Lecture 7
MOS Capacitor

Bryan Ackland
Department of Electrical and Computer Engineering
Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from Modern Semiconductor Devices for Integrated Circuits, Chenming Hu, 2010
• Gate oxide film can be as thin as 1.5nm
• After 1970, gate usually made from heavily doped polysilicon
• Trend today is to return to metal gates
MOS Capacitor - Energy Band Diagram

- Three different materials:
 - N+ poly
 - SiO$_2$
 - P-body

- $E_g \approx 1.1\text{ev}$
- $\chi_{SiO_2} = 0.95\ \text{ev}$
- $\chi_{Si} = 4.05\ \text{ev}$

- $E_g \approx 9\text{ev}$
- $E_g \approx 1.1\text{ev}$
MOS Capacitor – Thermal Equilibrium \((V_g=0)\)

- What happens when we bring these materials together?

![Diagram of MOS Capacitor]

- Potential difference between \(N^+\) gate and \(P\) body at zero bias
 - analogous to built-in voltage of PN junction
Flat Band Condition

- Necessary to apply small negative voltage V_{fb} on gate to make energy bands flat at oxide surface

- Flat-band voltage V_{fb} is equal to difference in Quasi-Fermi levels between two terminals under flat-band conditions

- For heavily doped N+ gate:

$$V_{fb} \approx \left(E_{Fp} - E_c \right)/q = (E_{Fp} - E_v - E_g)/q$$
Surface Accumulation

- What happens if we take $V_g < V_{fb}$?

- Band diagram on gate side pushed upward

- E_c on body side bends up towards oxide surface

- Surface potential ϕ_s is a measure of amount of band bending
 - note that ϕ_s is negative if band bend upwards

- V_{ox} is potential across the oxide
 - also negative in accumulation

- V_g is the potential of gate relative to the body

\[V_g = V_{fb} + \phi_s + V_{ox} \]

- In flat-band, $\phi_s = V_{ox} = 0$
Charge Accumulation

- Negative voltage on gate attracts majority holes to surface
- Because E_v is closer to E_F at surface (compared to bulk), surface concentration is higher than p_0

\[p_s = N_a \cdot e^{-q \phi_s/kT} \]

\[\phi_s = -\frac{kT}{q} \cdot \ln \left(\frac{p_s}{N_a} \right) \]

If $\phi_s = -100 \ \text{mv}$, $p_s \approx 50 \times N_a$
If $\phi_s = -200 \ \text{mv}$, $p_s \approx 2200 \times N_a$

- In accumulation, ϕ_s is small and can be ignored in a first order model which gives:

\[V_{ox} = V_g - V_{fb} \]
Accumulation Capacitance

- Gauss’s Law: \(\vec{E}_{ox} = -\frac{Q_{acc}}{\varepsilon_{ox}} \)

\[
V_{ox} = \vec{E}_{ox} \cdot T_{ox} = -\frac{Q_{acc} \cdot T_{ox}}{\varepsilon_{ox}} = -\frac{Q_{acc}}{C_{ox}}
\]

\[
Q_{acc} = -C_{ox}(V_g - V_{fb})
\]

- MOS capacitor in accumulation behaves like regular capacitor with \((Q = -C \cdot V)\) but with a shift in \(V\) by \(V_{fb}\)
 - negative sign because voltage is measured at gate while charge is measured on body

- More generally:

\[
V_{ox} = -\frac{Q_{bod}}{C_{ox}}
\]

where \(Q_{bod}\) is total charge in body (including \(Q_{acc}\))
Surface Depletion

- What happens if we take $V_g > V_{fb}$?

- Band diagram on gate side pulled downward

- E_c on body side bends down towards oxide surface

- More positive voltage on gate repels majority holes from surface

- Because E_F is now far from E_c and E_v at surface, electron and hole densities are both small.

- There is now a depletion region at the surface with residual negative charge due to uncompensated acceptor ions
Depletion Width

\[V_{ox} = -\frac{Q_{bod}}{C_{ox}} = -\frac{Q_{dep}}{C_{ox}} \]

\[= \frac{q \cdot N_a \cdot W_{dep}}{C_{ox}} \]

- Using Poisson’s eqn. as we did with reverse biased PN junction:

\[W_{dep} = \sqrt{(2\varepsilon_s \cdot \phi_s)/q \cdot N_a} \]

- which gives:

\[V_{ox} = \frac{\sqrt{2q \cdot N_a \cdot \varepsilon_s \cdot \phi_s}}{C_{ox}} \quad \text{and} \quad \phi_s = \frac{q \cdot N_a \cdot W_{dep}^2}{2\varepsilon_s} \]
Charge Depletion

- As V_g increases, hole concentration at surface decreases as electron concentration at surface increases

\[p_s = N_a \cdot e^{-q \phi_s / kT} \]
\[n_s = \frac{n_i^2}{N_a} \cdot e^{+q \phi_s / kT} \]

- In depletion, ϕ_s is no longer negligible
 - can solve following quadratics to yield ϕ_s or W_{dep} as a function of V_g

\[V_g = V_{fb} + \phi_s + V_{ox} = V_{fb} + \phi_s + \frac{\sqrt{2q \cdot N_a \cdot \varepsilon_s \cdot \phi_s}}{C_{ox}} \]

\[V_g = V_{fb} + \frac{q \cdot N_a \cdot W_{dep}^2}{2 \varepsilon_s} + \frac{q \cdot N_a \cdot W_{dep}}{C_{ox}} \]
Surface Inversion

• What happens if we make V_g increasingly more positive?
 • p_s continues to decrease
 • n_s continues to increase
 • At some point, surface changes from P-type to N-type – this is called inversion

• Threshold of inversion is defined as that condition in which surface electron concentration becomes equal to bulk hole concentration

$$n_s = N_a$$

$$\left(E_c - E_F \right)_{surface} = \left(E_F - E_v \right)_{bulk}$$

i.e., $A = B$ which implies $C = D$ in figure
Threshold Condition

- Surface potential at threshold
 \[\phi_{st} = \frac{(C + D)}{q} = \frac{2C}{q} \]
 \[= 2\phi_B \]

- where \(q\phi_B \equiv \frac{E_g}{2} - (E_F - E_v)_{bulk} \)
 - \(\phi_B \) is sometimes called bulk potential

- Assuming \(N_c \approx N_v \),
 \[q\phi_B = kT \cdot \ln \frac{N_v}{n_i} - kT \cdot \ln \frac{N_v}{N_a} \]
 so, \(\phi_B = \frac{kT}{q} \cdot \ln \frac{N_a}{n_i} \)

\[\phi_{st} = 2\phi_B = 2 \cdot \frac{kT}{q} \cdot \ln \frac{N_a}{n_i} \]
Threshold Voltage

\[V_g = V_{fb} + \phi_s + V_{ox} \]

- Substituting:

\[V_{ox} = \frac{\sqrt{2qN_a\varepsilon_s\phi_s}}{C_{ox}} \quad \text{and} \quad \phi_s = \phi_{st} = 2\phi_B \]

\[V_t = (V_g)_{\text{at threshold}} = V_{fb} + 2\phi_B + \frac{2\sqrt{qN_a\varepsilon_s\phi_B}}{C_{ox}} \]

- For N-type body:

\[V_t = V_{fb} - 2\phi_B - \frac{2\sqrt{qN_a\varepsilon_s\phi_B}}{C_{ox}} \quad \text{and} \quad \phi_{st} = -2\phi_B \]

\[\phi_B = \frac{kT}{q} \ln \frac{N_d}{n_i} \quad (\text{note that } \phi_B \text{ is always positive}) \]
Threshold Voltage vs. Body Doping

\[V_t = V_{fb} \pm 2\Phi_B \pm \frac{2\sqrt{q \cdot N_{body} \cdot \varepsilon_s \cdot \Phi_B}}{C_{ox}} \]

+ for P-body

- for N-body
Strong Inversion

- If we increase V_g beyond V_t . . .
- There is now an inversion layer filled with inversion electrons
- Surface electron concentration increases dramatically with small increase in ϕ_s
 \[n_s = N_a \cdot e^{q(\phi_s - 2\phi_B)/kT} \]
- Again, to a first order, ϕ_s does not increase significantly beyond $2\phi_B$
- Which implies depletion width has reached its maximum value
 \[W_{dmax} = 2 \cdot \sqrt{\frac{\varepsilon_s \cdot \phi_B}{q \cdot N_a}} \]
Strong Inversion Charge

- Q_{inv} is inversion charge density (C/cm²)

\[V_g = V_{fb} + \phi_s + V_{ox} \]
\[= V_{fb} + 2\phi_B - \frac{Q_{dep_max}}{C_{ox}} - \frac{Q_{inv}}{C_{ox}} \]
\[= V_t - \frac{Q_{inv}}{C_{ox}} \]

- i.e., $Q_{inv} = -C_{ox}(V_g - V_t)$

- MOS capacitor in strong inversion behaves as a capacitor with a voltage offset of V_t

Where do all these electrons come from?
MOS Transistor in Strong Inversion

- In MOS capacitor, inversion electrons generated thermally
 - can take many seconds in modern high quality silicon processes
- In MOS transistor, electrons rapidly supplied by N⁺ source

![Diagram of MOS transistor in strong inversion]
Example: MOS Capacitor

- Consider an ideal MOS capacitor fabricated on a P-type silicon substrate with a doping of $5 \times 10^{16} \, cm^{-3}$ with an oxide thickness of 10nm and an N$^+$ poly gate. Determine:

a) Bulk potential ϕ_B

b) Flat-band voltage V_{fb} of this capacitor

c) Oxide capacitance per unit area

d) Threshold voltage V_t

e) Maximum depletion width W_{dmax}

f) What would be the threshold if the poly gate were changed to heavy P$^+$ doping?
Gate Doping and Threshold Voltage

- P-body transistor normally operates in an IC with signal voltages that range from zero (ground) to some positive supply (V_{DD})
- V_t is normally set to a small positive voltage (e.g., 0.4V) so that the transistor does not have an inversion layer at $V_g = 0V$
 - A transistor that does not conduct at $V_{gs} = 0$ is known as an enhancement mode transistor
 - P^+ gate is not normally used with P-body device as it would raise threshold voltage too high (> 1V)
- N-body device is paired with P^+ gate to give small negative V_t
ϕ_s is zero at V_{fb} and near zero in accumulation region.

As V_g increases above V_{fb}, ϕ_s increases until surface is inverted and $\phi_s = 2\phi_B$.

$\phi_s \approx 2\phi_B$ in inversion region.

W_{dep} increases as the square root of the surface potential.

At $V_g = V_t$, W_{dep} reaches its maximum value.
Substrate Charge Components

\[Q_{dep} = qN_a W_{dep} \]

\[Q_{inv} = -C_{ox} (V_g - V_t) \]

\[Q_{acc} = -C_{ox} (V_g - V_{fb}) \]
Total Substrate Charge

\[Q_{bod} = Q_{acc} + Q_{dep} + Q_{inv} \]

\[C \equiv \frac{dQ_g}{dV_g} = -\frac{dQ_{bod}}{dV_g} \]

Slope = \(-C_{ox}\)
In depletion regime, C consists of two capacitors C_{ox} and C_{dep} in series:

$$\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_{dep}}$$

and

$$C_{dep} = \frac{\varepsilon_s}{W_{dep}}$$

Substituting for W_{dep}:

$$\frac{1}{C} = \sqrt{\frac{1}{C_{ox}^2} + \frac{2(V_g - V_{fb})}{q \cdot N_a \cdot \varepsilon_s}}$$
MOS Capacitor C-V vs MOS Transistor C-V

- At high frequencies, MOS capacitor cannot (thermally) generate electrons fast enough to produce an inversion layer consistent with applied voltage V_g
 - so for $V_g > V_t$, C remains at maximum depletion value
 - In modern processes, high frequencies (in this context) may mean more than a few hertz!

- MOS Transistor has a good supply of electrons from nearby N$^+$ source region

![MOS Capacitor C-V vs MOS Transistor C-V diagram]
Example: Capacitance Values

• A $10\mu m \times 10\mu m$ MOS capacitor is built with a N$^+$ poly gate on a P-type substrate with $N_a = 10^{17} cm^{-3}$ and a gate oxide thickness of 50 nm.

• What are the high and low frequency capacitances of the MOS capacitor when biased in strong inversion?
Second Order Effects

- So far, have ignored possibility of electric charge in oxide
 - fixed charge due to silicon ions at Si-SiO₂ interface
 - mobile charge due to impurities in oxide
 - sodium is a serious potential contaminant
- Oxide charge shifts flat-band voltage
 \[V_{fb} \approx (E_F - E_c)/q - Q_{ox}/C_{ox} \]
- This, in turn, shifts threshold voltage
 - very serious in low voltage processes
- So far, have assumed accumulation and inversion layers to be zero width
 - Quantum solution of Poisson’s eqn. at SiO₂ interface yields finite layer thickness ~ 5-15 Å
 - Effectively locates charge below interface by \(T_{inv} \)
 - Reduces C in accumulation and inversion domains
 - Reduces transistor performance with thin gate oxides (<10nm)²⁷
So far, we have ignored any band bending in N⁺ poly gate
- poly is heavily doped but there will be small surface potential ϕ_{poly} when body is biased into inversion

Creates a thin depletion layer in poly at SiO₂ interface
- Gauss’s Law gives:
 $$W_{dpoly} = \varepsilon_{ox} \cdot \vec{E}_{ox} / q \cdot N_{poly}$$
- W_{dpoly} may be 1-2 nm
- Solving Poisson's Equation:
 $$\phi_{poly} = \frac{-q \cdot N_{poly} \cdot W_{dpoly}^2}{2 \cdot \varepsilon_s}$$

Summing potentials across interface:
$$V_g = V_{fb} + \phi_{st} + V_{ox} - \phi_{poly}$$
Effects of Polysilicon Gate Depletion

• Gate Depletion decreases gate capacitance:

\[
C = \left(\frac{1}{C_{ox}} + \frac{1}{C_{poly}} \right)^{-1} = \left(\frac{T_{ox}}{\varepsilon_{ox}} + \frac{W_{dpoly}}{\varepsilon_s} \right)^{-1}
\]

\[
= \frac{\varepsilon_{ox}}{T_{ox} + (W_{dpoly}/3)}
\]

• Also, effectively reduces gate voltage:

\[
Q_{inv} = -C_{ox}(V_g - |\phi_{poly}| - V_t)
\]
Effective Oxide Capacitance

- Effective oxide thickness: \(T_{oxe} = T_{ox} + W_{dpoly}/3 + T_{inv}/3 \)
- Effective oxide capacitance: \(C_{oxe} = \epsilon_{ox}/T_{oxe} \)

\[Q_{inv} = -C_{oxe}(V_g - V_t) \]

- Poly depletion can be eliminated with metal gate
Example: Poly Gate Depletion

- Assume that V_{ox}, the voltage across a 2nm thin oxide is 1V. The N$^+$ poly-gate doping is $N_{poly} = 8 \times 10^{19} \text{ cm}^{-3}$ and substrate $N_a = 10^{17} \text{ cm}^{-3}$. Assuming that channel is inverted, estimate:

 a) W_{dpoly}
 b) ϕ_{poly}
 c) V_g
CCD Imager

• In CMOS imager, photodiode is used as photo-detector and CMOS circuitry is used to convert charge to voltage and amplify and transmit that voltage to output circuits.

• In CCD imager, MOS capacitor is used both as a photo-detector and a charge transfer device to move photo-charge from pixel to output circuits.

• Suppose a voltage $V_g > V_t$ is suddenly applied to gate of a MOS capacitor.

• Thermal generation is slow – for a period of time there are no inversion electrons.
 – bands bend beyond $2\phi_B$
 – depletion region extends beyond W_{dmax}

• Known as deep depletion.
CCD Photodetector

- If light shines on MOS capacitor in deep depletion, photons pass through thin poly gate and generate electron-hole pairs in depletion region
 - Photo-generated holes drift into substrate and are removed through substrate contact
 - Photo-generated electrons drift towards gate and are collected at oxide surface
- Number of electrons collected proportional to light intensity
• Once electrons are collected under a MOS gate, they can be passed along a row of adjacent gates with suitably timed multiphase clocks
• Every third gate functions as a photo-detector
• At end of exposure time, charges are passed along row toward output circuits
• Overlapping poly gates ensure high charge transfer efficiency
• 2-D array of charge packets are read row by row