo-electric cooler: solid-state refrigerator

Drift

- Drift is the motion of charged carriers in presence of an electric field
- Drift is superimposed on thermal motion
- Drift velocity v_{drift} is average net velocity due to electric field 6

Drift Velocity

- Suppose we have a block of semiconductor that contains N_p holes under the influence of an electric field \vec{E} .
 - each hole is accelerated by electric field until it collides with the lattice
 - assume each hole loses its entire drift momentum at each collision
- Total drift momentum being added to all the holes by the electric field in time Δt is given by:

$$\Delta p_E = N_p \cdot \vec{E} \cdot q \cdot \Delta t$$

- If τ_{mp} is the mean free time between collisions, then there will be: $(N_p \Delta t) / \tau_{mp}$ collisions in time Δt
- Total drift momentum lost to collisions is given by:

$$\Delta p_{C} = \frac{-N_{p}.\Delta t. (mean \ hole \ drift \ momentum)}{\tau_{mp}} = \frac{-N_{p}.\Delta t. m_{p}. \nu_{p,drift}}{\tau_{mp}}$$

where $v_{p,drift}$ is the mean hole drift velocity

Drift Velocity and Mobility

• In steady state, $\Delta p = (\Delta p_E + \Delta p_C) = 0$

which means:

$$\frac{N_p.\Delta t.m_p.v_{p,drift}}{\tau_{mp}} = N_p.q.\vec{E}.\Delta t \quad \Longrightarrow \quad v_{p,drift} = \frac{q.E.\tau_{mp}}{m_p}$$

$$v_{p,drift} = \mu_p . \vec{E}$$
$$\mu_p = \frac{q . \tau_{mp}}{m_p}$$

$$v_{n,drift} = -\mu_n \cdot \vec{E}$$
$$\mu_n = \frac{q \cdot \tau_{mn}}{m_n}$$

 μ_p is the hole mobility

 μ_n is the electron mobility

$$v = \mu. \overrightarrow{E}:$$
 μ has the dimensions of v/\overrightarrow{E}
 $\frac{cm/s}{V/cm} \equiv \frac{cm^2}{V.s}$

• Electron & hole mobilities, room temperature, lightly doped:

	Si	Ge	GaAs	InAs
$\mu_n (\mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s})$	1400	3900	8500	30000
$\mu_p (\mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s})$	470	1900	400	500

- Mobility describes ability of carrier to respond to \vec{E}
- Higher mobility leads to higher speed devices

Example: Drift Velocity

• Given $\mu_p = 470 \text{ cm}^2/\text{V.s}$ for Si, what is the hole drift velocity at $\vec{E} = 10^3 \text{ V/cm}$?

• What is the mean free path?

Effective Mass of Electron (Hole) ???

- We have used the term effective mass of electrons and holes (m_n, m_p) in both calculation of density of quantum states and in calculation of mobility.
- Effective mass has different value in these two formulae
 - because particle is moving through 3-D lattice and effective mass is single term that tries to capture effects of lattice in all dimensions
 - in density of states: $m_d = K_1 \cdot (m_x \cdot m_y \cdot m_z)^{1/3}$

- in mobility:
$$m_b = K_2 \cdot (1/m_x + 1/m_y + 1/m_z)^{-1}$$

	Density of States	Mobility	
m_n/m_0	1.08	0.26	
m_p/m_0	0.56	0.386	

where
$$m_0 = 9.11 \times 10^{-31} kg$$

Phonon Scattering

- Mobility depends on τ_{mn} and τ_{mp}
 - What determines mean time between scattering (collisions)?
- Electrons & holes are scattered by non-uniformities in crystal lattice. Two main causes:
 - Phonon scattering
 - Ionized impurity scattering
- Phonons are (quantum mechanical) particle representation of thermal vibration in the crystal lattice

 $\tau_{ph} \propto \frac{1}{phonon \, density \times carrier \, therm. \, velocity} \propto \frac{1}{T \times T^{1/2}}$

• so
$$\mu_{ph} \propto \tau_{ph} \propto T^{-3/2}$$

Phonon-limited mobility decreases with temperature

Ionized Impurity Scattering

• Electrons and holes can be scattered by donor (positive) ion or acceptor (negative) ion:

• Less change in direction if electron is travelling at higher speed

$$\mu_{imp} \propto \tau_{imp} \propto \frac{(carrier\ therm\ velocity)^3}{impurity\ density} \propto \frac{T^{3/2}}{N_a + N_d}$$

• Impurity-limited mobility increases with temperature

Electron & Hole Mobility

- Holes have about 1/3 mobility of electrons
- At low dopant concentration, mobility dominated by phonon scattering
- At high concentration, mobility further reduced by impurity scattering

Mobility vs. Temperature

• At high dopant concentrations and low temperature, mobility is dominated by impurity ion scattering 15

Velocity Saturation

- Under low electric fields, drift velocity << thermal velocity
- Under high field conditions, drift velocity adds appreciably to overall kinetic energy of electron (hole)
- This reduces mean free time between collisions which increases phonon induced scattering (which reduces μ)

Electric Field (V/cm)

Carrier Velocity and Drift Current

• Current density *J* is charge per second crossing unit area plane normal to direction of current flow (units are A/cm²)

$$J_{p,drift} = q.p.v_{p,drift}$$

• Example: if $p = 10^{15}/cm^{-3}$ and $v = 10^4 cm/s$:

$$J_{p,drift} = 1.6 \times 10^{-19} \times 10^{15} \times 10^{4}$$

= 1.6 A/cm² ¹⁷

Drift Current and Conductivity

$$J_{p,drift} = q.p.v_{p,drift} = q.p.\mu_p.\vec{E}$$
$$J_{n,drift} = -q.n.v_{n,drift} = q.n.\mu_n.\vec{E}$$

$$J_{drift} = (J_{n,drift} + J_{p,drift}) = (q.n.\mu_n + q.p.\mu_p).\vec{E}$$

• Define conductivity σ as: $J_{drift} = \sigma. \overline{E}$ – Units of σ are (ohm.cm)⁻¹

• then

$$\sigma = \frac{1}{\rho} = q.n.\mu_n + q.p.\mu_p$$

(ρ is resistivity)

Ohms Law

• If we have a bar of semiconductor:

$$J_{drift} = \frac{I}{A}$$
$$\vec{E} = \frac{V}{L}$$
$$\implies \frac{I}{A} = \sigma \left(\frac{V}{L}\right)$$

Resistivity vs. Dopant Density

Example: Silicon Resistivity

a) What is the room temperature resistivity ρ of silicon doped with 10¹⁷ cm⁻³ of arsenic?

b) What is the resistance of a piece of this material that is $1\mu m$ long and $0.2 \ \mu m^2$ in area?

c) By what factor will resistance change as we go from 27°C to 127°C?

Diffusion

- All particles are in constant thermal motion
- Because (density)_{x<a} is greater than (density)_{x>a}, more particles cross x=a from left-to-right than from right-to-left
- Net particle flow from high to low concentration

Diffusion Current

• Rate of particle flow proportional to concentration gradient

flow per unit area =
$$-D.\frac{d(concentration)}{dx}$$

- where D is the diffusion constant

flow per unit area = *concentration* × *velocity*

$$v_{n,diff} = \frac{-1}{n} \cdot D_n \cdot \frac{dn}{dx}$$

- leads to a diffusion current density: $J_{n,diff} = -n.q.v_{n,diff}$

$$J_{n,diff} = q.D_n.\frac{dn}{dx}$$

$$J_{p,diff} = -q.D_p.\frac{dp}{dx}$$

Diffusion Current

$$J_{n,diff} = q.D_n.\frac{dn}{dx} \qquad \qquad J_{p,diff} = -q.D_p.\frac{dp}{dx}$$

• Units of Diffusion Constant (D_n, D_p) are cm^2/s

Example: Diffusion Current

• Assume that in a sample of N-type silicon the electron concentration varies linearly from 1×10^{18} to 7×10^{17} over a distance of 0.1mm. Calculate the diffusion current density if $D_n = 7.8 \ cm^2/s$.

Total Current in Semiconductor

$$J = J_n + J_p$$

$$J_n = J_{n,drift} + J_{n,diff} = q.n.\mu_n.\vec{E} + q.D_n.\frac{dn}{dx}$$

$$J_p = J_{p,drift} + J_{p,diff} = q.p.\mu_p.\vec{E} - q.D_p.\frac{dp}{dx}$$

- Four terms in total
- Frequently only need to consider one term at any one time at any one point in semiconductor

Applied Voltage and Energy Band Diagrams

- When a voltage is applied to a semiconductor, it tilts the band diagram
- Positive voltage raises potential of holes, decreases potential of electrons
 - lowers energy bands
 - E_c and E_v always separated by E_g

 $E_c(x) = constant - q.V(x)$

 Remember: Ec and Ev move in <u>opposite</u> direction to applied V

$$\vec{E}(x) = -\frac{dV}{dx} = \frac{1}{q}\frac{dE_c}{dx} = \frac{1}{q}\frac{dE_v}{dx}$$

Graded Impurity Distribution

- Consider a bar of N-type silicon in thermal equilibrium, more heavily doped on left side:
- Electrons will diffuse from left to right (diffusion current right to left)
- This moves negative charge (electrons) to RHS
- Creates electric field from left to right which induces drift current that draws electrons back to LHS
- Electrons diffuse until drift current balances diffusion current

- Note that band diagram is consistent with:
 - difference in carrier density (as seen in E_c-E_F)

 $\vec{E} = \frac{1}{2} \frac{dE_c}{dE_c}$

Einstein Relationship

• If bar is in thermal equilibrium:

$$J_n = 0 = q.n.\mu_n.\vec{E} + q.D_n.\frac{dn}{dx}$$

• remember $n = N_c \cdot e^{-(E_c - E_F)/kT}$

$$\frac{dn}{dx} = \frac{-N_c}{kT} e^{-(E_c - E_F/kT)} \cdot \frac{dE_c}{dx}$$
$$= \frac{-n}{kT} \cdot \frac{dE_c}{dx} = \frac{-n}{kT} \cdot q \cdot \vec{E}$$
so $0 = q \cdot n \cdot \mu_n \cdot \vec{E} - q \cdot D_n \cdot \frac{q \cdot n}{kT} \cdot \vec{E}$

$$D_n = \frac{kT}{q} \cdot \mu_n \qquad \qquad D_p = \frac{kT}{q} \cdot \mu_p$$

Example: Diffusion Constant

• A piece of silicon is doped with $3 \times 10^{15} cm^{-3}$ of donors and $7 \times 10^{15} cm^{-3}$ of acceptors. What are the electron and hole diffusion constants at 300°K?

Example: Potential due to density gradient

- Consider a n-type semiconductor at T=300°K in thermal equilibrium. Assume that the donor concentration varies as $N_d(x) = N_{d0} \cdot e^{-x/L}$ over the range $0 \le x \le 5L$ where $N_{d0} = 10^{16} cm^{-3}$ and $L = 10 \mu m$.
 - a) Determine the electric field as a function of x for $0 \le x \le L$.
 - b) Calculate the potential difference between x=0 and x= 25 μ m.

Example: Electron collision frequency

 An electron is moving in a piece of very lightly doped silicon at room temperature under an applied field such that its drift velocity is one-tenth of its thermal velocity. Calculate the average number of collisions it will experience in traversing by drift a region 1µm long.