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Semiconductor in Equilibrium

• Electrons are continually being thermally excited from 
valence band to the conduction band
– leaves behind a hole
– known as electron-hole generation
– occurs at rate 𝐺𝐺 𝑐𝑐𝑐𝑐−3. 𝑠𝑠−1

• At same time, electrons are continually “falling” into holes
– annihilates conduction electron and hole
– known as electron-hole recombination
– occurs at rate 𝑅𝑅 𝑐𝑐𝑐𝑐−3. 𝑠𝑠−1

• Under thermal equilibrium: 𝐺𝐺 = 𝑅𝑅 2

• Under thermal equilibrium: 
𝑛𝑛.𝑝𝑝 = 𝑛𝑛𝑖𝑖2
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Excess Carriers

• Denote 𝑛𝑛0,𝑝𝑝0 as the equilibrium carrier concentrations
– then we can say 𝑛𝑛0.𝑝𝑝0 = 𝑛𝑛𝑖𝑖2 at all times

• When not at equilibrium, n & p can be different from n0 & p0
– for example, when light shines on semiconductor
– or under external electric field

• Define excess carrier concentrations 𝑛𝑛𝑛 and 𝑝𝑝′:

• Charge neutrality requires:
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𝑛𝑛 ≡ 𝑛𝑛0 + 𝑛𝑛𝑛

𝑝𝑝 ≡ 𝑝𝑝0 + 𝑝𝑝𝑝

𝑛𝑛′ = 𝑝𝑝𝑝



Recombination (Carrier) Lifetime

• At thermal equilibrium 𝑅𝑅 = 𝑅𝑅0 = 𝐺𝐺 = 𝐺𝐺0
• Suppose we generate excess carriers by shining light on a 

semiconductor
• Now 𝐺𝐺 = 𝐺𝐺0 + 𝐺𝐺′ and 𝑛𝑛′ = 𝑝𝑝𝑝 > 0
• As concentration of excess carriers increases, 

recombination rate 𝑅𝑅 = 𝑅𝑅0 + 𝑅𝑅′ increases until 𝑅𝑅′ = 𝐺𝐺𝐺
• Net recombination rate 𝑅𝑅′ is proportional to 𝑛𝑛′(= 𝑝𝑝′)

• Proportionality constant has dimensions of 1/time

• where 𝜏𝜏 is the recombination or carrier lifetime
4

𝑅𝑅𝑅𝑐𝑐𝑐𝑐−3𝑠𝑠−1 ∝ 𝑛𝑛𝑛𝑐𝑐𝑐𝑐−3

𝑅𝑅𝑅 =
𝑛𝑛𝑛
𝜏𝜏



Recombination Lifetime (cont.)

• Suppose we now turn light off (at time t=0)
• Recombination causes 𝑛𝑛𝑛 to decay (over time) to zero at 

which point thermal equilibrium is restored

• yields:

• Carrier lifetime τ is time constant of excess carrier decay
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𝑛𝑛′ 𝑡𝑡 = 𝑛𝑛′(0)𝑒𝑒 ⁄−𝑡𝑡 𝜏𝜏
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Direct & Indirect Band Gaps

• Direct Band Gap
• Example: GaAs
• Direct recombination is 

possible since momentum is 
conserved

• Photon may be emitted as 
energy is released by electron
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• Indirect Band Gap
• Example: Si, Ge
• Direct recombination is rare 

since momentum is not 
conserved

• Recombination is two-step 
process via trap



Direct & Indirect Band Gaps

• Trace metal impurities (Ag, Pt) have energy states deep 
in the band gap – these are called deep traps

• Conduction electrons can fall into trap and then 
subsequently fall from trap to hole in valence band
– Interaction with crystal lattice allows momentum transfer
– also called recombination centers

• Carrier lifetime in Si can range from 1ns to 1ms 
depending on level and type of contaminants
– Carrier lifetime is used to test purity of a semiconductor
– Indicator of leakage current
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Generation & Recombination

• At thermal equilibrium:

• Whenever 𝑛𝑛′ = 𝑝𝑝′ > 0 :

• Whenever 𝑛𝑛′ = 𝑝𝑝′ < 0 :
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𝑛𝑛.𝑝𝑝 = 𝑛𝑛𝑖𝑖2

𝑛𝑛′ = 𝑝𝑝′ = 0

𝑛𝑛.𝑝𝑝 > 𝑛𝑛𝑖𝑖2

𝑛𝑛.𝑝𝑝 < 𝑛𝑛𝑖𝑖2

𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
−𝑛𝑛𝑛
𝜏𝜏

= 0 : no net generation or recombination

𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
−𝑛𝑛𝑛
𝜏𝜏

< 0 : net thermal recombination

𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
−𝑛𝑛𝑛
𝜏𝜏

> 0 : net thermal generation



Example: Photoconductors

• A bar of Si is doped with boron at 1015 cm-3.  It is exposed to 
light such that electron-hole pairs are generated throughout 
the volume of the bar at the rate of 1019/cm3.s.  The 
recombination lifetime is 10µs.  What are (a) p0 , (b) n0 , (c) 
n’, (d) p’, (e) p , (f) n and (g) the n.p product (h) n’(t) for t>0 if 
light is suddenly switched off at t=0?
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Continuity Equations

• Relates carrier flux (current) to generation-recombination (G-R)
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x x+dx

Fp(x) Fp(x+dx)

area A

Fp(x) is flux of holes per 
unit area per second

net increase in holes = increase due to flux + increase due to G-R

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

.𝐴𝐴.𝑑𝑑𝑑𝑑 = 𝐹𝐹𝑝𝑝 𝑥𝑥 − 𝐹𝐹𝑝𝑝(𝑥𝑥 + 𝑑𝑑𝑑𝑑) .𝐴𝐴 −
𝑝𝑝′

𝜏𝜏
.𝐴𝐴.𝑑𝑑𝑑𝑑

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −
𝜕𝜕𝐹𝐹𝑝𝑝
𝜕𝜕𝜕𝜕

−
𝑝𝑝′

𝜏𝜏

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝐹𝐹𝑝𝑝 𝑥𝑥 − 𝐹𝐹𝑝𝑝(𝑥𝑥 + 𝑑𝑑𝑑𝑑)

𝑑𝑑𝑑𝑑
−
𝑝𝑝′

𝜏𝜏



Continuity Equations (cont.)

• Substituting   𝐽𝐽𝑝𝑝 𝑥𝑥 = 𝑞𝑞.𝐹𝐹𝑝𝑝(𝑥𝑥)

• Similarly
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1
𝑞𝑞

.
𝜕𝜕𝐽𝐽𝑝𝑝
𝜕𝜕𝜕𝜕

+
𝑝𝑝𝑝
𝜏𝜏

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
1
𝑞𝑞

.
𝜕𝜕𝐽𝐽𝑛𝑛
𝜕𝜕𝜕𝜕

+
𝑛𝑛𝑛
𝜏𝜏

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

• Since  𝑛𝑛0 and 𝑝𝑝0 do not change with time, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑝𝑝′

𝜕𝜕𝜕𝜕
and 

𝜕𝜕𝑛𝑛
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑛𝑛′

𝜕𝜕𝑡𝑡
: 

−
1
𝑞𝑞

.
𝜕𝜕𝐽𝐽𝑛𝑛
𝜕𝜕𝜕𝜕

+
𝑛𝑛𝑛
𝜏𝜏𝑛𝑛

= −
𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

1
𝑞𝑞

.
𝜕𝜕𝐽𝐽𝑝𝑝
𝜕𝜕𝜕𝜕

+
𝑝𝑝𝑝
𝜏𝜏𝑝𝑝

= −
𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕



Diffusion Equations
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• Substituting transport equation:

• into continuity equation:

• gives

• Expanding
𝜕𝜕(𝑝𝑝𝐸𝐸)
𝜕𝜕𝜕𝜕

= 𝑝𝑝. 𝜕𝜕𝐸𝐸
𝜕𝜕𝑥𝑥

+ 𝐸𝐸. 𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥

• These are time dependent diffusion equations

𝐽𝐽𝑝𝑝 = 𝑞𝑞.𝑝𝑝. 𝜇𝜇𝑝𝑝.𝐸𝐸 − 𝑞𝑞.𝐷𝐷𝑝𝑝.
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

1
𝑞𝑞 .
𝜕𝜕𝐽𝐽𝑝𝑝
𝜕𝜕𝜕𝜕 +

𝑝𝑝𝑝
𝜏𝜏𝑝𝑝

= −
𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇𝑝𝑝.
𝜕𝜕(𝑝𝑝𝐸𝐸)
𝜕𝜕𝜕𝜕 − 𝐷𝐷𝑝𝑝.

𝜕𝜕2𝑝𝑝
𝜕𝜕𝑥𝑥2 +

𝑝𝑝′

𝜏𝜏𝑝𝑝
= −

𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝐷𝐷𝑝𝑝.
𝜕𝜕2𝑝𝑝
𝜕𝜕𝑥𝑥2 − 𝜇𝜇𝑝𝑝 𝑝𝑝.

𝜕𝜕𝐸𝐸
𝜕𝜕𝑥𝑥 + 𝐸𝐸.

𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥 −

𝑝𝑝′

𝜏𝜏𝑝𝑝
=
𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝐷𝐷𝑛𝑛.
𝜕𝜕2𝑛𝑛
𝜕𝜕𝑥𝑥2 + 𝜇𝜇𝑛𝑛 𝑛𝑛.

𝜕𝜕𝐸𝐸
𝜕𝜕𝑥𝑥 + 𝐸𝐸.

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 −

𝑛𝑛′

𝜏𝜏𝑝𝑝
=
𝜕𝜕𝑛𝑛′
𝜕𝜕𝜕𝜕



Diffusion Equations: Special Cases
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• If doping is uniform 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑝𝑝′

𝜕𝜕𝜕𝜕
which gives:

• Under steady state conditions, 𝜕𝜕𝑝𝑝
′

𝜕𝜕𝜕𝜕
= 0 which gives:

• If E-field is negligible (minority carriers in neutral region):

• Ln and Lp are electron and hole diffusion lengths
– can range from few µm to hundreds of µm depending on τ

𝐷𝐷𝑝𝑝.
𝜕𝜕2𝑝𝑝′

𝜕𝜕𝑥𝑥2 − 𝜇𝜇𝑝𝑝 𝑝𝑝.
𝜕𝜕𝐸𝐸
𝜕𝜕𝑥𝑥 + 𝐸𝐸.

𝜕𝜕𝑝𝑝′

𝜕𝜕𝑥𝑥 −
𝑝𝑝′

𝜏𝜏𝑝𝑝
=
𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝐷𝐷𝑝𝑝.
𝑑𝑑2𝑝𝑝′

𝑑𝑑𝑥𝑥2 − 𝜇𝜇𝑝𝑝 𝑝𝑝.
𝑑𝑑𝐸𝐸
𝑑𝑑𝑥𝑥 + 𝐸𝐸.

𝑑𝑑𝑝𝑝′

𝑑𝑑𝑥𝑥 −
𝑝𝑝′

𝜏𝜏𝑝𝑝
= 0

𝑑𝑑2𝑝𝑝′

𝑑𝑑𝑥𝑥2 =
𝑝𝑝′

𝐷𝐷𝑝𝑝. 𝜏𝜏𝑝𝑝
=

𝑝𝑝′

𝐿𝐿𝑝𝑝2

𝑑𝑑2𝑛𝑛′

𝑑𝑑𝑥𝑥2 =
𝑛𝑛′

𝐷𝐷𝑛𝑛. 𝜏𝜏𝑛𝑛
=

𝑛𝑛′

𝐿𝐿𝑛𝑛2

𝐿𝐿𝑝𝑝 ≡ 𝐷𝐷𝑝𝑝. 𝜏𝜏𝑝𝑝

𝐿𝐿𝑛𝑛 ≡ 𝐷𝐷𝑛𝑛. 𝜏𝜏𝑛𝑛



Quasi-equilibrium and Quasi-Fermi Levels
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• Whenever 𝑛𝑛′ = 𝑝𝑝′ ≠ 0, 𝑛𝑛.𝑝𝑝 ≠ 𝑛𝑛𝑖𝑖2

• We have these very useful equilibrium relationships:

• But these equations imply 𝑛𝑛.𝑝𝑝 = 𝑛𝑛𝑖𝑖2

• For non-equilibrium, introduce two quasi-Fermi levels

• At equilibrium, 𝐸𝐸𝐹𝐹𝐹𝐹 = 𝐸𝐸𝐹𝐹𝐹𝐹 = 𝐸𝐸𝐹𝐹, otherwise 𝐸𝐸𝐹𝐹𝐹𝐹 ≠ 𝐸𝐸𝐹𝐹𝐹𝐹
• Even when electrons and holes are not in equilibrium, 

within each group the carriers can be in equilibrium
– electrons and holes loosely coupled via G-R (~ 1µs)
– electrons (or holes) tightly coupled via scattering (0.1ps)

𝑛𝑛 = 𝑁𝑁𝑐𝑐 . 𝑒𝑒−(𝐸𝐸𝑐𝑐−𝐸𝐸𝐹𝐹)/𝑘𝑘𝑘𝑘

𝑝𝑝 = 𝑁𝑁𝑣𝑣 . 𝑒𝑒−(𝐸𝐸𝐹𝐹−𝐸𝐸𝑣𝑣)/𝑘𝑘𝑘𝑘

𝑛𝑛 = 𝑁𝑁𝑐𝑐 . 𝑒𝑒−(𝐸𝐸𝑐𝑐−𝐸𝐸𝐹𝐹𝐹𝐹)/𝑘𝑘𝑘𝑘

𝑝𝑝 = 𝑁𝑁𝑣𝑣 . 𝑒𝑒−(𝐸𝐸𝐹𝐹𝐹𝐹−𝐸𝐸𝑣𝑣)/𝑘𝑘𝑘𝑘



Example: Quasi-Fermi Levels & Low-Level Injection
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• Consider a Si sample with:

𝑁𝑁𝑑𝑑 = 1017𝑐𝑐𝑐𝑐−3 and 𝑛𝑛′ = 𝑝𝑝′ = 0 i.e. thermal equilibrium

• Now suppose we have  𝑛𝑛′ = 𝑝𝑝′ = 1015𝑐𝑐𝑐𝑐−3

No longer thermal equilibrium. But note that 𝑛𝑛𝑛 and 𝑝𝑝𝑝 are much 
less than the majority carrier concentration. This is called low-
level injection. 

𝑛𝑛0 = 𝑁𝑁𝑑𝑑 = 1017𝑐𝑐𝑐𝑐−3 = 𝑁𝑁𝑐𝑐𝑒𝑒 ⁄−(𝐸𝐸𝑐𝑐−𝐸𝐸𝐹𝐹) 𝑘𝑘𝑘𝑘

𝐸𝐸𝑐𝑐 − 𝐸𝐸𝐹𝐹 = 𝑘𝑘𝑘𝑘. 𝑙𝑙𝑙𝑙
𝑁𝑁𝑐𝑐

1017𝑐𝑐𝑐𝑐−3
= 26 𝑚𝑚𝑚𝑚𝑚𝑚. 𝑙𝑙𝑙𝑙

2.8 × 1019𝑐𝑐𝑐𝑐−3

1017𝑐𝑐𝑐𝑐−3 = 0.15 𝑒𝑒𝑒𝑒

so 𝐸𝐸𝐹𝐹 is below 𝐸𝐸𝑐𝑐 by 0.15 𝑒𝑒𝑒𝑒



Example: Quasi-Fermi Levels (cont.)
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𝑛𝑛 = 𝑛𝑛0 + 𝑛𝑛′ = 1.01 × 1017𝑐𝑐𝑐𝑐−3 = 𝑁𝑁𝑐𝑐𝑒𝑒 ⁄−(𝐸𝐸𝑐𝑐−𝐸𝐸𝐹𝐹𝑛𝑛) 𝑘𝑘𝑘𝑘

𝐸𝐸𝑐𝑐 − 𝐸𝐸𝐹𝐹𝐹𝐹 = 26 𝑚𝑚𝑚𝑚𝑚𝑚. 𝑙𝑙𝑙𝑙
2.8 × 1019𝑐𝑐𝑐𝑐−3

1.01 × 1017𝑐𝑐𝑐𝑐−3 ≈ 0.15 𝑒𝑒𝑒𝑒

so 𝐸𝐸𝐹𝐹𝐹𝐹 is essentially unchanged from 𝐸𝐸𝐹𝐹 because 𝑛𝑛 ≈ 𝑛𝑛0

𝑝𝑝 = 𝑝𝑝0 + 𝑝𝑝′ =
𝑛𝑛𝑖𝑖2

𝑁𝑁𝑑𝑑
+ 𝑝𝑝′ = 103𝑐𝑐𝑐𝑐−3 + 1015𝑐𝑐𝑐𝑐−3 ≈ 1015𝑐𝑐𝑐𝑐−3

𝐸𝐸𝐹𝐹𝐹𝐹 − 𝐸𝐸𝑣𝑣 = 𝑘𝑘𝑘𝑘. 𝑙𝑙𝑙𝑙
𝑁𝑁𝑣𝑣

1015𝑐𝑐𝑐𝑐−3

= 26 𝑚𝑚𝑚𝑚𝑚𝑚. 𝑙𝑙𝑙𝑙
1.04 × 1019𝑐𝑐𝑐𝑐−3

1015𝑐𝑐𝑐𝑐−3 = 0.24 𝑒𝑒𝑒𝑒

so 𝐸𝐸𝐹𝐹𝐹𝐹 has shifted dramatically - is now above 𝐸𝐸𝑣𝑣 by 0.24 𝑒𝑒𝑒𝑒



Example: Quasi-Fermi Levels (cont.)
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𝐸𝐸𝑐𝑐 − 𝐸𝐸𝐹𝐹𝐹𝐹 = 0.15 𝑒𝑒𝑒𝑒

𝐸𝐸𝐹𝐹𝐹𝐹 − 𝐸𝐸𝑣𝑣 = 0.24 𝑒𝑒𝑒𝑒

Ec

Ev

EF ≈ EFn

EFp

0.15 eV

0.24 eV



Example: Diffusion Equation

• Consider a P-type semiconductor with 𝑁𝑁𝐴𝐴 = 1016 𝑐𝑐𝑐𝑐−3 at room 
temperature that is homogeneous and infinite in extent. Assume a 
zero applied electric field. For a one dimensional crystal, assume 
that excess carriers are being generated at 𝑥𝑥 = 0 only (as shown in 
the Figure) and that 𝑛𝑛′ 0 = 1015 𝑐𝑐𝑐𝑐−3. If 𝜏𝜏𝑛𝑛 = 5 × 10−7𝑠𝑠 and 𝐷𝐷𝑛𝑛 =
25 𝑐𝑐𝑐𝑐2/𝑠𝑠 , 
a) calculate the minority carrier diffusion length
b) calculate the steady-state concentration of electrons and holes 

as a function of x
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