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Nature of PN Junction

• We have considered properties of N and P-type 
semiconductors in isolation

• What happens when we have a transition in a single 
crystal from one type to the other ?

2

I

V

reverse bias forward bias

P-type

N-type

Donor ions
Fabrication +

PN

V
I

̶

PN
Junction

Diode

• PN junction present in perhaps 
every semiconductor device



Abrupt PN Junction

• Suppose we bring N & P crystals together:
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N-type
Fixed donor ion
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Mobile hole

x=0

carrier density
pn

𝐽𝐽𝑛𝑛,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑞𝑞.𝐷𝐷𝑛𝑛.
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝐽𝐽𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = −𝑞𝑞.𝐷𝐷𝑝𝑝.
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑



Carrier Diffusion
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Electrons diffuse to right 
and recombine with holes

Holes diffuse to left and 
recombine with electrons

Leaving charged region of ionized donors:



Electric Field in Depletion Region

• Net positive and negative charges induce electric field
• Electric field pulls carriers in opposite direction to diffusion
• In thermal equilibrium, carriers diffuse until electric field 

exactly balances diffusion force 5

depletion or space charge regionzero net charge zero net charge

𝑬𝑬 𝑬𝑬 = 𝟎𝟎𝑬𝑬 = 𝟎𝟎

diffusion force 
on electrons

E-field force on 
electrons

diffusion force 
on holes

E-field force on 
holes



Energy Band Diagram – Zero Bias

• Under zero external bias, junction is in thermal equilibrium
– one Fermi level throughout device

• Far from the junction, we have N-type (with Ec close to EF) 
and P-type (with EV close to EF)
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• Within depletion region, assume (for now) that conduction 
& valence energies joined by a smooth curve

• In depletion region, EF is far from both Ec and Ev

Energy Band Diagram – Depletion Region
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𝑑𝑑 ≈ 0 and 𝑑𝑑 ≈ 0 in depletion layer



Built-In Potential

• Ec and Ev are not flat – indicates a potential difference
• This voltage differential φbi is called built-in potential

– exists at interface of any two dissimilar metals

• In N-region:

• In P-region:
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𝑑𝑑 = 𝑁𝑁𝑑𝑑 = 𝑁𝑁𝑐𝑐 . 𝑒𝑒 ⁄−𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘

𝐴𝐴 =
𝑘𝑘𝑘𝑘
𝑞𝑞

. 𝑙𝑙𝑑𝑑
𝑁𝑁𝑐𝑐
𝑁𝑁𝑑𝑑

𝑑𝑑 =
𝑑𝑑𝑑𝑑2

𝑁𝑁𝑎𝑎
= 𝑁𝑁𝑐𝑐 . 𝑒𝑒 ⁄−𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘 𝐵𝐵 =

𝑘𝑘𝑘𝑘
𝑞𝑞

. 𝑙𝑙𝑑𝑑
𝑁𝑁𝑐𝑐 .𝑁𝑁𝑎𝑎
𝑑𝑑𝑑𝑑2



Calculating Built-In Potential

• Typically ∅𝑏𝑏𝑑𝑑 ≈ 0.7𝑉𝑉 − 0.9𝑉𝑉 in silicon
• Can we measure this with a voltmeter ?
• Why does this not generate drift current?
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=
𝑘𝑘𝑘𝑘
𝑞𝑞

. 𝑙𝑙𝑑𝑑
𝑁𝑁𝑐𝑐 .𝑁𝑁𝑎𝑎
𝑑𝑑𝑑𝑑2

− ln
𝑁𝑁𝑐𝑐
𝑁𝑁𝑑𝑑

∅𝑏𝑏𝑑𝑑 = 𝐵𝐵 − 𝐴𝐴

∅𝑏𝑏𝑑𝑑 =
𝑘𝑘𝑘𝑘
𝑞𝑞

. 𝑙𝑙𝑑𝑑
𝑁𝑁𝑑𝑑 .𝑁𝑁𝑎𝑎
𝑑𝑑𝑑𝑑2



Depletion Layer Model

• Divide step PN junction into three regions
• Assume that 𝑑𝑑 = 𝑑𝑑 = 0 in depletion region

– charge density 𝜌𝜌 equals dopant ion density in depletion region
– charge density 𝜌𝜌 = 0 in neutral regions
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Poisson’s Equation

• Poisson’s Equation:
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𝑑𝑑2𝑉𝑉
𝑑𝑑𝑑𝑑

= −
𝑑𝑑𝐸𝐸
𝑑𝑑𝑑𝑑

= −
𝜌𝜌
𝜀𝜀𝑠𝑠

Depletion 
Region

Neutral 
Region

Neutral 
RegionN P

xN xP

x

q.Nd

-q.Na
xN

xP

ρ

xN xP
x

𝐸𝐸

• On P side of depletion region:

• Setting 𝐸𝐸 𝑑𝑑𝑃𝑃 = 0, gives

𝜌𝜌 = −𝑞𝑞.𝑁𝑁𝑎𝑎
𝑑𝑑𝐸𝐸
𝑑𝑑𝑑𝑑

= −
𝑞𝑞.𝑁𝑁𝑎𝑎
𝜀𝜀𝑠𝑠

𝐸𝐸 𝑑𝑑 = −
𝑞𝑞.𝑁𝑁𝑎𝑎
𝜀𝜀𝑠𝑠

. 𝑑𝑑 + 𝑐𝑐𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐.

𝐸𝐸 𝑑𝑑 =
𝑞𝑞.𝑁𝑁𝑎𝑎
𝜀𝜀𝑠𝑠

. 𝑑𝑑𝑃𝑃 − 𝑑𝑑 0 ≤ 𝑑𝑑 ≤ 𝑑𝑑𝑃𝑃



xN xP
x

𝐸𝐸

Electric Field
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q.Nd

-q.Na
xN

xP x

ρ

xN xP
x

𝐸𝐸

• Similarly, on N side of depletion 
region:

• Equating P side and N side fields 
at x=0:

• Depletion region extends further 
into more lightly doped side

𝜌𝜌 = 𝑞𝑞.𝑁𝑁𝑑𝑑
𝑑𝑑𝐸𝐸
𝑑𝑑𝑑𝑑 =

𝑞𝑞.𝑁𝑁𝑑𝑑
𝜀𝜀𝑠𝑠

𝐸𝐸 𝑑𝑑 =
𝑞𝑞.𝑁𝑁𝑑𝑑
𝜀𝜀𝑠𝑠

. 𝑑𝑑 − 𝑑𝑑𝑁𝑁 𝑑𝑑𝑁𝑁 ≤ 𝑑𝑑 ≤ 0

𝑁𝑁𝑎𝑎 . 𝑑𝑑𝑃𝑃 = 𝑁𝑁𝑑𝑑 . 𝑑𝑑𝑁𝑁

• A highly asymmetrical junction (N+P or P+N) is 
called one-sided junction



Potential in the Depletion Region
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x

• On P-side: using 𝐸𝐸 = ⁄−𝑑𝑑𝑉𝑉 𝑑𝑑𝑑𝑑 and 
integrating expressions for electric 
field and arbitrarily setting 𝑉𝑉 𝑑𝑑𝑃𝑃 = 0

• Similarly, on N-side, and setting 
𝑉𝑉 𝑑𝑑𝑁𝑁 = ∅𝑏𝑏𝑑𝑑

• Can now quantitatively draw energy 
band diagram

𝑉𝑉 𝑑𝑑 =
𝑞𝑞.𝑁𝑁𝑎𝑎
2𝜀𝜀𝑠𝑠

𝑑𝑑𝑃𝑃 − 𝑑𝑑 2

𝑉𝑉 𝑑𝑑 = ∅𝑏𝑏𝑑𝑑 −
𝑞𝑞.𝑁𝑁𝑑𝑑
2𝜀𝜀𝑠𝑠

𝑑𝑑 − 𝑑𝑑𝑁𝑁 2

x
xN xP

Vφbi

xN xP

𝐸𝐸

area 
is φbi

EF

Ec

Ev

q.φbi

0 ≤ 𝑑𝑑 ≤ 𝑑𝑑𝑃𝑃

𝑓𝑓𝑐𝑐𝑓𝑓 𝑑𝑑𝑁𝑁 ≤ 𝑑𝑑 ≤ 0



Depletion Layer Width
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• Equating N and P side potentials at x=0, gives:

• If 𝑁𝑁𝑎𝑎 ≫ 𝑁𝑁𝑑𝑑 , as in a P+N junction

• Similarly, if 𝑁𝑁𝑑𝑑 ≫ 𝑁𝑁𝑎𝑎 as in N+P junction: 

Depletion 
Region

Neutral 
Region

Neutral 
RegionN P

xN xP

𝑑𝑑𝑃𝑃 − 𝑑𝑑𝑁𝑁 = 𝑊𝑊𝑑𝑑𝑑𝑑𝑝𝑝 =
2𝜀𝜀𝑠𝑠.𝜙𝜙𝑏𝑏𝑑𝑑

𝑞𝑞
1
𝑁𝑁𝑎𝑎

+
1
𝑁𝑁𝑑𝑑

𝑊𝑊𝑑𝑑𝑑𝑑𝑝𝑝 ≈
2𝜀𝜀𝑠𝑠.𝜙𝜙𝑏𝑏𝑑𝑑
𝑞𝑞.𝑁𝑁𝑑𝑑

≈ 𝑑𝑑𝑁𝑁

𝑊𝑊𝑑𝑑𝑑𝑑𝑝𝑝 ≈
2𝜀𝜀𝑠𝑠.𝜙𝜙𝑏𝑏𝑑𝑑
𝑞𝑞.𝑁𝑁𝑎𝑎

≈ 𝑑𝑑𝑃𝑃



Example: PN Junction
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• A P+N junction has 𝑁𝑁𝑎𝑎 = 1019𝑐𝑐𝑐𝑐−3 and 𝑁𝑁𝑑𝑑 = 1016𝑐𝑐𝑐𝑐−3 . 
What is (a) the built-in potential, (b) Wdep, (c) xN and (d) xP ?



Reverse Biased PN Junction

16

• When a positive voltage is applied to N region relative to P 
region, the PN junction is said to be reverse biased

• No longer in thermal equilibrium 
– Fermi level not constant throughout junction

EF

Ec

Ev

q.φbi

EFp
`

Ec

Ev

q.φbi + q.Vr

EFn
`

q.Vr

+ ̶

N P

Vr

N P

zero bias



Reverse Biased Depletion Width
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• Potential barrier to flow of majority carriers has increased 
from ∅𝑏𝑏𝑑𝑑 to (∅𝑏𝑏𝑑𝑑+𝑉𝑉𝑟𝑟)

• Reverse biased current is very small
– Due to minority carriers in N an P sections
– Since current is small:

• IR drop in neutral regions is negligible
– All reverse bias appears across depletion region

• Analysis using Poisson’s equation (at thermal equilibrium) is 
still valid if the ∅𝑏𝑏𝑑𝑑 term is replaced with (∅𝑏𝑏𝑑𝑑+𝑉𝑉𝑟𝑟)

𝑊𝑊𝑑𝑑𝑑𝑑𝑝𝑝 =
2𝜀𝜀𝑠𝑠 ∅𝑏𝑏𝑑𝑑 + 𝑉𝑉𝑟𝑟

𝑞𝑞.𝑁𝑁
=

2𝜀𝜀𝑠𝑠 × 𝑑𝑑𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑𝑐𝑐𝑝𝑝𝑝𝑝𝑙𝑙 𝑏𝑏𝑝𝑝𝑓𝑓𝑓𝑓𝑝𝑝𝑒𝑒𝑓𝑓
𝑞𝑞.𝑁𝑁

𝑤𝑤ℎ𝑒𝑒𝑓𝑓𝑒𝑒
1
𝑁𝑁 =

1
𝑁𝑁𝑑𝑑

+
1
𝑁𝑁𝑎𝑎

≈
1

𝑙𝑙𝑝𝑝𝑙𝑙ℎ𝑐𝑐𝑒𝑒𝑓𝑓 𝑑𝑑𝑐𝑐𝑑𝑑𝑝𝑝𝑑𝑑𝑐𝑐 𝑑𝑑𝑒𝑒𝑑𝑑𝑐𝑐𝑝𝑝𝑐𝑐𝑑𝑑



Reverse Biased Field & Potential
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q.Nd

-q.Na
xN

xP x

xN xP

𝐸𝐸

area 
is φbi

xN xP

Vφbi

xN xP

V
φbi

φbi + Vr

q.Nd

-q.Na
xN

xP x

xN xP

𝐸𝐸

area is 
φbi + Vr

zero bias reverse bias



Capacitance Model
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• Two neutral regions separated by depletion region can be 
viewed as two conductors separated by an insulator

• PN Junction can be modeled as parallel plate capacitor

Depletion 
Region

Neutral 
Region

Neutral 
RegionN P

xN xP

+ ̶Vr

conductor conductorinsulator

Wdep

𝐸𝐸
+++
+++

̶̶̶
̶̶̶

εs

𝐶𝐶𝑑𝑑𝑑𝑑𝑝𝑝 =
𝜀𝜀𝑠𝑠.𝐴𝐴
𝑊𝑊𝑑𝑑𝑑𝑑𝑝𝑝



Capacitance Values

• Substituting for Wdep gives:

• Cdep increases with doping concentration in more 
lightly doped side

• Cdep decreases as applied reverse bias increases

• Cdep is important as PN junctions are present in most 
semiconductor devices 20

𝐶𝐶𝑑𝑑𝑑𝑑𝑝𝑝 =
𝜀𝜀𝑠𝑠.𝐴𝐴
𝑊𝑊𝑑𝑑𝑑𝑑𝑝𝑝

𝐶𝐶𝑑𝑑𝑑𝑑𝑝𝑝 = 𝐴𝐴.
𝑞𝑞.𝑁𝑁. 𝜀𝜀𝑠𝑠

2 ∅𝑏𝑏𝑑𝑑 + 𝑉𝑉𝑟𝑟

remember:
1
𝑁𝑁

=
1
𝑁𝑁𝑞𝑞

+
1
𝑁𝑁𝐷𝐷



Capacitance-Voltage Characteristic

• rewriting capacitance expression:
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• Measured capacitance vs. Vr
can be used to determine 
lighter doped concentration 
in a one-sided junction and 
also the built-in potential

1
𝐶𝐶𝑑𝑑𝑑𝑑𝑝𝑝2

=
2 ∅𝑏𝑏𝑑𝑑 + 𝑉𝑉𝑟𝑟
𝑞𝑞.𝑁𝑁. 𝜀𝜀𝑠𝑠.𝐴𝐴2



Example: C-V data

• The measured slope of the ⁄1 𝐶𝐶2 𝑣𝑣𝑐𝑐.𝑉𝑉𝑟𝑟 plot for a PN diode is 
2 × 1031 𝐹𝐹−2𝑉𝑉−1 and the intercept is at −0.84 𝑉𝑉. The area of 
the PN junction is 1 𝜇𝜇𝑐𝑐2. Find the lighter doping concentration 
𝑁𝑁𝑙𝑙 and the heavier doping concentration 𝑁𝑁ℎ . (Accuracy?)

22



Peak Electric Field

• Under moderate bias reverse current negligibly small
• As reverse bias is increased, peak electric field increases:

23

𝐸𝐸𝑝𝑝𝑑𝑑𝑎𝑎𝑘𝑘 = 𝐸𝐸 0 =
2𝑞𝑞.𝑁𝑁
𝜀𝜀𝑠𝑠

∅𝑏𝑏𝑑𝑑 + 𝑉𝑉𝑟𝑟
�1 2



Junction Breakdown

• When electric field reaches critical value 𝐸𝐸𝑐𝑐𝑟𝑟𝑑𝑑𝑐𝑐 junction will 
break down and conduct large current

• Two types of breakdown:
– Tunneling (or Zener) breakdown in heavily doped junctions
– Avalanche breakdown in moderately doped junctions

24

𝑉𝑉𝑞𝑞 =
𝜀𝜀𝑠𝑠.𝐸𝐸𝑐𝑐𝑟𝑟𝑑𝑑𝑐𝑐

2

2𝑞𝑞.𝑁𝑁
− ∅𝑏𝑏𝑑𝑑



Tunneling (Zener) Breakdown

• When heavily doped junction is reverse biased, only a small 
distance separates electrons in P-side valence band from 
empty states in N-side conduction band:

• Electrons can “tunnel” across junction
– 𝐸𝐸𝑐𝑐𝑟𝑟𝑑𝑑𝑐𝑐 ≈ 106 𝑣𝑣𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐/𝑐𝑐𝑐𝑐
– Breakdown is not destructive as long as current is controlled
– Zener diodes operate in this mode with well controlled VB

25



Avalanche Breakdown

• In moderately doped junctions, high electric fields cause minority 
carriers to accelerate across depletion region

• They may gain enough kinetic energy to raise an electron from the 
valence band to conduction band (impact ionization)
– creates an extra electron-hole pair which will also be accelerated

• Extra carriers collide with lattice and create still more carriers
– avalanche effect 

26

• 𝐸𝐸𝑐𝑐𝑟𝑟𝑑𝑑𝑐𝑐 ≈ 5 × 105 𝑉𝑉/𝑐𝑐𝑐𝑐 at 𝑁𝑁 = 1017𝑐𝑐𝑐𝑐−3

• 𝑉𝑉𝑞𝑞 ≈ 15𝑉𝑉 at 𝑁𝑁 = 1017𝑐𝑐𝑐𝑐−3



Forward Biased Junction

• Reduced electric field allows electrons to diffuse from N to P
– and holes to diffuse from P to N
– known as minority carrier injection 27

N P

𝐸𝐸

W

zero bias

N P

𝐸𝐸

W

Vr
+ ̶

reverse bias

N P

𝐸𝐸

W

Vf
+̶

forward bias

EFn EFp

qVbi

EFn

EFp

q(Vbi+Vr) EFn

EFp

q(Vbi-Vf)
e-

h+



Minority Carrier Injection

• Forward bias of V reduces barrier height from ∅𝑏𝑏𝑑𝑑 to ∅𝑏𝑏𝑑𝑑 − 𝑉𝑉
• Upsets balance between drift and diffusion
• Electrons are injected into P-side, holes into N-side

28

• Assuming EFn remains 
constant through to xP, at 
edge of neutral P region:

𝑑𝑑 𝑑𝑑𝑃𝑃 = 𝑁𝑁𝑐𝑐 . 𝑒𝑒− ⁄𝐸𝐸𝑐𝑐−𝐸𝐸𝐹𝐹𝐹𝐹 𝑘𝑘𝑘𝑘

= 𝑁𝑁𝑐𝑐 . 𝑒𝑒− ⁄𝐸𝐸𝑐𝑐−𝐸𝐸𝐹𝐹𝐹𝐹 𝑘𝑘𝑘𝑘 . 𝑒𝑒 ⁄𝐸𝐸𝐹𝐹𝐹𝐹−𝐸𝐸𝐹𝐹𝐹𝐹 𝑘𝑘𝑘𝑘

= 𝑑𝑑𝑃𝑃0. 𝑒𝑒 ⁄𝐸𝐸𝐹𝐹𝐹𝐹−𝐸𝐸𝐹𝐹𝐹𝐹 𝑘𝑘𝑘𝑘

= 𝑑𝑑𝑃𝑃0. 𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘



Quasi-Equilibrium Boundary Condition

• Minority carrier density in neutral region at the edge of 
depletion region is raised by 𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘

• Rewriting in terms of excess minority carriers:

• In Si at 300°K, a forward bias of 0.6V raises minority 
carrier density by a factor of 1010 ! 29

𝑑𝑑 𝑑𝑑𝑃𝑃 = 𝑑𝑑𝑃𝑃0. 𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘 =
𝑑𝑑𝑑𝑑2

𝑁𝑁𝑎𝑎
𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘

𝑑𝑑 𝑑𝑑𝑁𝑁 = 𝑑𝑑𝑁𝑁0. 𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘 =
𝑑𝑑𝑑𝑑2

𝑁𝑁𝑑𝑑
𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘

𝑑𝑑′(𝑑𝑑𝑃𝑃) ≡ 𝑑𝑑 𝑑𝑑𝑃𝑃 − 𝑑𝑑𝑃𝑃0 = 𝑑𝑑𝑃𝑃0. (𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘−1)

𝑑𝑑′(𝑑𝑑𝑁𝑁) ≡ 𝑑𝑑 𝑑𝑑𝑁𝑁 − 𝑑𝑑𝑁𝑁0 = 𝑑𝑑𝑁𝑁0. (𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘−1)



Example: Carrier Injection

• A P+N junction has 𝑁𝑁𝑎𝑎 = 1018𝑐𝑐𝑐𝑐−3 and 𝑁𝑁𝑑𝑑 = 1016𝑐𝑐𝑐𝑐−3.

a) What are the minority carrier densities at the depletion 
region edges at zero bias?

b) What are the minority carrier densities at the depletion 
region edges with a forward bias of 0.6V ?

c) What are the excess minority carrier densities at the 
depletion region edges with a forward bias of 0.6V ?

d) What are the majority carrier densities at the depletion 
region edges with a forward bias of 0.6V ?

e) What are the minority carrier densities at the depletion 
region edges with a negative bias of 1.8V ?

30



Carrier Transport in Neutral Region

• Consider transport of minority holes in neutral N region

• Apply diffusion equation (Lecture 4) under the conditions:
– steady state
– constant doping (in neutral region)
– negligible electric field

– 𝐿𝐿𝑝𝑝 is the minority carrier diffusion length 31

𝑑𝑑2𝑑𝑑′
𝑑𝑑𝑑𝑑2

=
𝑑𝑑′

𝐷𝐷𝑝𝑝. 𝜏𝜏𝑝𝑝
=

𝑑𝑑′
𝐿𝐿𝑝𝑝2

where 𝐿𝐿𝑝𝑝 ≡ 𝐷𝐷𝑝𝑝. 𝜏𝜏𝑝𝑝

NP

x0 xN



Minority Carrier Diffusion Length

• Similarly, in the P neutral region:

• Minority carrier diffusion length is a measure of how far an 
injected minority carrier will travel before recombination

• Varies from few µm to hundreds of µm depending on τ

• Note that these equations are only valid for minority 
carriers
– Cannot neglect drift in neutral region for majority carriers

32

𝑑𝑑2𝑑𝑑′
𝑑𝑑𝑑𝑑2

=
𝑑𝑑′
𝐿𝐿𝑛𝑛2

𝐿𝐿𝑛𝑛 ≡ 𝐷𝐷𝑛𝑛. 𝜏𝜏𝑛𝑛where



Excess Carriers in Forward Biased Junction

• We solve 

with boundary conditions:

• General solution is

– First boundary condition implies A=0, second determines B: 

33

𝑑𝑑2𝑑𝑑′
𝑑𝑑𝑑𝑑2

=
𝑑𝑑′
𝐿𝐿𝑝𝑝2

𝑑𝑑′ ∞ = 0
𝑑𝑑′ 𝑑𝑑𝑁𝑁 = 𝑑𝑑𝑁𝑁0 𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘 − 1

𝑑𝑑′ 𝑑𝑑 = 𝐴𝐴. 𝑒𝑒 ⁄𝑥𝑥 𝐿𝐿𝐹𝐹 + 𝐵𝐵. 𝑒𝑒− ⁄𝑥𝑥 𝐿𝐿𝐹𝐹

𝑑𝑑′ 𝑑𝑑 = 𝑑𝑑𝑁𝑁0 𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘 − 1 . 𝑒𝑒 ⁄−(𝑥𝑥−𝑥𝑥𝑁𝑁) 𝐿𝐿𝐹𝐹 , 𝑑𝑑 > 𝑑𝑑𝑁𝑁

NP

x0 xN



Excess Carrier Distribution

34

𝑑𝑑′ 𝑑𝑑 = 𝑑𝑑𝑁𝑁0 𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘 − 1 . 𝑒𝑒 ⁄(𝑥𝑥𝑁𝑁−𝑥𝑥) 𝐿𝐿𝐹𝐹 , 𝑑𝑑 > 𝑑𝑑𝑁𝑁

• Similarly: 𝑑𝑑′(𝑑𝑑) = 𝑑𝑑𝑃𝑃0 𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘 − 1 . 𝑒𝑒 ⁄(𝑥𝑥−𝑥𝑥𝑃𝑃) 𝐿𝐿𝐹𝐹 , 𝑑𝑑 < 𝑑𝑑𝑃𝑃



Excess Minority Carrier Current

35

• At x=0, total current is due to injected minority carriers

𝐽𝐽𝑝𝑝𝑁𝑁 = −𝑞𝑞.𝐷𝐷𝑝𝑝
𝑑𝑑𝑑𝑑′ 𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑞𝑞.
𝐷𝐷𝑝𝑝
𝐿𝐿𝑝𝑝

.𝑑𝑑𝑁𝑁0 𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘 − 1 . 𝑒𝑒 ⁄−(𝑥𝑥−𝑥𝑥𝑁𝑁) 𝐿𝐿𝐹𝐹

𝐽𝐽𝑛𝑛𝑃𝑃 = 𝑞𝑞.𝐷𝐷𝑛𝑛
𝑑𝑑𝑑𝑑′ 𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑞𝑞.
𝐷𝐷𝑛𝑛
𝐿𝐿𝑛𝑛

.𝑑𝑑𝑃𝑃0 𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘 − 1 . 𝑒𝑒 ⁄(𝑥𝑥−𝑥𝑥𝑃𝑃) 𝐿𝐿𝐹𝐹

𝐽𝐽 0 = 𝐽𝐽𝑝𝑝𝑁𝑁 𝑑𝑑𝑁𝑁 + 𝐽𝐽𝑛𝑛𝑃𝑃 𝑑𝑑𝑃𝑃 = 𝑞𝑞.
𝐷𝐷𝑝𝑝
𝐿𝐿𝑝𝑝

.𝑑𝑑𝑁𝑁0 +
𝐷𝐷𝑛𝑛
𝐿𝐿𝑛𝑛

.𝑑𝑑𝑃𝑃0 . 𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘 − 1



Majority Carrier Current 

36

• Total current at x=0 equals total current at all values of x

• As minority carrier current density decreases leaving the 
depletion region boundary, majority carrier current density 
increases to keep the total current density constant 



PN Diode IV Characteristic 

37

• Rewriting equation for total current density:

𝐼𝐼 = 𝐽𝐽.𝐴𝐴 = 𝐼𝐼0 𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘 − 1

𝐼𝐼0 = 𝐴𝐴. 𝑞𝑞.𝑑𝑑𝑑𝑑2
𝐷𝐷𝑝𝑝

𝐿𝐿𝑝𝑝.𝑁𝑁𝑑𝑑
+

𝐷𝐷𝑛𝑛
𝐿𝐿𝑛𝑛.𝑁𝑁𝑎𝑎

I

V
−𝐼𝐼0

• Note that our analysis and these 
equations apply equally to 
reverse bias (V<0)

• For 𝑉𝑉𝑟𝑟 ≫ 𝑘𝑘𝑘𝑘, exponential goes to 
zero and 𝐼𝐼 = −𝐼𝐼0
(reverse saturation current)



Minority Carrier Concentrations

38

zero bias

𝑑𝑑𝑃𝑃(𝑑𝑑)𝑑𝑑𝑃𝑃0

P-side N-side

𝑑𝑑𝑛𝑛(𝑑𝑑) 𝑑𝑑𝑛𝑛0
𝑑𝑑

𝑑𝑑𝑃𝑃(𝑑𝑑)𝑑𝑑𝑃𝑃0

P-side N-side

𝑑𝑑𝑛𝑛(𝑑𝑑) 𝑑𝑑𝑛𝑛0
𝑑𝑑

reverse bias

𝑑𝑑𝑃𝑃(𝑑𝑑)𝑑𝑑𝑃𝑃0

P-side N-side

𝑑𝑑𝑛𝑛(𝑑𝑑)
𝑑𝑑𝑛𝑛0
𝑑𝑑

forward bias*

* in forward bias, injected 
majority carriers orders of 
magnitude greater than 
equilibrium concentration



PN Diode IV vs. Temperature 

39

• Why does current increase with temperature?

𝐼𝐼 = 𝐼𝐼0 𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘 − 1

𝐼𝐼0 = 𝐴𝐴. 𝑞𝑞.𝑑𝑑𝑑𝑑2
𝐷𝐷𝑝𝑝

𝐿𝐿𝑝𝑝.𝑁𝑁𝑑𝑑
+

𝐷𝐷𝑛𝑛
𝐿𝐿𝑛𝑛.𝑁𝑁𝑎𝑎



Semi-log plot of IV for ideal diode
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• Ideal diode characteristic for I0 = 10-12 A and T=300°K

• plotting ln(I) vs. V,   slope = q/kT
• diode can be used as temperature sensor

𝐼𝐼 = 𝐼𝐼0 𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝑘𝑘𝑘𝑘 − 1

|I d
io

de
| (

A)

Vdiode (V)

slope = 60 mV/decade

𝐹𝐹𝑐𝑐𝑓𝑓 𝑉𝑉 ≫ 𝑘𝑘𝑘𝑘, ln 𝐼𝐼 = ln 𝐼𝐼0 +
𝑞𝑞𝑉𝑉
𝑘𝑘𝑘𝑘



Generation-Recombination in Depletion Region

41

• Our analysis assumed that Jp and Jn did not change 
between xP and xN
– There will be extra current due G-R within depletion region
– Space Charge Region (SCR) or Generation-Recombination current

• Since there are no majority carriers, recombination requires 
presence of minority holes and electrons

– Under forward bias, SCR current increases at only 120mV/decade
– At high forward bias, diffusion current dominates
– Under reverse bias, depletion region is devoid of carriers, so 

electron-hole pairs will be thermally generated and immediately 
swept across junction by electric field.

– This significantly increases leakage current (𝐼𝐼0,𝑆𝑆𝑆𝑆𝑆𝑆 ≫ 𝐼𝐼0)

𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐼𝐼0,𝑆𝑆𝑆𝑆𝑆𝑆 𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝟐𝟐𝑘𝑘𝑘𝑘 − 1



Non-Ideal Diode Behavior

42

• Account for this extra current with ideality factor η

𝐼𝐼 = 𝐼𝐼0,𝑆𝑆𝑆𝑆𝑆𝑆 𝑒𝑒 ⁄𝑞𝑞𝑞𝑞 𝜂𝜂𝑘𝑘𝑘𝑘 − 1 , 1 < 𝜂𝜂 < 2

Idiode (A)

Vdiode (V)

ideal
actual
𝜂𝜂 = 1.5



Example: PN Diode currents

43

• Consider a PN junction diode at 300° K with the following 
characteristics:

a) Calculate ideal reverse saturation current
b) Calculate current with forward bias of 0.65V
c) Calculate electric field in N neutral region with forward bias of 

0.65V

𝑁𝑁𝑎𝑎 = 𝑁𝑁𝑑𝑑 = 1016 𝑐𝑐𝑐𝑐−3

𝐷𝐷𝑛𝑛 = 25 𝑐𝑐𝑐𝑐2/𝑐𝑐
𝐷𝐷𝑝𝑝 = 10 𝑐𝑐𝑐𝑐2/𝑐𝑐

𝜏𝜏𝑝𝑝0 = 𝜏𝜏𝑛𝑛0 = 5 × 10−7𝑐𝑐

𝑝𝑝𝑓𝑓𝑒𝑒𝑝𝑝 = 0.01 𝑐𝑐𝑐𝑐2
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