EE 471: Transport Phenomena in Solid State Devices

 Spring 2018
Lecture 9 CMOS Digital Circuits

Bryan Ackland
Department of Electrical and Computer Engineering Stevens Institute of Technology
Hoboken, NJ 07030

Adapted from Modern Semiconductor Devices for Integrated Circuits, Chenming Hu, 2010

CMOS Power Supply Voltages

- $\mathrm{V}_{\mathrm{SS}} \approx$ negative rail $\approx \mathrm{GND} \approx 0 \mathrm{~V}$
- In 1980's, positive rail $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$
- $V_{D D}$ has decreased in modern processes
- Smaller transistors require increased gate oxide capacitance $C_{o x}$ to provide necessary current drive
- achieved through use of thinner gate oxide $\sim 2 n m$
- High $V_{D D}$ would break down gate oxide (destructively)
- Lower V_{DD} also saves power

Process: $0.35 \mu \Rightarrow 0.25 \mu \Rightarrow 180 \mathrm{~nm} \Rightarrow 130 \mathrm{~nm} \Rightarrow 90 \mathrm{~nm} \Rightarrow 65 \mathrm{~nm}$
VDD: $3.3 \mathrm{~V} \Rightarrow 2.5 \mathrm{~V} \Rightarrow 1.8 \mathrm{~V} \Rightarrow 1.5 \mathrm{~V} \Rightarrow 1.2 \mathrm{~V} \Rightarrow 1.0 \mathrm{~V} \Rightarrow$??

- In CMOS digital circuits, conventionally define:
- GND 三 logical '0'
- $\mathrm{V}_{\mathrm{DD}} \equiv$ logical ' ${ }^{\prime}$ '

CMOS Logic Transistors

NFET or NMOS transistor

- P body normally connected to most negative voltage (0 V , gnd)

PFET or PMOS transistor

- N body normally connected to most positive voltage (V_{DD})
- Both are enhancement devices with $\left|V_{t}\right| \approx 20$ to 30% of $V_{D D}$

Transistors as Switches

- In simplest model, we can view MOS transistors as electrically controlled switches
- Voltage at gate controls path from source to drain

$$
g=0
$$

CMOS Inverter

CMOS Inverter

CMOS Inverter

CMOS 2-input NAND Gate

CMOS 2-input NAND Gate

A	B	Y
0	0	1
0	1	
1	0	
1	1	

CMOS 2-input NAND Gate

A	B	Y
0	0	1
0	1	1
1	0	
1	1	

CMOS 2-input NAND Gate

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	

CMOS 2-input NAND Gate

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

CMOS 2-input NOR Gate

A	B	Y
0	0	1
0	1	0
1	0	0
1	1	0

CMOS Gate Design

- Draw the transistor level schematic of a 3-input CMOS NAND gate:

Complementary CMOS Gates

- nMOS pull-down network
- pMOS pull-up network
- static combinational CMOS logic

Series \& Parallel Conduction Paths

(a)

- nMOS: 1 = ON
- pMOS: $0=O N$
- Series: both must be ON
- Parallel: either can be ON
- To ensure that gate is always driven to 0 or 1:
- Pull-up network must be topological complement of pull-down network
- parallel \Rightarrow series
- series \Rightarrow parallel

Compound Gates

- We can generate any inverting combinatorial function with a network of series and parallel nMOS transistors and a complementary network of pMOS transistors
- e.g., $Y=\overline{\mathrm{A} . \mathrm{B}+\mathrm{C} . \mathrm{D}}$ and-or-invert gate: AOI22

(a)

(c)

(e)

Example: O3AI

- $Y=\overline{(A+B+C) \cdot D}$

Signal Strength

- In a complementary gate, nMOS transistors are always used to pull down to GND and pMOS are always used to pull up to $V_{D D}$

- Once gate goes high, $\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{DD}}>\mathrm{V}_{\text {th }}$
- Transistor stays on as drain is pulled all way down to GND
- Could we use an nMOS transistor to pull-up to V_{DD} ?

Pulling up with an nMOS

- In this configuration, source voltage is changing
- As $\mathrm{V}_{\mathrm{g}}-\mathrm{V}_{\mathrm{s}}$ approaches V_{t}, transistor starts to turn off
- Weak conduction leads to degraded final value
- never reaches $V_{D D} . \quad V_{s}$ asymptotes towards $V_{D D}-V_{t}$
- Furthermore, body effect increases V_{t} when $V_{s b}>0$
- As a switch, we say nMOS drives (passes) a strong 0 but a degraded or weak 1
- Similarly pMOS drives a strong 1 but a degraded or weak 0

Degraded Time Constant

Pass Transistors

- So far, we have used nMOS to switch (drive) output to GND and pMOS to switch (drive) output to VDD in response to various input signals
- We can also used MOS transistors to switch the input signals themselves

Cascaded Pass Transistors

Transmission Gate

- Transmission gate is a pMOS and nMOS pass transistor in parallel
- Passes a strong 0 and a strong 1

- Common schematic symbols:

2:1 Multiplexer

Mux Design using Standard Logic Gates

- $\mathrm{Y}=\overline{\mathrm{S}} . \mathrm{DO}+\mathrm{S} . \mathrm{D} 1$

$\sqrt{\square}$ using complimentary inverting gates

- Requires 14 transistors

Mux Design using Transmission Gates

- Requires only 6 transistors
- Use with caution: non-restored logic
- Long chains of transmission gates lead to long delays and degraded levels

Storage Elements

- Basic static storage element is cross-coupled inverter

- Positive feedback drives circuit into one of two stable states
- Either: $(\mathrm{Y}=1, \mathrm{Z}=0)$ OR ($\mathrm{Y}=0, \mathrm{Z}=1$)
- Circuit will hold state indefinitely
- restoring effect of digital logic eliminates degradation of stored levels over time
- How do we change the state?

RS Latch

- Simple "writable" storage element

$\mathbf{R b}$	$\mathbf{S b}$	\mathbf{Q}
0	1	0
1	0	1
1	1	no change
0	0	illegal

- Normally, Sb and Rb are both 1
- When $\mathrm{Sb}=0, \mathrm{Q}$ is set to 1
- When $R b=0, Q$ is reset to 0

D Latch

- When CLK = 1 , latch is transparent
- D flows through to Q like a buffer
- When CLK $=0$, the latch is opaque
- Q holds its old value independent of D

\mathbf{D}	CLK	\mathbf{Q}
0	1	0
1	1	1
0	0	no change
1	0	no change

- a.k.a. transparent latch or level-sensitive latch

D Latch using Standard Logic Gates

\mathbf{D}	CLK	\mathbf{Q}	$\mathbf{Q b}$
0	1	0	1
1	1	1	0
0	0	no change	no change
1	0	no change	no change

- Uses 16 transistors
- Up to 4 gate delays (D to Q)

D Latch using Transmission Gate

- Multiplexer chooses D or stored Q
- Uses 8 (+2) transistors
- Fast response D to Q
- Q is non-restored

D Latch using Transmission Gate

- Multiplexer chooses D or stored Q
- Uses 8 (+2) transistors
- Fast response D to Q
- Q* is slower response, but fully restored

Alternative CMOS D Latch

- What is happening here?

D Flip-flop

clk	\mathbf{D}	\mathbf{Q}
0	X	no change
1	X	no change
\uparrow	1	1
\uparrow	0	0

- When CLK rises, D is copied to Q
- At all other times, Q holds its value
- a.k.a. edge-triggered flip-flop, master-slave flip-flop

Master-Slave Latches

- D Flip-flop is built from two D latches

D Flip-flop Operation

Another D-Flip-flop Implementation

DC Response: Inverter

- Digital circuits are merely analog circuits used over a constrained portion of their range
- Derive DC transfer function for static CMOS inverter
- When $\mathrm{V}_{\text {in }}=0 \Rightarrow \mathrm{~V}_{\text {out }}=\mathrm{V}_{\mathrm{DD}}$
- When $V_{\text {in }}=V_{D D} \Rightarrow V_{\text {out }}=0$
- In between, $\mathrm{V}_{\text {out }}$ depends on transistor size and current
- By KCL, must settle such that

$$
I_{\mathrm{dsn}}=\left|I_{\mathrm{dsp}}\right|
$$

- We could solve equations, but ...
- Graphical solution gives more insight

Transistor Operation

- Current $\left(I_{\text {dsn }}, I_{\text {dsp }}\right)$ depends on region of transistor behavior
- For what $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ are nMOS and pMOS in
- Cutoff?
- Linear?
- Saturation?

Inverter: nMOS Operation

Cutoff	Linear	Saturated
$\mathrm{V}_{\mathrm{gsn}}<\mathrm{V}_{\mathrm{tn}}$	$\mathrm{V}_{\mathrm{gsn}}>\mathrm{V}_{\mathrm{tn}}$	$\mathrm{V}_{\mathrm{gsn}}>\mathrm{V}_{\mathrm{tn}}$
$\mathrm{V}_{\text {in }}<\mathrm{V}_{\mathrm{tn}}$	$\mathrm{V}_{\text {in }}>\mathrm{V}_{\mathrm{tn}}$	$\mathrm{V}_{\text {in }}>\mathrm{V}_{\mathrm{tn}}$
	$\mathrm{V}_{\mathrm{dsn}}<\mathrm{V}_{\mathrm{gsn}}-\mathrm{V}_{\mathrm{tn}}$	$\mathrm{V}_{\mathrm{dsn}}>\mathrm{V}_{\mathrm{gsn}}-\mathrm{V}_{\mathrm{tn}}$
	$\mathrm{V}_{\text {out }}<\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{tn}}$	$\mathrm{V}_{\text {out }}>\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{tn}}$

$$
\begin{aligned}
V_{g s n} & =V_{i n} \\
V_{d s n} & =V_{o u t}
\end{aligned}
$$

Inverter: pMOS Operation

Cutoff	Linear	Saturated
$\mathrm{V}_{\mathrm{gsp}}>\mathrm{V}_{\mathrm{tp}}$	$\mathrm{V}_{\mathrm{gsp}}<\mathrm{V}_{\mathrm{tp}}$	$\mathrm{V}_{\mathrm{gsp}}<\mathrm{V}_{\mathrm{tp}}$
$\mathrm{V}_{\text {in }}>\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{tp}}$	$\mathrm{V}_{\mathrm{in}}<\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{tp}}$	$\mathrm{V}_{\mathrm{in}}<\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{tp}}$
	$\mathrm{V}_{\mathrm{dsp}}>\mathrm{V}_{\mathrm{gsp}}-\mathrm{V}_{\mathrm{tp}}$	$\mathrm{V}_{\mathrm{dsp}}<\mathrm{V}_{\mathrm{gsp}}-\mathrm{V}_{\mathrm{tp}}$
	$\mathrm{V}_{\text {out }}>\mathrm{V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{tp}}$	$\mathrm{V}_{\text {out }}<\mathrm{V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{tp}}$

$$
\begin{aligned}
& V_{\mathrm{gsp}}=V_{\text {in }}-V_{\mathrm{DD}} \\
& V_{\mathrm{dsp}}=V_{\text {out }}-V_{D D}
\end{aligned}
$$

(remember: $V_{d s p}$ and $V_{t p}<0$)

I-V Characteristics

- Mobility of holes is $2-3 x$ less than mobility of electrons
- Usually make pMOS 2 x wider than nMOS
- so that $\beta_{n} \approx \beta_{p}$

Replot I-V as function of $\mathrm{V}_{\text {out }} \& \mathrm{~V}_{\text {in }}$

Load Line Analysis

- $\mathrm{V}_{\mathrm{in}}=0$

$\underset{\substack{I_{\text {dss }} \\| \\ |{ }_{\text {dspp }}}}{\substack{ \\\hline}}$

Load Line Analysis

- $\mathrm{V}_{\mathrm{in}}=0.2 \mathrm{~V}_{\mathrm{DD}}$

Load Line Analysis

- $\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}_{\mathrm{DD}}$

Load Line Analysis

- $\mathrm{V}_{\mathrm{in}}=0.5 \mathrm{~V}_{\mathrm{DD}}$

\uparrow

Load Line Analysis

- $\mathrm{V}_{\mathrm{in}}=0.6 \mathrm{~V}_{\mathrm{DD}}$

\uparrow
$\mid d s n ?$
$||d s p|$

Load Line Analysis

- $\mathrm{V}_{\mathrm{in}}=0.8 \mathrm{~V}_{\mathrm{DD}}$

Load Line Analysis

- $V_{\text {in }}=V_{D D}$

Load Line Analysis

DC Transfer Curve

- Trans-scribe points onto $\mathrm{V}_{\text {in }} \mathrm{vs}$. $\mathrm{V}_{\text {out }}$ plot

Supply Current

- $I_{D D}=I_{d s n}=-I_{d s p}$

- Zero current when in normal logic range
- Transient current pulse drawn from $V_{D D}$ supply on each switching event

Operating Regions

- Re-visit operating regions

Region	nMOS	pMOS
A	Cutoff	Linear
B	Saturation	Linear
C	Saturation	Saturation
D	Linear	Saturation
E	Linear	Cutoff

Simulated 65nm DC Characteristic

Beta Ratio

- If $\beta_{\mathrm{p}} / \beta_{\mathrm{n}} \neq 1$, switching point will move from $\mathrm{V}_{\mathrm{DD}} / 2$
- Called skewed gate
- Other gates: collapse into equivalent inverter

Restoring Logic

- Reason that we can build digital circuits with millions of gates and always get same answer is:
- Most CMOS logic gates are "restoring"
- output logic level is better than input logic level

Noise Margins

- How much noise can a gate input see before it does not recognize the input?

Nominal Logic Levels

- To maximize noise margins, select worst case logic levels at
- unity gain point of DC transfer characteristic

Example: MOS IV Formula

Suppose we connect two identical nMOS devices in series between VDD and GND and connect the gates of each to VDD:

Assuming $\mathrm{V}_{\mathrm{DD}}>\mathrm{V}_{\mathrm{T}}$,
1.In which region is the upper transistor operating? Why?
2.In which region is the lower transistor operating? Why?
3.Derive an expression for the voltage V_{x} at the intermediate node (assume m=1).

