EE 471: Transport Phenomena in Solid State Devices Spring 2018

Lecture 4 Generation and Recombination

Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030

Adapted from Modern Semiconductor Devices for Integrated Circuits, Chenming Hu, 2010

Semiconductor in Equilibrium

• Under thermal equilibrium: $n p = n_i^2$

- Electrons are continually being thermally excited from valence band to the conduction band
 - leaves behind a hole
 - known as electron-hole generation
 - occurs at rate $G \ cm^{-3}$. s^{-1}
- At same time, electrons are continually "falling" into holes
 - annihilates conduction electron and hole
 - known as electron-hole recombination
 - occurs at rate $R \ cm^{-3}$. s^{-1}
- Under thermal equilibrium: G = R

- Denote n_0 , p_0 as the equilibrium carrier concentrations – then we can say n_0 . $p_0 = n_i^2$ at all times
- When not at equilibrium, n & p can be different from $n_0 \& p_0$
 - for example, when light shines on semiconductor
 - or under external electric field
- Define excess carrier concentrations n' and p':

$$n \equiv n_0 + n'$$
$$p \equiv p_0 + p'$$

• Charge neutrality requires:

$$n' = p'$$

Recombination (Carrier) Lifetime

- At thermal equilibrium $R = R_0 = G = G_0$
- Suppose we generate excess carriers by shining light on a semiconductor
- Now $G = G_0 + G'$ and n' = p' > 0
- As concentration of excess carriers increases, recombination rate $R = R_0 + R'$ increases until R' = G'
- Net recombination rate R' is proportional to n'(=p')

$$R'cm^{-3}s^{-1} \propto n'cm^{-3}$$

• Proportionality constant has dimensions of 1/time

$$R' = \frac{n'}{\tau}$$

• where τ is the recombination or carrier lifetime

Recombination Lifetime (cont.)

- Suppose we now turn light off (at time t=0)
- Recombination causes n' to decay (over time) to zero at which point thermal equilibrium is restored

$$\frac{dn'}{dt} = \frac{dp'}{dt} = -R' = \frac{-n'}{\tau} = \frac{-p'}{\tau}$$

• yields:
$$n'(t) = n'(0)e^{-t/\tau}$$

• Carrier lifetime τ is time constant of excess carrier decay

Direct & Indirect Band Gaps

- Direct Band Gap
- Example: GaAs
- Direct recombination is possible since momentum is conserved
- Photon may be emitted as energy is released by electron

- Indirect Band Gap
- Example: Si, Ge
- Direct recombination is rare since momentum is not conserved
- Recombination is two-step process via trap

Direct & Indirect Band Gaps

- Trace metal impurities (Ag, Pt) have energy states deep in the band gap – these are called deep traps
- Conduction electrons can fall into trap and then subsequently fall from trap to hole in valence band
 - Interaction with crystal lattice allows momentum transfer
 - also called recombination centers
- Carrier lifetime in Si can range from *1ns* to *1ms* depending on level and type of contaminants
 - Carrier lifetime is used to test purity of a semiconductor
 - Indicator of leakage current

Generation & Recombination

• At thermal equilibrium:

 $n n - n^2$

$$n \cdot p = n_i$$

$$n' = p' = 0$$

$$\frac{dn'}{dt} = \frac{-n'}{\tau} = 0$$
: no net generation or recombination

• Whenever
$$n' = p' > 0$$
:
 $n \cdot p > n_i^2$
 $\frac{dn'}{dt} = \frac{-n'}{\tau} < 0$

: net thermal recombination

• Whenever n' = p' < 0:

$$n.p < n_i^2$$
$$\frac{dn'}{dt} = \frac{-n'}{\tau} > 0$$

: net thermal generation

Example: Photoconductors

A bar of Si is doped with boron at 10¹⁵ cm⁻³. It is exposed to light such that electron-hole pairs are generated throughout the volume of the bar at the rate of 10¹⁹/cm³.s. The recombination lifetime is 10µs. What are (a) p₀, (b) n₀, (c) n', (d) p', (e) p, (f) n and (g) the n.p product (h) n'(t) for t>0 if light is suddenly switched off at t=0?

Continuity Equations

• Relates carrier flux (current) to generation-recombination (G-R)

 $F_p(x)$ is flux of holes per unit area per second

10

net increase in holes = increase due to flux + increase due to G-R

$$\frac{\partial p}{\partial t} \cdot A \cdot dx = \left[F_p(x) - F_p(x + dx)\right] \cdot A - \frac{p'}{\tau} \cdot A \cdot dx$$

$$\implies \frac{\partial p}{\partial t} = \frac{\left[F_p(x) - F_p(x + dx)\right]}{dx} - \frac{p'}{\tau}$$

$$\implies \frac{\partial p}{\partial t} = -\frac{\partial F_p}{\partial x} - \frac{p'}{\tau}$$

Continuity Equations (cont.)

• Substituting
$$J_p(x) = q.F_p(x)$$

$$\frac{1}{q} \cdot \frac{\partial J_p}{\partial x} + \frac{p'}{\tau} = -\frac{\partial p}{\partial t}$$

• Similarly
$$-\frac{1}{q} \cdot \frac{\partial J_n}{\partial x} + \frac{n'}{\tau} = -\frac{\partial n}{\partial t}$$

• Since n_0 and p_0 do not change with time, $\frac{\partial p}{\partial t} = \frac{\partial p'}{\partial t}$ and $\frac{\partial n}{\partial t} = \frac{\partial n'}{\partial t}$:

$$\begin{aligned} -\frac{1}{q} \cdot \frac{\partial J_n}{\partial x} + \frac{n'}{\tau_n} &= -\frac{\partial n'}{\partial t} \\ \frac{1}{q} \cdot \frac{\partial J_p}{\partial x} + \frac{p'}{\tau_p} &= -\frac{\partial p'}{\partial t} \end{aligned}$$

11

Diffusion Equations

- Substituting transport equation: $J_p = q \cdot p \cdot \mu_p \cdot \vec{E} q \cdot D_p \cdot \frac{dp}{dx}$
- into continuity equation: $\frac{1}{q} \cdot \frac{\partial J_p}{\partial x} + \frac{p'}{\tau_p} = -\frac{\partial p'}{\partial t}$

• gives
$$\mu_p \cdot \frac{\partial (p\overline{E})}{\partial x} - D_p \cdot \frac{\partial^2 p}{\partial x^2} + \frac{p'}{\tau_p} = -\frac{\partial p'}{\partial t}$$

• Expanding
$$\frac{\partial (p\vec{E})}{\partial x} = p \cdot \frac{\partial \vec{E}}{\partial x} + \vec{E} \cdot \frac{\partial p}{\partial x}$$

$$D_{p} \cdot \frac{\partial^{2} p}{\partial x^{2}} - \mu_{p} \left(p \cdot \frac{\partial \vec{E}}{\partial x} + \vec{E} \cdot \frac{\partial p}{\partial x} \right) - \frac{p'}{\tau_{p}} = \frac{\partial p'}{\partial t}$$
$$D_{n} \cdot \frac{\partial^{2} n}{\partial x^{2}} + \mu_{n} \left(n \cdot \frac{\partial \vec{E}}{\partial x} + \vec{E} \cdot \frac{\partial n}{\partial x} \right) - \frac{n'}{\tau_{p}} = \frac{\partial n'}{\partial t}$$

• These are time dependent diffusion equations

Diffusion Equations: Special Cases

- If doping is uniform $\frac{\partial p}{\partial x} = \frac{\partial p'}{\partial x}$ which gives: $D_p \cdot \frac{\partial^2 p'}{\partial x^2} - \mu_p \left(p \cdot \frac{\partial \vec{E}}{\partial x} + \vec{E} \cdot \frac{\partial p'}{\partial x} \right) - \frac{p'}{\tau_p} = \frac{\partial p'}{\partial t}$
- Under steady state conditions, $\frac{\partial p'}{\partial t} = 0$ which gives:

$$D_p \cdot \frac{d^2 p'}{dx^2} - \mu_p \left(p \cdot \frac{d\vec{E}}{dx} + \vec{E} \cdot \frac{dp'}{dx} \right) - \frac{p'}{\tau_p} = 0$$

• If E-field is negligible (minority carriers in neutral region):

• L_n and L_p are electron and hole diffusion lengths - can range from few μ m to hundreds of μ m depending on τ

Quasi-equilibrium and Quasi-Fermi Levels

- Whenever $n' = p' \neq 0$, $n p \neq n_i^2$
- We have these very useful equilibrium relationships:

$$n = N_c \cdot e^{-(E_c - E_F)/kT}$$
$$p = N_v \cdot e^{-(E_F - E_v)/kT}$$

- But these equations imply $n p = n_i^2$
- For non-equilibrium, introduce two quasi-Fermi levels

$$n = N_c \cdot e^{-(E_c - E_{Fn})/kT}$$
$$p = N_v \cdot e^{-(E_{Fp} - E_v)/kT}$$

- At equilibrium, $E_{Fp} = E_{Fn} = E_F$, otherwise $E_{Fp} \neq E_{Fn}$
- Even when electrons and holes are not in equilibrium, within each group the carriers can be in equilibrium
 - electrons and holes loosely coupled via G-R (~ 1 μ s)
 - electrons (or holes) tightly coupled via scattering (0.1ps) 14

Example: Quasi-Fermi Levels & Low-Level Injection

• Consider a Si sample with:

 $N_d = 10^{17} cm^{-3}$ and n' = p' = 0 *i.e. thermal equilibrium*

$$n_0 = N_d = 10^{17} cm^{-3} = N_c e^{-(E_c - E_F)/kT}$$
$$E_c - E_F = kT. \ln\left(\frac{N_c}{10^{17} cm^{-3}}\right) = 26 \ meV. \ln\left(\frac{2.8 \times 10^{19} cm^{-3}}{10^{17} cm^{-3}}\right) = 0.15 \ eV$$

so E_F is below E_c by 0.15 eV

• Now suppose we have $n' = p' = 10^{15} cm^{-3}$

No longer thermal equilibrium. But note that n' and p' are much less than the majority carrier concentration. This is called lowlevel injection.

Example: Quasi-Fermi Levels (cont.)

$$n = n_0 + n' = 1.01 \times 10^{17} cm^{-3} = N_c e^{-(E_c - E_{Fn})/kT}$$

$$E_c - E_{Fn} = 26 \ meV. \ln\left(\frac{2.8 \times 10^{19} cm^{-3}}{1.01 \times 10^{17} cm^{-3}}\right) \approx 0.15 \ eV$$

so E_{Fn} is essentially unchanged from E_F because $n \approx n_0$

$$p = p_0 + p' = \frac{n_i^2}{N_d} + p' = 10^3 cm^{-3} + 10^{15} cm^{-3} \approx 10^{15} cm^{-3}$$
$$E_{Fp} - E_v = kT. \ln\left(\frac{N_v}{10^{15} cm^{-3}}\right)$$
$$= 26 \ meV. \ln\left(\frac{1.04 \times 10^{19} cm^{-3}}{10^{15} cm^{-3}}\right) = 0.24 \ eV$$

so E_{Fp} has shifted dramatically - is now above E_v by 0.24 eV

Example: Quasi-Fermi Levels (cont.)

$$E_c - E_{Fn} = 0.15 \ eV$$

$$E_{Fp} - E_v = 0.24 \ eV$$

Example: Diffusion Equation

- Consider a P-type semiconductor with $N_A = 10^{16} \ cm^{-3}$ at room temperature that is homogeneous and infinite in extent. Assume a zero applied electric field. For a one dimensional crystal, assume that excess carriers are being generated at x = 0 only (as shown in the Figure) and that $n'(0) = 10^{15} \ cm^{-3}$. If $\tau_n = 5 \times 10^{-7} \ s$ and $D_n = 25 \ cm^2/s$,
 - a) calculate the minority carrier diffusion length
 - b) calculate the steady-state concentration of electrons and holes as a function of *x*

