EE 471: Transport Phenomena in Solid State Devices Spring 2018

Lecture 8 MOS Transistor

Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030

Adapted from Modern Semiconductor Devices for Integrated Circuits, Chenming Hu, 2010

MOSFET Transistor

- Conduction between source and drain is controlled by gate voltage which induces and modulates inversion charge density
 - Inversion layer in a MOS transistor is often referred to as the <u>channel</u>
- MOS: Metal-Oxide-Semiconductor structure
- FET: Field Effect Transistor conduction controlled by electric field

Complementary (CMOS) Technology

- P body normally connected to most negative voltage (0V, gnd)
- By definition: $V_s < V_d$

- N body normally connected to most positive voltage (V_{DD})
- By definition: $V_s > V_d$ ³

Surface Mobility

- Current through the channel of an MOS transistor is a function of electron (or hole) mobility in the inversion region
 - in a MOS transistor, we care about mobility in inversion layer
 - i.e., mobility near boundary between Si and SiO_2
- Surface mobility (μ_{ns} , μ_{ps}) is not same as bulk mobility
 - surface mobility is reduced by surface roughness scattering
- Surface mobility is a function of \vec{E}_{inv} average (vertical) electric field within the inversion charge layer
- For N⁺ poly gate NFET: $\vec{E}_{vert} \approx \frac{V_{gs} + V_t + 0.2V}{6.T_{oxe}}$ • For P⁺ poly gate PFET: $\vec{E}_{vert} \approx -\frac{V_{gs} + 1.5V_t - 0.25V}{6.T_{oxe}}$

Empirical Mobility

Example: Surface Mobility

• What is the surface mobility at $V_{gs} = 1V$ in an N-channel MOSFET with $V_t = 0.3 V$ and $T_{oxe} = 2 nm$?

Body Effect

- Until now, we have assumed that the body and channel (inversion layer of MOS capacitor) are held at zero volts
- In MOS transistor, (channel potential) \geq (source potential)
- What happens if source (or channel) is positive with respect to body (i.e. $V_{sb} > 0$)? V_g
- There are now two capacitors:
 - one from gate to channel through the oxide
 - a second from channel to body through depletion layer silicon

• Now:

$$Q_{inv} = -C_{oxe} (V_{gs} - V_t) + C_{dep} V_{sb}$$

where
$$C_{dep} = \frac{\varepsilon_s}{W_{dmax}}$$

Body Effect on Threshold Voltage

$$Q_{inv} = -C_{oxe} \left(V_{gs} - V_t \right) + C_{dep} \cdot V_{sb}$$

$$= -C_{oxe} \left(V_{gs} - \left(V_t + \frac{C_{dep}}{C_{oxe}} \cdot V_{sb} \right) \right)$$

$$= -C_{oxe} \left(V_{gs} - V_t (V_{sb}) \right)$$

$$V_t (V_{sb}) = V_{t0} + \frac{C_{dep}}{C_{oxe}} \cdot V_{sb} = V_{t0} + \alpha \cdot V_{sb}$$

$$\alpha = C_{dep} / C_{oxe} \approx (3T_{oxe}) / W_{dmax}$$

- When source-body junction is reversed biased:
 - NFET V_t becomes more positive
 - PFET V_t becomes more negative
- This is known as body effect or back gate bias effect
 - α is the body effect coefficient

Uniform Body Doping

- Earlier generations MOS technology used uniform body doping
- Complicates expression for body effect because W_{dmax} is a function of V_{sb}
- V_t can be obtained by replacing $2\phi_B$ term (in expression for threshold voltage previous lecture) with $(2\phi_B + V_{sb})$ which yields:

$$V_t = V_{t0} + \frac{\sqrt{2q.N_a.\varepsilon_s}}{C_{oxe}} \left(\sqrt{2\phi_B + V_{sb}} - \sqrt{2\phi_B}\right)$$
$$= V_{t0} + \gamma \left(\sqrt{2\phi_B + V_{sb}} - \sqrt{2\phi_B}\right)$$

- This is the "classical" formula for body-effect V_t variation
- γ is called body-effect parameter
 - sub-linear function of V_{sb}

Retrograde Body Doping

- Modern transistors employ steep retrograde body doping
 light doping in surface layer with heavy doping underneath
- Reduces off-state leakage and improves surface mobility

• W_{dep} is now defined geometrically and independent of V_{sb}

• α is now constant \Rightarrow linear relation between V_t and V_{sb} 10

MOSFET IV – Very Small V_{ds}

• Consider MOS transistor with $V_{gs} > V_t$, $V_{ds} > 0$ but $V_{ds} \approx 0$

$$I_{ds} = \frac{W}{L} \cdot C_{oxe} \cdot \mu_{ns} \cdot (V_{gs} - V_t) \cdot V_{ds}$$

MOSFET IV – Beta

- MOS transistors are sometimes characterized by a gain factor β
- For very small V_{ds}:

$$I_{ds} = \frac{W}{L} . C_{oxe} . \mu_{ns} . (V_{gs} - V_t) . V_{ds} = \beta . (V_{gs} - V_t) . V_{ds}$$

where
$$\beta = \frac{W}{L} \cdot C_{oxe} \cdot \mu_{ns}$$

 β captures physical and material properties of the transistor

MOSFET IV Characteristic – very small Vds

• For very small V_{ds} : $I_{ds} = \beta \cdot (V_{gs} - V_t) \cdot V_{ds}$

$$- \text{ If } V_{gs} < V_t, \quad I_{ds} = 0$$

- If $V_{gs} > V_t$, MOSFET behaves as a linear resistor whose conductance is proportional to $(V_{gs} - V_t)$

Measuring Threshold Voltage

- Empirical V_t can be determined by:
 - a) extrapolating I_{ds} vs. V_{as} curve to $I_{ds} = 0$
 - b) measuring V_{as} at which $I_{ds} = 0.1 \mu A \times (W/L)$

14

Inversion Charge in MOSFET

- Now consider MOSFET with $V_{ds} > 0$ (and no longer very small)
- Channel voltage V_c is now a function of x

$$-V_c(0) = V_s \text{ or } V_{cs}(0) = 0$$

$$- V_c(L) = V_d \text{ or } V_{cs}(L) = V_{ds}$$

- As we move toward the drain
 - less voltage across oxide (& more across depletion layer $)^{V_s}$ -
 - fewer electrons (less charge density) in inversion layer

15

$$Q_{inv} = -C_{oxe} (V_g - V_{t0} - \alpha V_{sb})$$

becomes:

$$Q_{inv}(x) = -C_{oxe} \left(V_{gc}(x) - V_{t0} - \alpha V_{cb}(x) \right)$$

Bulk Charge Factor

$$Q_{inv}(x) = -C_{oxe} (V_{gc}(x) - V_{t0} - \alpha . V_{cb}(x))$$

= $-C_{oxe} (V_{gs} - V_{cs}(x) - V_{t0} - \alpha (V_{cs}(x) + V_{sb}))$
= $-C_{oxe} (V_{gs} - V_{cs}(x) - (V_{t0} + \alpha V_{sb}) - \alpha . V_{cs}(x))$
= $-C_{oxe} (V_{gs} - m . V_{cs}(x) - V_{t})$

where $m \equiv (1 + \alpha) = 1 + C_{dep}/C_{oxe} = 1 + 3(T_{oxe}/W_{dmax})$

- m is called body effect factor or bulk charge factor
- m is typically around 1.2
- First order models often use m=1

Channel Voltage Profile

- We know that $V_{cs}(0) = 0$ and $V_{cs}(L) = V_{ds}$
- What is $V_{cs}(x)$ for 0 < x < L?
- Many simple analyses assume $V_{cs}(x) = x V_{ds}/L$
 - inversion charge density decreases linearly from source to drain
 - horizontal electric field $\vec{E}_x = dV_{CS}/dx$ is constant

- This cannot be correct as $I_{ds} \propto Q_{inv}(x)$. $\vec{E}_x(x)$ must be constant!
- $V_{cs}(x)$ is a much more complex function of x

MOSFET IV – Linear Region

• Fortunately, we can determine I_{ds} without knowing $V_{cs}(x)$

• We know
$$I_{ds} = W.Q_{inv}(x).v(x) = W.Q_{inv}(x).\mu_{ns}.\vec{E}_x(x)$$

so
$$I_{ds}. dx = W. C_{oxe} (V_{gs} - m. V_{cs}(x) - V_t) . \mu_{ns}. \vec{E}_x(x). dx$$

 $= W. C_{oxe} (V_{gs} - m. V_{cs}(x) - V_t) . \mu_{ns}. dV_{cs}$
 $\int_0^L I_{ds}. dx = W. C_{oxe}. \mu_{ns} \int_0^{V_{ds}} (V_{gs} - m. V_{cs}(x) - V_t) . dV_{cs}$
 $I_{ds}. L = W. C_{oxe}. \mu_{ns} \left[(V_{gs} - V_t) . V_{cs} - \frac{m. V_{cs}^2}{2} \right]_{V_{cs}}^{V_{cs}} = V_{ds}$

$$I_{ds} = \frac{W}{L} \cdot C_{oxe} \cdot \mu_{ns} \cdot \left(V_{gs} - V_t - \frac{m}{2} \cdot V_{ds}\right) \cdot V_{ds}$$
$$= \beta \cdot \left(V_{gs} - V_t - \frac{m}{2} \cdot V_{ds}\right) \cdot V_{ds}$$

MOSFET IV – Linear Region

- For small V_{ds} , I_{ds} increases linearly behaves as a resistor
- As V_{ds} increases, charge in channel decreases
 - as a result: dI_{ds}/dV_{ds} decreases
- What happens when I_{ds} reaches it maximum ?

Drain Saturation Voltage

• At what point does *I*_{ds} reach it maximum?

$$I_{ds} = \beta . \left(V_{gs} - V_t - \frac{m}{2} . V_{ds} \right) . V_{ds}$$

• Differentiating and setting to zero:

$$\frac{\partial I_{ds}}{\partial V_{ds}} = \beta . \left(V_{gs} - V_t - m . V_{ds} \right) = 0$$

• This gives: $V_{dsat} = \frac{V_{gs} - V_t}{m}$

$$U_{gs} = 2V$$

$$V_{gs} = 1.5V$$

$$V_{gs} = 1.5V$$

$$V_{ds}(V)$$

$$V_{ds}(V)$$

 V_{dsat} is called the drain saturation voltage

• The drain current I_{ds} when $V_{ds} = V_{dsat}$ is given by:

$$I_{dsat} = I_{ds}(V_{dsat}) = \frac{W}{2m.L}C_{oxe}.\mu_{ns}.(V_{gs} - V_t)^2$$

or
$$I_{dsat} = \frac{\beta}{2m}(V_{gs} - V_t)^2$$
$$I_{dsat} \text{ is called the drain saturation current}$$

• Note that V_{dsat} and I_{dsat} are both functions of V_{gs}

Saturation

- What causes the current to "max-out" at V_{dsat} ?
- Charge in channel is: $Q_{inv}(x) = -C_{oxe}(V_{gs} m.V_{cs}(x) V_t)$
- At saturation, $V_{cs}(x)$ at the drain end of channel is $V_{cs}(L) = V_{dsat}$
- Substituting into the equation above: $Q_{inv}(L) = 0$ when $V_{ds} = V_{dsat}$

- i.e., the inversion charge density at the drain end of the channel has been reduced to zero!
- Disappearance of the inversion layer is called channel pinch-off

Voltage & Charge in Channel at Saturation

Saturation Region

- What happens when V_{ds} is increased beyond V_{dsat} ?
- Pinch-off region (i.e. the region where the channel charge density is zero) now extends a short finite distance from the drain toward the source
- Pinch-off region is a high-field region across which the voltage $V_{ds} V_{dsat}$ is dropped

Note that because the pinch-off region is very small, $V_{cs}(x)$ and $Q_{inv}(x)$ are almost identical to what they were when $V_{ds} = V_{dsat}$

But
$$I_{channel} = \mu_{ns} \cdot Q_{inv} \cdot \frac{dV_{cs}}{dx}$$

As a result:

$$I_{ds} = I_{dsat}$$
 for $V_{ds} \ge V_{dsat}$

Saturation Region

- MOSFET acts as a constant current source in saturation
- How can current flow through pinch-off region if there is no inversion charge?
- Pinch-off region is a depletion region
- Depletion region is not a barrier to current flow
 - Current can flow across depletion region if there is an electric field and there is a source of carriers (as in PN diode)
 - When electrons reach pinch-off region, they are swept across this region by the strong electric field

- Waterfall analogy
 - flow down waterfall is independent of height of waterfall
 24

Drain

MOSFET IV – Linear & Saturation Regions

- For small V_{ds} , I_{ds} increases linearly behaves as a resistor
- As V_{ds} increases, charge in channel decreases
 as a result: dI_{ds}/dV_{ds} decreases
- When V_{ds} reaches $V_{dsat} = (V_{gs} V_t)/m$, pinch-off occurs
 - $I_{ds} = I_{dsat}$ transistor behaves as constant current source

MOSFET IV – Long Channel Model

- Equations we have developed sometimes known as first-order model or Shockley model (esp. with m=1), or long-channel model
- Accurately describe behavior of long-channel MOSFETs

Transconductance

- In saturation region, MOSFET behaves as a voltage controlled constant current source
- Convenient to describe "gain" of the transistor in terms of its transconductance:

$$g_m = \frac{\partial I_{ds}}{\partial V_{gs}} = \frac{W}{m.L} \cdot C_{oxe} \cdot \mu_{ns} (V_{gs} - V_t)$$
$$g_m = \frac{\beta}{m} (V_{gs} - V_t)$$

Summary of NMOS Long Channel Model

Cut-Off	$V_{gs} < V_t$	$I_{ds} = 0$
Linear	$V_{gs} > V_t$ $V_{ds} < V_{dsat}$	$I_{ds} = \beta . \left(V_{gs} - V_t - \frac{m}{2} . V_{ds} \right) . V_{ds}$
Saturation	$V_{gs} > V_t$ $V_{ds} > V_{dsat}$	$I_{ds} = \frac{\beta}{2m} (V_{gs} - V_t)^2$ $g_m = \frac{\beta}{m} (V_{gs} - V_t)$

PMOS Long Channel Model

- All dopings and voltages are inverted for PMOS
 - Source is the more positive terminal

-
$$V_{gs}$$
, V_{ds} , V_{dsat} , V_t and I_{ds} are all ≤ 0

- Mobility determined by holes
 - μ_{ps} typically 2-3x lower than that of electrons μ_{ns}

$$B = \frac{W}{L} \cdot C_{oxe} \cdot \mu_{ps}$$

• PMOS transistors must be 2-3 times wider to provide the same drive current

Summary of PMOS Long Channel Model

• Note that in PMOS transistor:

 V_{gs} , V_{ds} , V_{dsat} , V_t and I_{ds} are all ≤ 0

Cut-Off	$V_{gs} > V_t$	$I_{ds} = 0$
Linear	$V_{gs} < V_t$ $V_{ds} > V_{dsat}$	$I_{ds} = -\beta . \left(V_{gs} - V_t - \frac{m}{2} . V_{ds} \right) . V_{ds}$
Saturation	V _{gs} < V _t V _{ds} < V _{dsat}	$I_{ds} = \frac{-\beta}{2m} (V_{gs} - V_t)^2$ $g_m = \frac{-\beta}{m} (V_{gs} - V_t)$ ₃₀

Example:

- An ideal NMOS transistor has the following parameters:
 - $W = 50 \mu m$, $L = 5 \mu m$
 - $T_{oxe} = 25 nm$
 - $W_{dmax} = 375nm$
 - $-V_t = 0.4 V$
 - $\mu_{ns} = 350 \ cm^2/V.s$
- Determine:
 - a) V_{dsat} , I_{dsat} and g_{msat} at $V_{gs} = 1, 2 and 3V$
 - b) Sketch I_{ds} vs. V_{ds} curves for $0 < V_{ds} < 3V$ and $V_{gs} = 1, 2$ and 3V

Non-Ideal I-V Effects

- We will now examine non-ideal effects that detract from the behavior described by long-channel model:
- Velocity Saturation
- Channel Length Modulation
- Body Effect (we already covered this)
 - variation of threshold voltage with source-body bias
 - $V_t = V_{t0} + \alpha V_{sb}$ where $\alpha = (m-1) \approx 3.C_{oxe}/W_{dmax}$
- Sub-threshold Current
- Drain Induced Barrier Lowering (DIBL)

Velocity Saturation

- In short channel length devices, electric field can be very high – leads to velocity saturation
 - particularly when device is in saturation and very high field exists in pinch-off region

5.0*E*4 1.0E51.5E52.0E5

MOS IV Model with Velocity Saturation

• Re-evaluating expressions for *I*_{ds} (linear) with saturation limited mobility gives:

$$I_{ds} = \frac{\beta \left(V_{gs} - V_t - \frac{m}{2} \cdot V_{ds} \right) \cdot V_{ds}}{1 + V_{ds} / \left(\vec{E}_{sat} \cdot L \right)} \quad \text{for } V_{ds} < V_{dsat}, \ v < v_{sat}$$

$$= \frac{\log - \text{channel } I_{ds}}{1 + V_{ds} / (\vec{E}_{sat} \cdot L)}$$
 usually valid in linear range

• At onset of pinch-off and velocity saturation:

$$I_{ds} = I_{ds}(L) = W.Q_{inv}(L).v(L)$$

$$= W. C_{oxe}. (V_{gs} - V_t - m. V_{dsat}). v_{sat}$$

Saturation Voltage with Velocity Saturation

• Equating these two expressions for I_{ds} at $V_{ds} = V_{dsat}$ gives:

$$\frac{1}{V_{dsat}} = \frac{m}{V_{gs} - V_t} + \frac{1}{\vec{E}_{sat} \cdot L}$$

- V_{dsat} is reduced by velocity saturation
- V_{dsat} is less than smaller of:
 - long-channel V_{dsat} and
 - that V_{ds} that would give an average electric field of \vec{E}_{sat} along the length of the channel
 - (same math as two resistors in parallel)

Saturation Current with Velocity Saturation

• Substituting eqn. for V_{dsat} into (linear) expression for I_{ds} :

$$I_{dsat} = \frac{W}{2m.L} \cdot C_{oxe} \cdot \mu_{ns} \cdot \frac{\left(V_{gs} - V_t\right)^2}{1 + \frac{V_{gs} - V_t}{m.\vec{E}_{sat} \cdot L}}$$
$$= \frac{\log-\text{channel } I_{dsat}}{1 + \frac{V_{gs} - V_t}{m.\vec{E}_{sat} \cdot L}} = \frac{\beta}{2} \left(V_{gs} - V_t\right) \cdot V_{dsat}$$

• Note that for long channel case or low V_{qs} ,

$$\vec{E}_{sat}.L \gg \left(V_{gs} - V_t\right)$$

- this reverts simply to long channel model

Short Channel MOSFETs

• For the <u>very</u> short channel case: $\vec{E}_{sat} \cdot L \ll (V_{gs} - V_t)$

$$V_{dsat} \approx \vec{E}_{sat} L$$

$$I_{dsat} \approx W.v_{sat}.C_{oxe}(V_{gs} - V_t - m.\vec{E}_{sat}.L)$$

- Note that I_{dsat} is no longer proportional to 1/L
- And $I_{dsat} \propto (V_{gs} V_t)$ rather than $(V_{gs} V_t)^2$
- In short-channel devices, pinch-off region becomes a velocity saturation region
- Velocity saturation is a serious limitation on the *I*_{on} of short channel MOSFETs
 37

Example: Velocity Saturation

At $V_{qs} = 1.8$ V, what is the V_{dsat} and I_{dsat} of an NFET with W = $1\mu m$, $T_{oxe} = 3 nm$, $\mu_{ns} = 200 cm^2/Vs$, $v_{sat} = 8 x 10^6 cm/s$, $V_t =$ 0.25 V, and $W_{dmax} = 45$ nm for: (a) L =10 μm (b) L = 1 um(c) $L = 0.1 \ \mu m$ (d) $L = 0.05 \mu m$?

Compare to Long-Channel Model

Using data from previous example:

L (µm)	Long-channel		with Velocity Saturation	
	V _{dsat} (V)	I _{dsat} (μΑ)	V _{dsat} (V)	I _{dsat} (μA)
10	1.29	23.1	1.27	22.8
1	1.29	231	1.11	200
0.1	1.29	2310	0.494	882
0.05	1.29	4620	0.305	1090

Compare Long & Short Channel MOSFETs

Channel Length Modulation

- Until now, we have assumed that length of pinch-off region does not significantly reduce length of channel
- In short channel length devices, as V_{ds} increases beyond V_{sat}, effective channel length decreases leading to an increase in I_{ds}

- I_{ds} increases with increasing V_{ds} even in saturation
- Can be modeled as:

$$I_{ds} = \frac{\beta}{2m} \left(V_{gs} - V_t \right)^2 \cdot \left(1 + \lambda \cdot V_{ds} \right) = I_{dsat} \left(1 + \lambda \cdot V_{ds} \right)$$

where λ is channel length modulation parameter
 units are V⁻¹

Output Conductance

• Like bipolar transistor, channel length modulation can also be modeled as an Early effect:

 $I_{ds} = V_{dsat}(1 + V_{ds}/V_A)$ where Early voltage $V_A = 1/\lambda$

• In saturation, small signal output conductance:

Example: MOS Amplifier

• An MOS transistor operates in the saturation region. A small signal input, v_{in} is applied.

$$i_{ds} = g_m \cdot v_{gs} + g_{ds} \cdot v_{ds}$$

$$= g_m \cdot v_{in} + g_{ds} \cdot v_{out}$$

$$i_{ds} = -v_{out}/R$$

$$v_{in} = \frac{v_{out}}{v_{in}} = \frac{-g_m}{g_{ds} + 1/R}$$

- A smaller g_{ds} is desirable for large voltage gain.
- Maximum available gain (or intrinsic voltage gain) is g_m/g_{ds}

 $V_{\rm dd}$

Combined Short Channel Effects

44

Sub-threshold Conduction

- Until now, we have assumed $I_{ds} = 0$ for $V_{gs} < V_t$
- But a small positive V_{gs} will increase band bending and lower surface potential at silicon-oxide interface

 $\phi_s \approx constant + V_g/\eta$ where $\eta = 1 + C_{dep}/C_{oxe}$ $I_{ds} \propto n_s \propto e^{q.\phi_s/kT}$

 $I_{ds} \propto e^{q.V_g/\eta kT}$ in sub-threshold

Sub-threshold Current

- In sub-threshold, current increases exponentially with V_{gs}
- Current relatively independent of V_{ds} for $V_{ds} > a$ few kT
- In short channel length devices, more sensitivity to V_{ds} as V_t is reduced at high V_{ds} through a process known as drain-induced barrier lowering of DIBL

Sub-threshold Current

• Practical and common definition of V_t is the value of V_{gs} at which $I_{ds} = 100nA \times (W/L)$, then:

$$I_{ds}(nA) \approx 100. \frac{W}{L} \cdot e^{q(V_{gs} - V_t)/\eta kT}$$
 for $V_{gs} < V_t$ and $V_{ds} \gg kT$

- Plotting $ln(I_{ds})$ vs. V_{gs} :
 - Sub-threshold slope

 $1/S = \eta kT/q$

• *S* is typically 100 *mV*/*decade* at room temperature

Drain Induced Barrier Lowering (DIBL)

• In a long channel device, surface potential is influenced by both gate potential and body potential

this is the back-gate bias effect – increases V_T

 In a short channel device, surface potential is also influenced by close proximity of drain

 V_T is now a function of V_{ds} . Becomes harder to turn device off at high V_{ds} .

Sub-surface Leakage Paths

• Can reduce effect of drain on surface channel by increasing relative effect of gate

- i.e. by increasing C_{ox} (reduce T_{ox} and/or increase ε_{ox})

But there's another problem - leakage paths deep within transistor body:

- Gate has much weaker control in this area
- Very difficult to turn device off

- Problem is regions in body that are as far from gate
 - allows drain to create a sub-threshold channel
- Need to completely re-think geometry of MOSFET

FinFET

 Maintain gate control by creating a narrow channel surrounded on all sides by the gate

- All portions of channel are very close to gate
 - gate maintains control of channel
 - good threshold control and sub-threshold slope
- Intel introduced FinFET into 22nm process (2012)