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Nature of PN Junction

 We have considered properties of N and P-type
semiconductors in isolation

 What happens when we have a transition in a single
crystal from one type to the other ?
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* PN junction present in perhaps /
every semiconductor device v,

reverse bias forward bias o



Abrupt PN Junction

o Suppose we bring N & P crystals together:
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Carrier Diffusion

Electrons diffuse to right Holes diffuse to left and
and recombine with holes recombine with electrons
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Electric Field in Depletion Region

zero net charge 4_____9_?9!?F'_9?_9_r Space _c_rjg_rg_e_ region . >  zero net charge
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on electrons 5 electrons hOleS X on holes

* Net positive and negative charges induce electric field
» Electric field pulls carriers in opposite direction to diffusion

* Inthermal equilibrium, carriers diffuse until electric field
exactly balances diffusion force 5



Energy Band Diagram — Zero Bias

e Under zero external bias, junction is in thermal equilibrium
— one Fermi level throughout device

N region < > P region

____________________ E.

« Far from the junction, we have N-type (with E_ close to Ep)
and P-type (with E,, close to E;)




Energy Band Diagram — Depletion Region

« Within depletion region, assume (for now) that conduction
& valence energies joined by a smooth curve

—r = h mm ok mm ok mm ok ommon mm s omm s = s = T = EF
: E,
|
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|
< |« > >
Neutral Depletion Neutral
N region region P region

 |n depletion region, E; Is far from both E_ and E,

n = 0 and p = 0 in depletion layer




Built-In Potential

« E_.and E, are not flat — indicates a potential difference

e This voltage differential ¢, Is called built-in potential
— exists at interface of any two dissimilar metals

* In N-region: [; [im
— s o e - e e —E
n = Nd = NC' e qA/kT T‘T‘q.-\ Ilf\

p le (NC)
=—.Iln|—
q Ng

* In P-region:

2 T N..N
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Calculating Built-In Potential

@i =B —A 2 [m
(M) ()] T
q n;? Ng
A
5, — kT <Nd. 12va> oo
q n; | \| »

e Typically @,; = 0.7V — 0.9V In silicon
e Can we measure this with a voltmeter ?
 Why does this not generate drift current?



Depletion Layer Model

* Divide step PN junction into three regions

 Assume that p = n = 0 in depletion region
— charge density p equals dopant ion density in depletion region
— charge density p = 0 in neutral regions

Nd Na
\ Neutral ' Depletion E Neutral
Region : Region | Region
/\IO
q.-Ny
-~ ‘P > X
N -q.N, 10




Poisson’s Equation

. . d*v  dE
 Poisson’s Equation: — = __F

dx ~  dx &
Neutral : Cepletion ' Neutral P
Reqgion ! i : Reaqi ) : :
eglonx' Region ~ il  On P side of depletion region:
N P
/\p .
dE. q.Ng
q.N, p==qNa =) '~ £
X
XN P > E(x) = — 9-Na x + const
'q.Na 85‘ ) )
B A « Setting E(xp) = 0, gives
=~ o q.Ng
E(x) = - (xp—x) 0<x<xp
S
> X 11




Electric Field

. Similarly, on N side of depletion Neural | Depletion | Neutral
region: B N Region 1 Region ' Region
N dE _ qu XN Ap Xp
P =q.Ng — dx £
— q. Nd q'Nd
E(x) = (x—xy)  xy<x<0 X
€s P > X
XN N
e Equating P side and N side fields s
at x=0: 7 A
Ng.lxp| = Ng. [xy|
» Depletion region extends further oy
Into more lightly doped side XN Xp

* A highly asymmetrical junction (N*P or P*N) is
called one-sided junction 12



Potential in the Depletion Region

E » _
« On P-side: using E = —dV /dx and
Integrating expressions for electric

g‘z field and arbitrarily setting V(xp) = 0

X
z

X
o

q.Ng
2&q

V(x) = (xp —x)> 0<x<xp

Similarly, on N-side, and setting
V(xy) = Opi

/ <,
X
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forxy <x<0

E V(x) = Op; — (x — xy)?
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Can now quantitatively draw energy
band diagram
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Depletion Layer Width

Neutral ' Depletion E Neutral
Region : Region | Region

 Equating N and P side potentials at x=0, gives:

2ec.ppi (1 1
xp_xN:Wdep:J Sq l<N +Nd)
a

e IfN,> N;,asinaP*N junction

Wdep ~

\ qu

o Similarly, if N; > N, as in N*P junction:

~ |x
q.N, 14




Example: PN Junction

e AP*N junction has N, = 10°cm™3 and N; = 10°cm™3 .
What is (a) the built-in potential, (b) W, () Xy and (d) Xp ?
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Reverse Biased PN Junction

 When a positive voltage is applied to N region relative to P
region, the PN junction is said to be reverse biased

* No longer in thermal equilibrium
— Fermi level not constant throughout junction
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Reverse Biased Depletion Width

e Potential barrier to flow of majority carriers has increased
from @p; to (@p;i+V;) ™
 Reverse biased current is very small

— Due to minority carriers in N an P sections
— Since current is small:

* IR drop in neutral regions is negligible
— All reverse bias appears across depletion region

« Analysis using Poisson’s equation (at thermal equilibrium) is
still valid if the @,; term is replaced with (@,;+V,)

q.9,i+q.V,

2e.(Dp; +V,) 2, X potential barrier

Wdep = =
\ q.N \ q.N

1 1 1 1
h — = ~
WRETE N, * N, lighter dopant density 17




Reverse Biased Field & Potential

A N
Zero bias reverse bias
0.Ny '
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Capacitance Model

 Two neutral regions separated by depletion region can be
viewed as two conductors separated by an insulator

+

DA
Neutral : Depletion Neutral
N ) I ) P
Region : Region Region

conductor Xy  Insulator X conductor

PN Junction can be modeled as parallel plate capacitor

v Vv

VvV

+++]+++
M
51}
N
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Capacitance Values

&. A
Cdep = Wdep

* Substituting for Wy, gives:

N remember:

c _ 4 q.N. &g ) ) )
aep \ 2(®bi + [/T') — + —
N N, Np

* Cyep INCreases with doping concentration in more
lightly doped side

* Cqep decreases as applied reverse bias increases

* Cgep IsImportant as PN junctions are present in most
semiconductor devices 20



Capacitance-Voltage Characteristic

e rewriting capacitance expression:

1 2@y + V)
Caep”  q-N.&. A2

1/Cyen2 A -
p ® ® o (apacitance data

 Measured capacitance vs. V,
can be used to determine
lighter doped concentration
In a one-sided junction and - Slope = 2/gNe A’
also the built-in potential -

Increasing reverse bias
-

21



Example: C-V data

» The measured slope of the 1/C? vs.V, plot for a PN diode is
2 x 103! F~2v~1 and the intercept is at —0.84 V. The area of
the PN junction is 1 um?. Find the lighter doping concentration
N; and the heavier doping concentration N;, . (Accuracy?)

22



Peak Electric Field

 Under moderate bias reverse current negligibly small
* As reverse bias is increased, peak electric field increases:

Depletion | Neutral region
layer >
Increasing |
reverse bias|

|
N* N, | p
|

0 Xy
(a)
1
A - R 2q N /2
%P/"" Epeax = E(0) = - (Dpi + V2)
S
\ ~_ Increasing reverse bias

Ip

(b) 23



Junction Breakdown

 When electric field reaches critical value E,,;; junction will
break down and conduct large current

I A

Forward current

Vi, Breakdown N 2
voltage . V ES- Ecrit @
T > —
| x B — — ¥bi
I/ Small leakage 2 q N

current

 Two types of breakdown:
— Tunneling (or Zener) breakdown in heavily doped junctions
— Avalanche breakdown in moderately doped junctions

24



Tunneling (Zener) Breakdown

 When heavily doped junction is reverse biased, only a small
distance separates electrons in P-side valence band from
empty states in N-side conduction band:

\ R c

n Ao AN
\
\
———\ 37V
Filled states @ﬁEmply states Zener diode IC
I"\I !r-

I‘-
I\'\ B G
\ D
.‘\-
pa T

o Electrons can “tunnel” across junction

—_—

- E..i = 10% volts/cm
— Breakdown is not destructive as long as current is controlled

— Zener diodes operate in this mode with well controlled Vg
25



Avalanche Breakdown

* In moderately doped junctions, high electric fields cause minority
carriers to accelerate across depletion region

e They may gain enough kinetic energy to raise an electron from the
valence band to conduction band (impact ionization)

— creates an extra electron-hole pair which will also be accelerated
e Extra carriers collide with lattice and create still more carriers
— avalanche effect

\ Original
electron —

e E.ip =5x10°V/cmatN = 107cm™3

\ 1 e Vg~15VatN =10"cm™3

Electron-hole )( \
. . \
pair generation” || |

\ 26




Forward Bilased Junction

zero bias reverse bias forward bias

e Reduced electric field allows electrons to diffuse from Nto P
— and holes to diffuse from P to N
— known as minority carrier injection

27



Minority Carrier Injection

« Forward bias of V reduces barrier height from @,; to @,; — V
» Upsets balance between drift and diffusion
» Electrons are injected into P-side, holes into N-side

e Assuming Eg,, remains e vl
constant through to X, at AR MR
I . e %928 00% ¢ o E
edge of neutral P region: et §8:Z:';/t
Epp—-—s—r—r e

n(xp) = N,.e~Ec=Ern)/KT

““““““““““““““““““““““““ - E;:p

Oooooo%o o O Ev

= N,. e_(Ec_EFp)/kT_ e(EFn_EFp)/kT

000 0900%0 0° o,
= npo. e(EFn=Erp)/KT ot T tee G a
2 o
= npg. e?V/KT

28



Quasi-Equilibrium Boundary Condition

e Minority carrier density in neutral region at the edge of
depletion region is raised by e4V/kT

2

n;
n(xp) = npg.4V/kT = — qV/kT
Nq
0.2
l
p(xy) = pno.e? /T = N eV /KT
d

 Rewriting in terms of excess minority carriers:

n'(xp) = n(xp) —npg = Npy. (qu/kT—l)

p'(xy) = p(xy) — Pno = Pwo- (eqv/kT_l)

 In Si at 300°K, a forward bias of 0.6V raises minority
carrier density by a factor of 100! 23



Example: Carrier Injection

e A P*Njunction has N, = 10¥¢m™3 and N; = 10°cm™3.

a) What are the minority carrier densities at the depletion
region edges at zero bias?

b) What are the minority carrier densities at the depletion
region edges with a forward bias of 0.6V ?

c) What are the excess minority carrier densities at the
depletion region edges with a forward bias of 0.6V ?

d) What are the majority carrier densities at the depletion
region edges with a forward bias of 0.6V ?

e) What are the minority carrier densities at the depletion
region edges with a negative bias of 1.8V ?

30



Carrier Transport in Neutral Region

: )
| 0
P °— ' N

0 X
] N \X

Ll

« Consider transport of minority holes in neutral N region

* Apply diffusion equation (Lecture 4) under the conditions:
— steady state
— constant doping (in neutral region)
— negligible electric field

2. 1 / /
dpz= P =p2 where L,= |D
dx D,.t, L,

p-Ip

- L, is the minority carrier diffusion length 31



Minority Carrier Diffusion Length

o Similarly, in the P neutral region:

= where L, =.D,.1,

« Minority carrier diffusion length is a measure of how far an
Injected minority carrier will travel before recombination

e Varies from few um to hundreds of um depending on t

* Note that these equations are only valid for minority
carriers

— Cannot neglect drift in neutral region for majority carriers -



Excess Carriers in Forward Biased Junction

1Q

p o 3 N

'
0 Xy

2 14 !/
. Wesolve %P _7

2 2
dx L,

with boundary conditions: P '(©) =0
p'(xn) = prno(e?/*T 1)
« General solutionis  p'(x) = A.e*'» 4+ B.e ¥/l
— First boundary condition implies A=0, second determines B:

p'(x) = pNO(qu/""T —1). e~ (x=xN)/Lp X > Xy
33



Excess Carrier Distribution

p'(x) = pNO(qu/kT — 1). e*N=X)/Lp X > Xy

e Similarly:  n'(x) = npo(e®/kT —1).e@¥pP)/In = x < xp

1.0

N side
Ny=2X%X10" cm™
le e e—x/LP

I
2L, 3L, 4L, L

8, —3I. -L. O L



Excess Minority Carrier Current

dp’(x D
Jon = —q.Dp P %) = 4. : -pNo(qu/kT — 1).6_(x_xN)/Lp

dx E
dn'(x D
]nP — an dD(C ) = q.L—n.TlPO(qu/kT — 1) e(x_xP)/Ln
n
T
P side 0 N side ~

o At x=0, total current is due to injected minority carriers

D

D n
J(0) = ]pN(xN) + Jnp(xp) = q. (L_p-PNo + L_-nm) - (qu/kT — 1)
D n

35



Majority Carrier Current

o Total current at x=0 equals total current at all values of x

* As minority carrier current density decreases leaving the
depletion region boundary, majority carrier current density
Increases to keep the total current density constant

P side 0 N side

36



PN Diode IV Characteristic

* Rewriting equation for total current density:

[ =].A=I(e?/kT — 1)

D D
I, = A. q.Tl-Z ( P + - )
0 " \L,.Ng L, N,

* Note that our analysis and these | ]
equations apply equally to
reverse bias (V<0)

 For V. > kT, exponential goes to
zero and I = —1,

(reverse saturation current) V
_IO i

37



Minority Carrier Concentrations

_ P-side | N-side
Zero bias
np(x
o P .
X
_ P-side | N-side
reverse bias
Npo np (X) pn(x)
Pno
X
forward bias* P-side N-side
* In forward bias, injected
majority carriers orders of np(x) p, (x
magnitude greater than "tpo n() - Pno

equilibrium concentration 38
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PN Diode IV vs. Temperature

1,000
900 |-
800 |
700 -
600 |
500 |-
400 |-

I =1Iy(e?/kT — 1)

Current (uA)

300
200

100
0 )
0.1 0.2 0.3 0.4 0.5 0.6 0.7
Voltage (V)

 Why does current increase with temperature?

D D
I, = A. q.Tl-Z ( 4 + L )
0 “ \L,.Ng L, N,
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Semi-log plot of IV for ideal diode

 Ideal diode characteristic for I, = 10> A and T=300°K

1.0E-02 /

| = Io(qu/kT _ 1) /
1.0E-05
1. 0E-08 // slope = 60 mV/decade
1.0E-11 /
R4 ! ' | Y | | | Vaiode (V)

-0.8 -06 -04 -0.2 0 0.2 0.4 0.6 0.8

qV
kT

||diode| (A)

ForV > kT, In(I) = In(ly) +

e plotting In(l) vs. V, slope = g/kT

« diode can be used as temperature sensor 40



Generation-Recombination in Depletion Region

 Our analysis assumed that J, and J, did not change
between X, and Xy
— There will be extra current due G-R within depletion region
— Space Charge Region (SCR) or Generation-Recombination current

» Since there are no majority carriers, recombination requires
presence of minority holes and electrons

qV /2KkT __ 1)

Iscr = IO,SCR (6’

— Under forward bias, SCR current increases at only 120mV/decade
— At high forward bias, diffusion current dominates

— Under reverse bias, depletion region is devoid of carriers, so
electron-hole pairs will be thermally generated and immediately
swept across junction by electric field.

— This significantly increases leakage current (I scg > 1)

41



Non-ldeal Diode Behavior

#
1.0E-02 /f'
/ — ideal
1.0E-05 actual
F 4
*
lgiode (A) o e n =15
1.0E-08 e
”
F.2
£
1.0E-11 /
1.0E-14 . . . . . . Vioge (V)
08 06 04 02 0 02 04 06 8

e Account for this extra current with ideality factor 7

I = IO’SCR(qu/nkT — 1), 1< n <2

42



Example: PN Diode currents

e Consider a PN junction diode at 300° K with the following

characteristics:
N, = N; = 10 ¢m™3 Tpo = Tno = 5 X 1077s
D, = 25cm?/s area = 0.01 mm?

D, = 10 cm?/s

a) Calculate ideal reverse saturation current
b) Calculate current with forward bias of 0.65V

c) Calculate electric field in N neutral region with forward bias of
0.65V
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