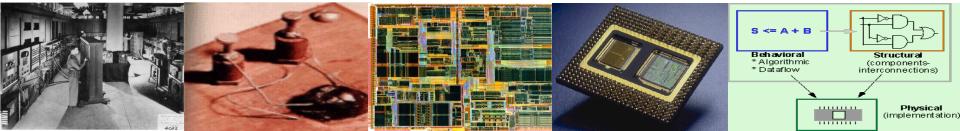
EE 471: Transport Phenomena in Solid State Devices Spring 2018

Lecture 5 PN Junction

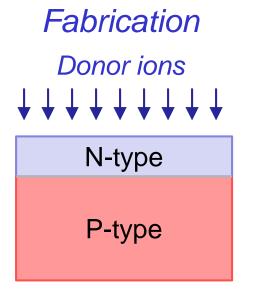
Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030

Adapted from Modern Semiconductor Devices for Integrated Circuits, Chenming Hu, 2010

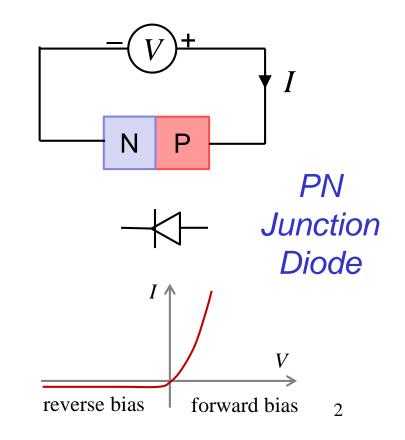


Nature of PN Junction

- We have considered properties of N and P-type semiconductors in isolation
- What happens when we have a transition in a single crystal from one type to the other ?

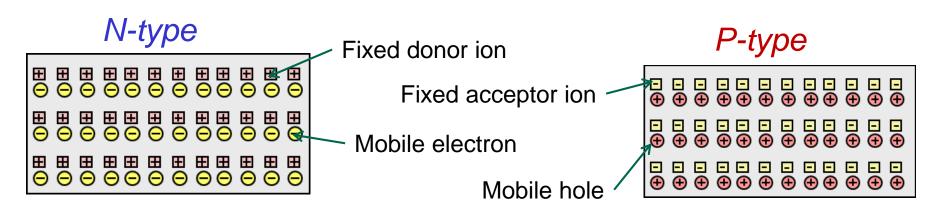


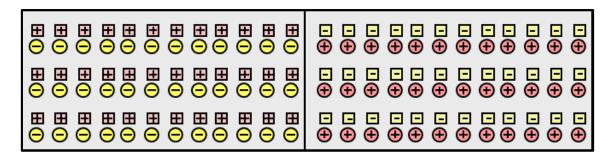
• PN junction present in perhaps every semiconductor device

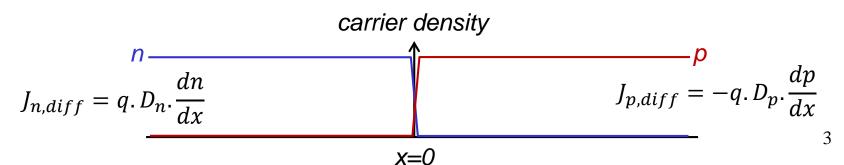


Abrupt PN Junction

Suppose we bring N & P crystals together:

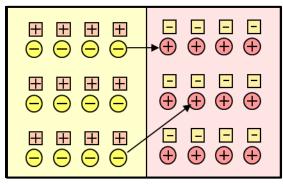




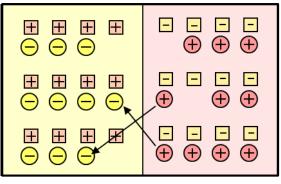


Carrier Diffusion

Electrons diffuse to right and recombine with holes



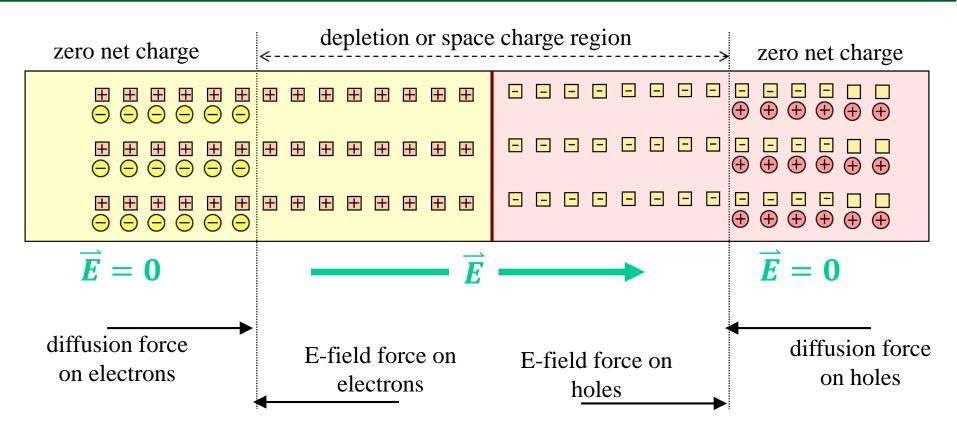
Holes diffuse to left and recombine with electrons



Leaving charged region of ionized donors:

	<pre>depleted of electrons </pre>	depleted of holes <>	
$\begin{array}{c} \blacksquare \ \blacksquare \ \blacksquare \ \blacksquare \ \blacksquare \ \blacksquare \\ \bigcirc \ \bigcirc$			
zero net charge	net positive charge	net negative charge	zero net charge

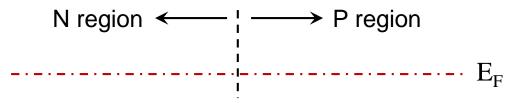
Electric Field in Depletion Region



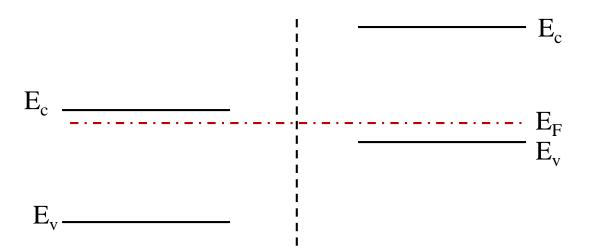
- Net positive and negative charges induce electric field
- Electric field pulls carriers in opposite direction to diffusion
- In thermal equilibrium, carriers diffuse until electric field exactly balances diffusion force

Energy Band Diagram – Zero Bias

- Under zero external bias, junction is in thermal equilibrium
 - one Fermi level throughout device

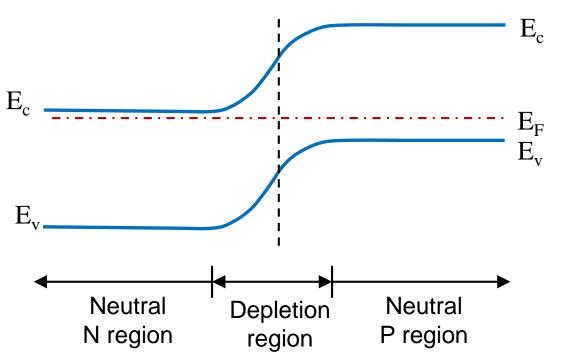


• Far from the junction, we have N-type (with E_c close to E_F) and P-type (with E_V close to E_F)



Energy Band Diagram – Depletion Region

 Within depletion region, assume (for now) that conduction & valence energies joined by a smooth curve



• In depletion region, E_F is far from both E_c and E_v

 $n \approx 0$ and $p \approx 0$ in depletion layer

Built-In Potential

- E_c and E_v are not flat indicates a potential difference
- This voltage differential ϕ_{bi} is called built-in potential
 - exists at interface of any two dissimilar metals
- In N-region:

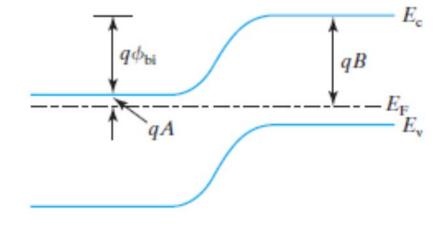
$$n = N_d = N_c \cdot e^{-qA/kT}$$

$$kT \cdot (N_c)$$

$$A = \frac{\kappa T}{q} \cdot \ln\left(\frac{N_c}{N_d}\right)$$

• In P-region:

$$n = \frac{{n_i}^2}{N_a} = N_c. e^{-qB/kT}$$



$$B = \frac{kT}{q} \cdot ln\left(\frac{N_c \cdot N_a}{{n_i}^2}\right)$$

Calculating Built-In Potential

$$\phi_{bi} = B - A$$

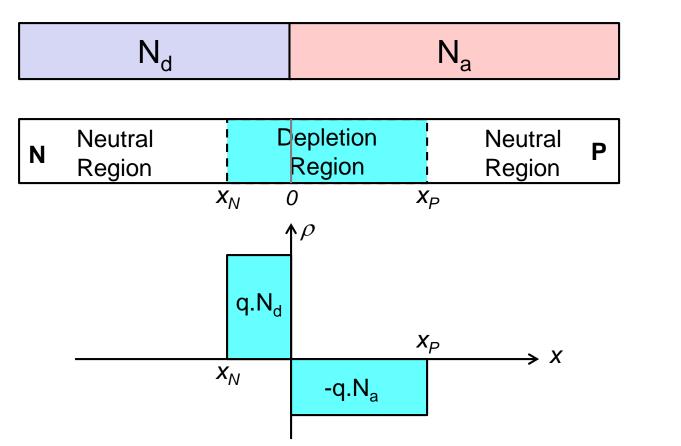
$$= \frac{kT}{q} \cdot \left[ln \left(\frac{N_c \cdot N_a}{n_i^2} \right) - ln \left(\frac{N_c}{N_d} \right) \right]$$

$$\phi_{bi} = \frac{kT}{q} \cdot ln \left(\frac{N_d \cdot N_a}{n_i^2} \right)$$

- Typically $\phi_{bi} \approx 0.7V 0.9V$ in silicon
- Can we measure this with a voltmeter ?
- Why does this not generate drift current?

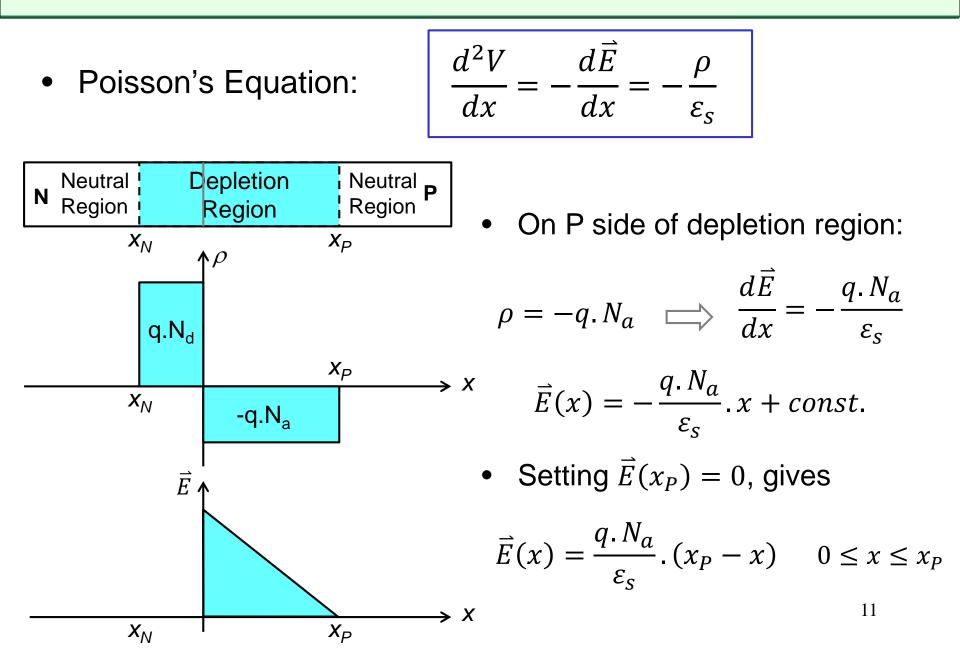
Depletion Layer Model

- Divide step PN junction into three regions
- Assume that p = n = 0 in depletion region
 - charge density ρ equals dopant ion density in depletion region
 - charge density $\rho = 0$ in neutral regions



10

Poisson's Equation



Electric Field

• Similarly, on N side of depletion region:

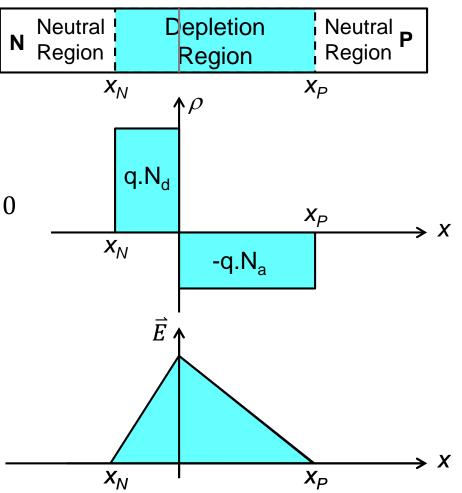
$$\rho = q. N_d \qquad \Longrightarrow \quad \frac{dE}{dx} = \frac{q. N_d}{\varepsilon_s}$$

$$\vec{E}(x) = \frac{q \cdot N_d}{\varepsilon_s} \cdot (x - x_N) \qquad x_N \le x \le 0$$

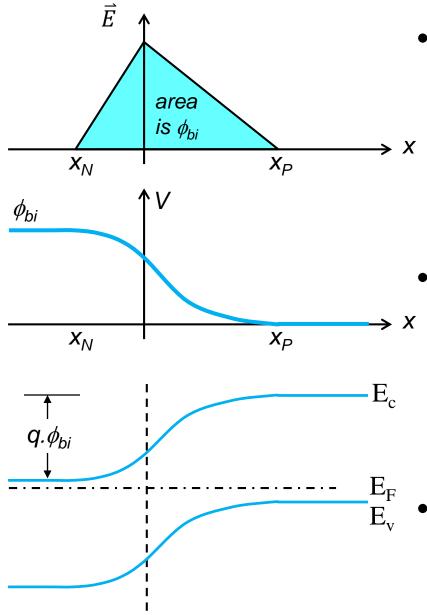
 Equating P side and N side fields at x=0:

$$N_a.|x_P| = N_d.|x_N|$$

- Depletion region extends further into more lightly doped side
- A highly asymmetrical junction (N+P or P+N) is called one-sided junction



Potential in the Depletion Region



• On P-side: using $\vec{E} = -dV/dx$ and integrating expressions for electric field and arbitrarily setting $V(x_P) = 0$

$$V(x) = \frac{q \cdot N_a}{2\varepsilon_s} (x_P - x)^2 \qquad 0 \le x \le x_P$$

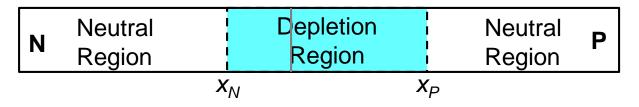
• Similarly, on N-side, and setting $V(x_N) = \emptyset_{bi}$

$$V(x) = \emptyset_{bi} - \frac{q \cdot N_d}{2\varepsilon_s} (x - x_N)^2$$

for $x_N \le x \le 0$

 Can now quantitatively draw energy band diagram

Depletion Layer Width



• Equating N and P side potentials at x=0, gives:

$$x_P - x_N = W_{dep} = \sqrt{\frac{2\varepsilon_s.\phi_{bi}}{q}} \left(\frac{1}{N_a} + \frac{1}{N_d}\right)$$

• If $N_a \gg N_d$, as in a P+N junction

$$W_{dep} \approx \sqrt{\frac{2\varepsilon_s.\phi_{bi}}{q.N_d}} \approx |x_N|$$

• Similarly, if $N_d \gg N_a$ as in N+P junction:

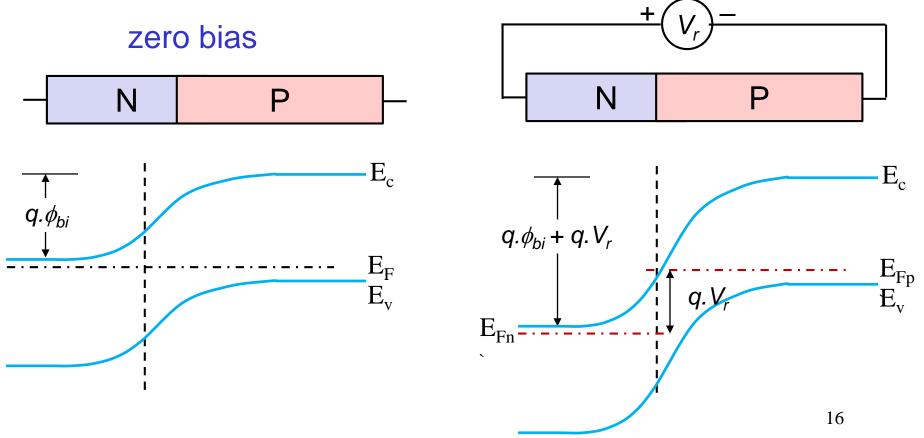
$$W_{dep} \approx \sqrt{\frac{2\varepsilon_s.\phi_{bi}}{q.N_a}} \approx |x_P|$$

Example: PN Junction

• A P+N junction has $N_a = 10^{19} cm^{-3}$ and $N_d = 10^{16} cm^{-3}$. What is (a) the built-in potential, (b) W_{dep}, (c) x_N and (d) x_P?

Reverse Biased PN Junction

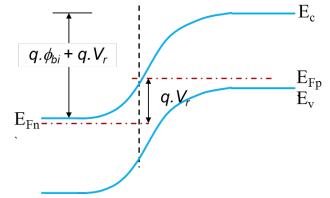
- When a positive voltage is applied to N region relative to P region, the PN junction is said to be reverse biased
- No longer in thermal equilibrium
 - Fermi level not constant throughout junction



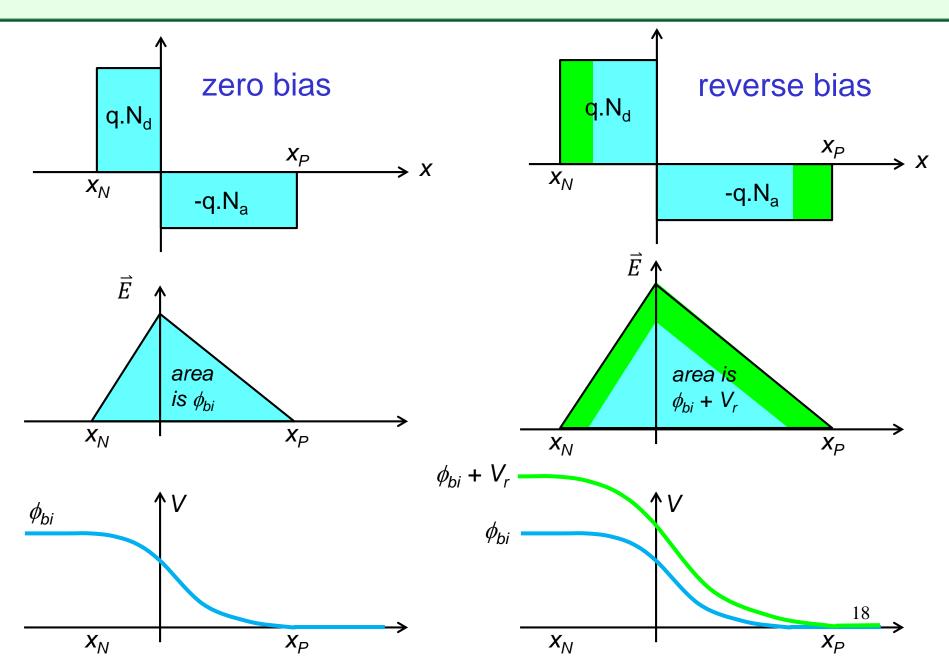
Reverse Biased Depletion Width

- Potential barrier to flow of majority carriers has increased from ϕ_{bi} to $(\phi_{bi}+V_r)$
- Reverse biased current is very small
 - Due to minority carriers in N an P sections
 - Since current is small:
- IR drop in neutral regions is negligible
 - All reverse bias appears across depletion region
- Analysis using Poisson's equation (at thermal equilibrium) is still valid if the Ø_{bi} term is replaced with (Ø_{bi}+V_r)

$$W_{dep} = \sqrt{\frac{2\varepsilon_s(\phi_{bi} + V_r)}{q.N}} = \sqrt{\frac{2\varepsilon_s \times \text{potential barrier}}{q.N}}$$
where $\frac{1}{N} = \frac{1}{N_d} + \frac{1}{N_a} \approx \frac{1}{\text{lighter dopant density}}$
17

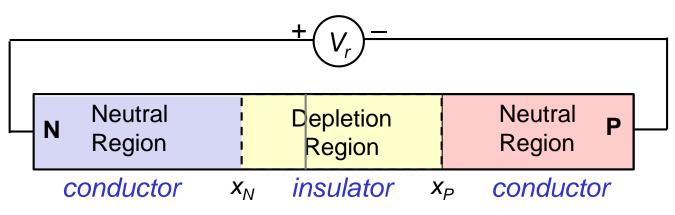


Reverse Biased Field & Potential

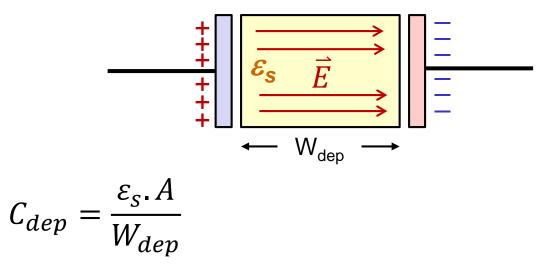


Capacitance Model

 Two neutral regions separated by depletion region can be viewed as two conductors separated by an insulator



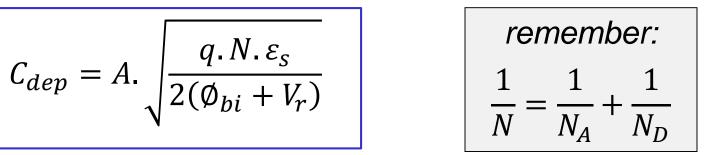
• PN Junction can be modeled as parallel plate capacitor



Capacitance Values

$$C_{dep} = \frac{\varepsilon_s.A}{W_{dep}}$$

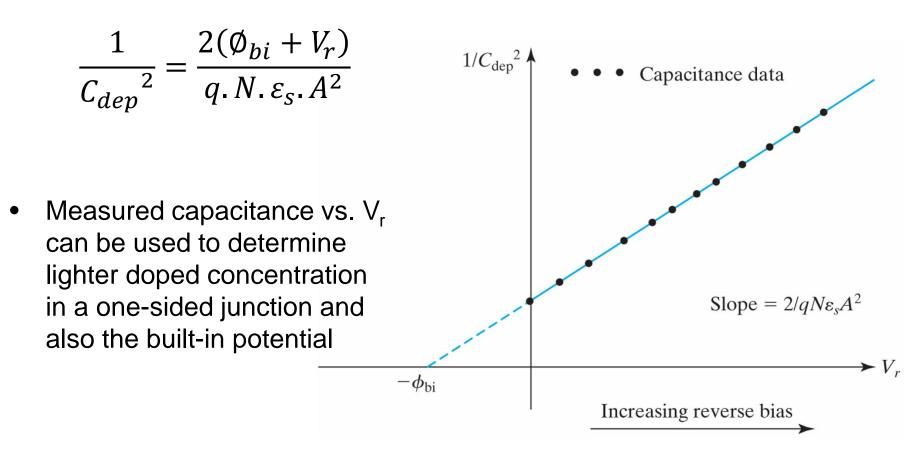
• Substituting for W_{dep} gives:



- C_{dep} increases with doping concentration in more lightly doped side
- C_{dep} decreases as applied reverse bias increases
- C_{dep} is important as PN junctions are present in most semiconductor devices 20

Capacitance-Voltage Characteristic

• rewriting capacitance expression:

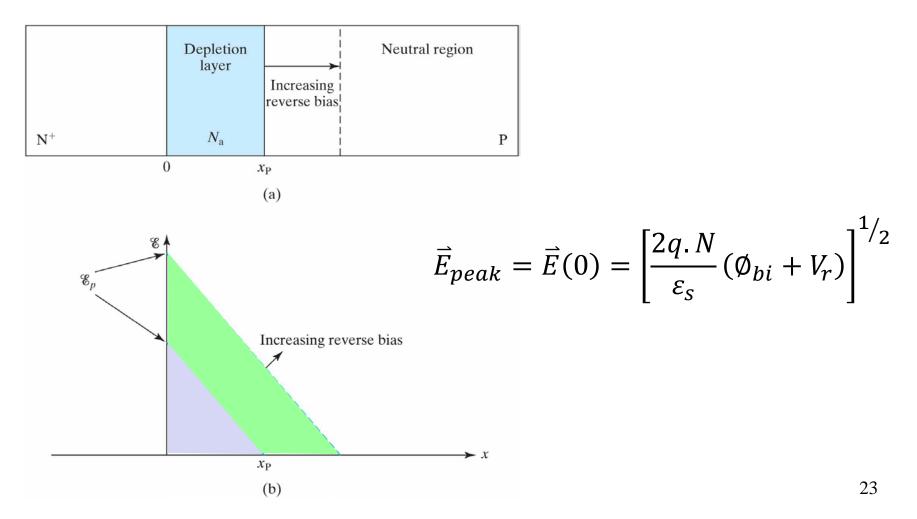


Example: C-V data

• The measured slope of the $1/C^2 vs. V_r$ plot for a PN diode is $2 \times 10^{31} F^{-2} V^{-1}$ and the intercept is at -0.84 V. The area of the PN junction is $1 \mu m^2$. Find the lighter doping concentration N_l and the heavier doping concentration N_h . (Accuracy?)

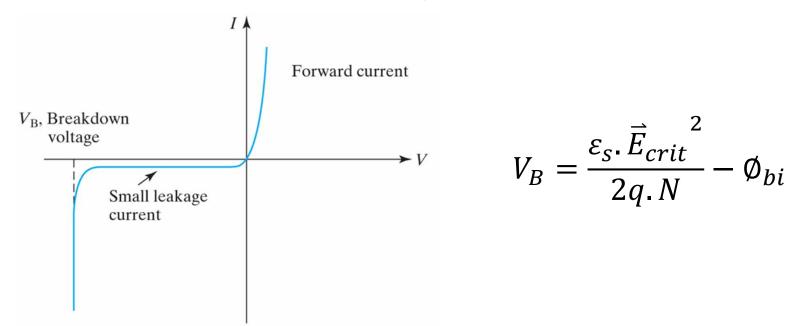
Peak Electric Field

- Under moderate bias reverse current negligibly small
- As reverse bias is increased, peak electric field increases:



Junction Breakdown

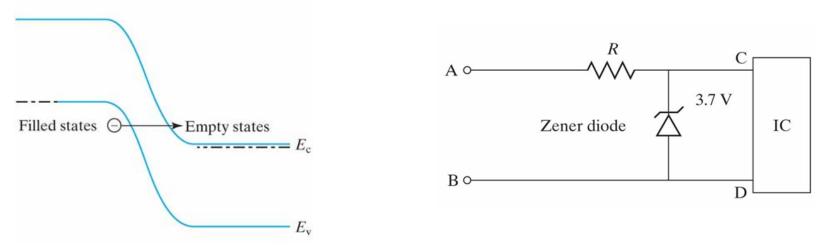
• When electric field reaches critical value \vec{E}_{crit} junction will break down and conduct large current



- Two types of breakdown:
 - Tunneling (or Zener) breakdown in heavily doped junctions
 - Avalanche breakdown in moderately doped junctions

Tunneling (Zener) Breakdown

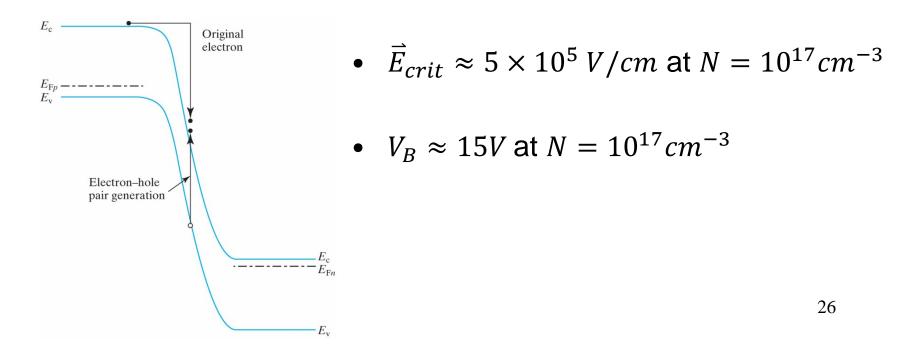
 When heavily doped junction is reverse biased, only a small distance separates electrons in P-side valence band from empty states in N-side conduction band:



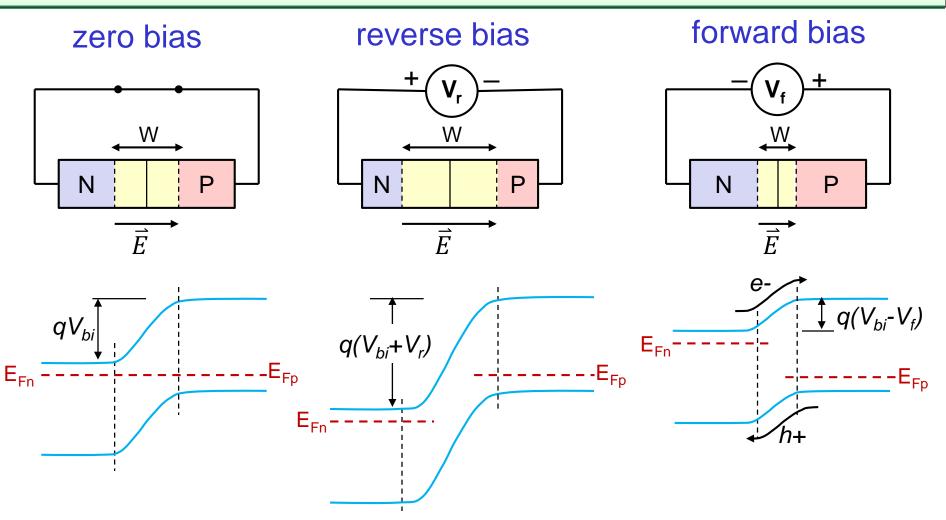
- Electrons can "tunnel" across junction
 - $\vec{E}_{crit} \approx 10^6 \ volts/cm$
 - Breakdown is not destructive as long as current is controlled
 - Zener diodes operate in this mode with well controlled V_B

Avalanche Breakdown

- In moderately doped junctions, high electric fields cause minority carriers to accelerate across depletion region
- They may gain enough kinetic energy to raise an electron from the valence band to conduction band (impact ionization)
 - creates an extra electron-hole pair which will also be accelerated
- Extra carriers collide with lattice and create still more carriers
 avalanche effect



Forward Biased Junction



- Reduced electric field allows electrons to diffuse from N to P
 - and holes to diffuse from P to N
 - known as minority carrier injection

Minority Carrier Injection

- Forward bias of V reduces barrier height from ϕ_{bi} to $\phi_{bi} V$
- Upsets balance between drift and diffusion
- Electrons are injected into P-side, holes into N-side
- Assuming E_{Fn} remains constant through to x_P , at edge of neutral P region: $n(x_P) = N_c \cdot e^{-(E_c - E_{Fn})/kT}$ $= N_c \cdot e^{-(E_c - E_{Fp})/kT} \cdot e^{(E_{Fn} - E_{Fp})/kT}$

 $= n_{P0}. e^{qV/kT}$

 E_c

Quasi-Equilibrium Boundary Condition

 Minority carrier density in neutral region at the edge of depletion region is raised by e^{qV/kT}

$$n(x_P) = n_{P0} e^{qV/kT} = \frac{n_i^2}{N_a} e^{qV/kT}$$
$$p(x_N) = p_{N0} e^{qV/kT} = \frac{n_i^2}{N_d} e^{qV/kT}$$

• Rewriting in terms of excess minority carriers:

$$n'(x_P) \equiv n(x_P) - n_{P0} = n_{P0} \cdot (e^{qV/kT} - 1)$$
$$p'(x_N) \equiv p(x_N) - p_{N0} = p_{N0} \cdot (e^{qV/kT} - 1)$$

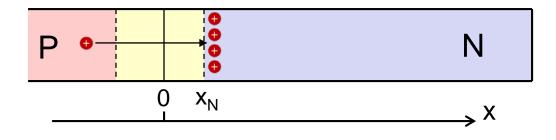
29

 In Si at 300°K, a forward bias of 0.6V raises minority carrier density by a factor of 10¹⁰ !

Example: Carrier Injection

- A P+N junction has $N_a = 10^{18} cm^{-3}$ and $N_d = 10^{16} cm^{-3}$.
- a) What are the minority carrier densities at the depletion region edges at zero bias?
- b) What are the minority carrier densities at the depletion region edges with a forward bias of 0.6V?
- c) What are the excess minority carrier densities at the depletion region edges with a forward bias of 0.6V?
- d) What are the majority carrier densities at the depletion region edges with a forward bias of 0.6V?
- e) What are the minority carrier densities at the depletion region edges with a negative bias of *1.8V*?

Carrier Transport in Neutral Region



- Consider transport of minority holes in neutral N region
- Apply diffusion equation (Lecture 4) under the conditions:
 - steady state
 - constant doping (in neutral region)
 - negligible electric field

$$\frac{d^2p'}{dx^2} = \frac{p'}{D_p.\tau_p} = \frac{p'}{L_p^2}$$

where $L_p \equiv \sqrt{D_p \cdot \tau_p}$

- L_p is the minority carrier diffusion length

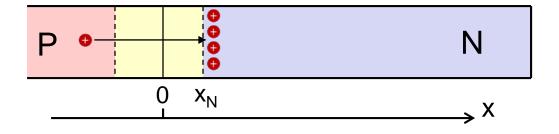
Minority Carrier Diffusion Length

• Similarly, in the P neutral region:

$$\frac{d^2n'}{dx^2} = \frac{n'}{L_n^2} \quad \text{where} \quad L_n \equiv \sqrt{D_n \cdot \tau_n}$$

- Minority carrier diffusion length is a measure of how far an injected minority carrier will travel before recombination
- Varies from few μ m to hundreds of μ m depending on τ
- Note that these equations are only valid for minority carriers
 - Cannot neglect drift in neutral region for majority carriers

Excess Carriers in Forward Biased Junction



• We solve $\frac{d^2p'}{dx^2} = \frac{p'}{L_p^2}$

with boundary conditions:

$$p'(\infty) = 0$$
$$p'(x_N) = p_{N0} \left(e^{qV/kT} - 1 \right)$$

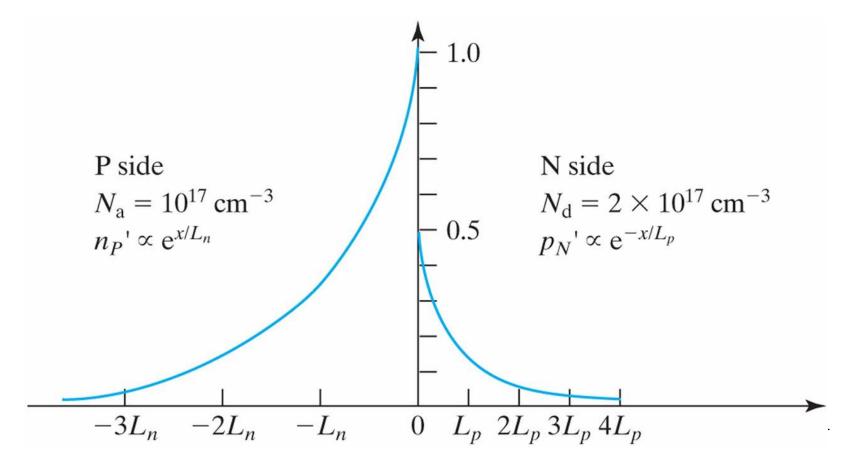
- General solution is $p'(x) = A \cdot e^{x/L_p} + B \cdot e^{-x/L_p}$
 - First boundary condition implies A=0, second determines B:

$$p'(x) = p_{N0}(e^{qV/kT} - 1) \cdot e^{-(x - x_N)/L_p}, \quad x > x_N$$

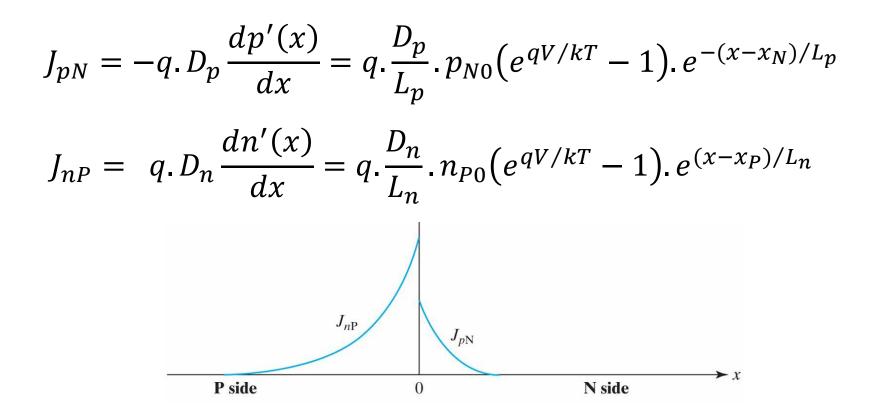
Excess Carrier Distribution

$$p'(x) = p_{N0} (e^{qV/kT} - 1) \cdot e^{(x_N - x)/L_p}, \quad x > x_N$$

• Similarly:
$$n'(x) = n_{P0} (e^{qV/kT} - 1) \cdot e^{(x-x_P)/L_n}$$
, $x < x_P$



Excess Minority Carrier Current



• At x=0, total current is due to injected minority carriers

$$J(0) = J_{pN}(x_N) + J_{nP}(x_P) = q \cdot \left(\frac{D_p}{L_p} \cdot p_{N0} + \frac{D_n}{L_n} \cdot n_{P0}\right) \cdot \left(e^{qV/kT} - 1\right)$$

Majority Carrier Current

- Total current at *x*=0 equals total current at all values of *x*
- As minority carrier current density decreases leaving the depletion region boundary, majority carrier current density increases to keep the total current density constant



PN Diode IV Characteristic

• Rewriting equation for total current density:

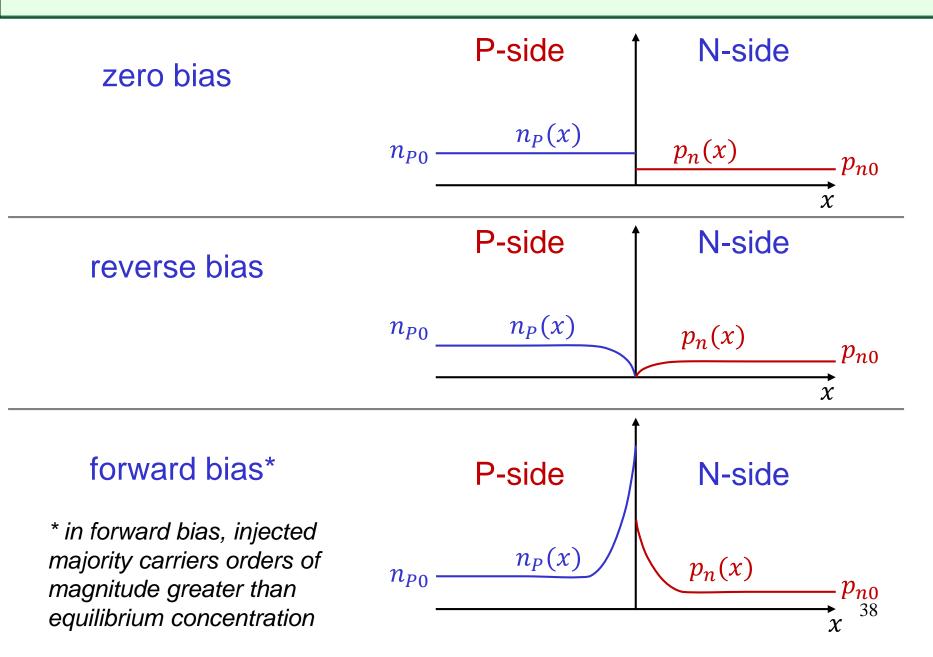
$$I = J \cdot A = I_0 \left(e^{qV/kT} - 1 \right)$$
$$I_0 = A \cdot q \cdot n_i^2 \left(\frac{D_p}{L_p \cdot N_d} + \frac{D_n}{L_n \cdot N_a} \right)$$

- Note that our analysis and these equations apply equally to reverse bias (V<0)
- For $V_r \gg kT$, exponential goes to zero and $I = -I_0$

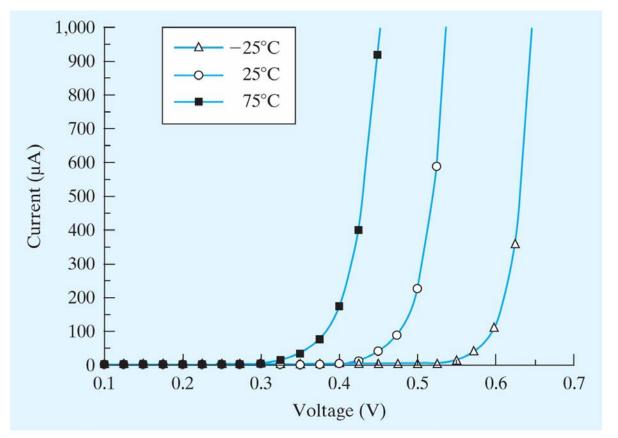
(reverse saturation current)

V

Minority Carrier Concentrations



PN Diode IV vs. Temperature



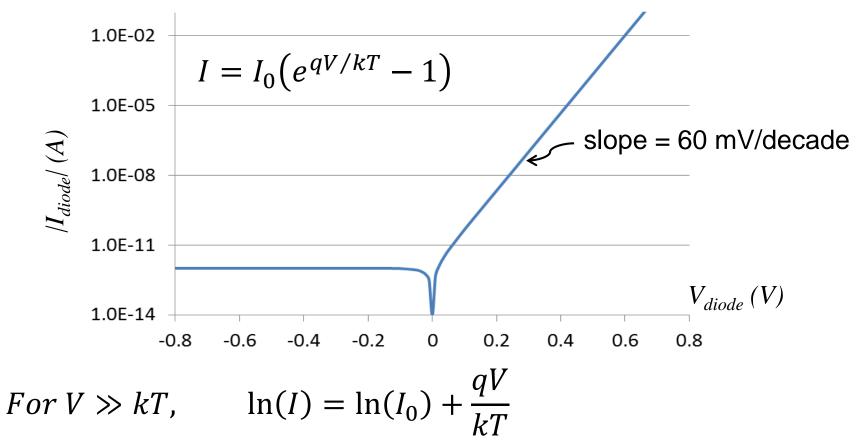
$$I = I_0 \left(e^{qV/kT} - 1 \right)$$

Why does current increase with temperature?

$$I_{0} = A.q.n_{i}^{2} \left(\frac{D_{p}}{L_{p}.N_{d}} + \frac{D_{n}}{L_{n}.N_{a}} \right)$$

Semi-log plot of IV for ideal diode

• Ideal diode characteristic for $I_0 = 10^{-12}$ A and T=300°K



- plotting ln(I) vs. V, slope = q/kT
- diode can be used as temperature sensor

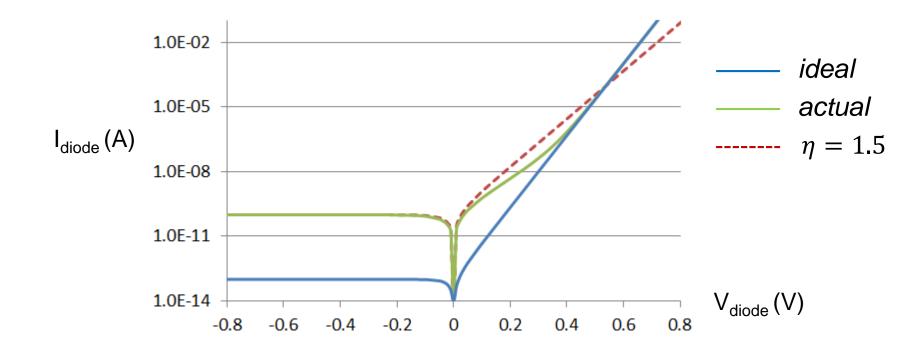
Generation-Recombination in Depletion Region

- Our analysis assumed that J_p and J_n did not change between x_P and x_N
 - There will be extra current due G-R within depletion region
 - Space Charge Region (SCR) or Generation-Recombination current
- Since there are no majority carriers, recombination requires presence of minority holes *and* electrons

$$I_{SCR} = I_{0,SCR} \left(e^{qV/2kT} - 1 \right)$$

- Under forward bias, SCR current increases at only 120mV/decade
- At high forward bias, diffusion current dominates
- Under reverse bias, depletion region is devoid of carriers, so electron-hole pairs will be thermally generated and immediately swept across junction by electric field.
- This significantly increases leakage current ($I_{0,SCR} \gg I_0$)

Non-Ideal Diode Behavior



• Account for this extra current with ideality factor η

$$I = I_{0,SCR} (e^{qV/\eta kT} - 1), \qquad 1 < \eta < 2$$

Example: PN Diode currents

• Consider a PN junction diode at 300° K with the following characteristics:

$$N_a = N_d = 10^{16} cm^{-3}$$

 $D_n = 25 cm^2/s$
 $D_p = 10 cm^2/s$
 $\tau_{p0} = \tau_{n0} = 5 \times 10^{-7} s$
 $area = 0.01 mm^2$

- a) Calculate ideal reverse saturation current
- b) Calculate current with forward bias of 0.65V
- c) Calculate electric field in N neutral region with forward bias of 0.65V