
1

Getting Started with Xilinx WebPack 13.1
B. Ackland

June 2011

(Adapted from S. Tewksbury notes WebPack 7.1)

This tutorial is designed to help you to become familiar with the operation of the WebPack software by entering a
simple VHDL design (a full adder), compiling the VHDL and simulating the design using the Xilinx ISim simulator.

1. Entering the Design
After you have downloaded and installed WebPack (separate instructions are provided for this) and activated the

license, you can proceed through the following simple digital system design.

The software we will be using is the Xilinx "ISE Project Navigator", in which you can enter the VHDL design, verify
its syntax, and simulate its outputs for a specified sequence of inputs. To start up, go to
startAll ProgramsXilinx ISE Design Suite 13.1ISE Design ToolsProject Navigator

The screen shown in Figure 1 appears.

Figure 1

At this point, you have not yet created any project so we start there. A "project" is a set of files, including VHDL
code files, that define the circuit components and overall circuit, along with auxiliary files related to simulations and other
parts of the design performed. You can either click New Project or go to File -> New Project. This launches the
New Project Wizard as shown in Figure 2. Enter a project name and location. I would suggest you create the project in
the "My Documents" folder, rather than the default (C:\ project_name) to avoid adding lots of new files into your main

2

directory. The project name for this tutorial is full_adder. Click Next - this will take you to the Design Properties pop-up
as shown in Figure 3.

Figure 2

Figure 3

In the Design Properties window, you can specify the Device Family and the Device. This is not critical for this
tutorial. I selected the CoolRunner2 family of CPLDs and the XC2C256 device. If you were using the project to generate

3

the configuration files for a particular CPLD or FPGA, then you would be entering the device family and device for the
specific device you would be using. This is needed when you reach the "synthesis" stage in the design and
implementation since the synthesis stage needs to know the internal design of the specific programmable device. We will
not be synthesizing the design in this tutorial. When you click OK, a Project Summary window will pop-up. Click
Finish.

We are now ready to begin entering our VHDL code. From the Project Navigator’s pull-down menus, select
Project -> New Source. This launches the New Source Wizard as shown in Figure 4. This window can be used
to add a variety of sources to your design. Select "VHDL Module" and add the name of your circuit. The box "Add to
project" should be checked. The location should appear as the directory you selected above. Click Next and the screen
shown in Figure 5 appears.

Figure 4

The screen in Figure 5 allows you to enter the "ENTITY" ports (inputs and outputs). For the full adder, we have
three inputs: a, b and cin (carry-in) and two outputs sum and cout. Enter these ports and select in or out as appropriate.
Click on Next and the wizard will supply a summary as shown in Figure 6. We have also named the architecture that we
will be creating – in this case we have called it gate_level.

4

Figure 5

Figure 6

Clicking on finish in Figure 6, the Project Navigator screen reappears and you will see that the wizard has already
generated some VHDL code, including the entity declaration and a skeleton architecture (along with some comments) as
shown in Figure 7. You will see that the wizard has also included the library and use commands to give you access to the
to the IEEE std_logic library. Note that the template has declared the ports to be all of type std_logic, which works well
for our tutorial example. If you wanted them to be a different type, then you can simply edit this part of the VHDL source
code.

5

Figure 7

For this example, we will be using the VHDL code shown below. (I have removed the comment information from
the window shown in Figure 7 above when generating this file listing). This is the full adder implementation shown in
Figure 4.3 of Yalamanchili.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity full_adder is
 Port (a : in STD_LOGIC;
 b : in STD_LOGIC;
 cin : in STD_LOGIC;
 sum : out STD_LOGIC;
 cout : out STD_LOGIC);
end full_adder;

architecture gate_level of full_adder is
signal s1,s2,s3:std_logic;
begin
 s1 <= (a xor b) after 5 ns;
 s2 <= (cin and s1) after 3 ns;
 s3 <= (a and b) after 3 ns;
 sum <= (s1 xor cin) after 5 ns;
 cout <= s2 or s3 after 3 ns;
end gate_level;

Enter this code into the full_adder.vhd window as shown in Figure 8.

6

Figure 8

Before proceeding, we should check to ensure that we have made no syntactical errors. Save your VHDL file using
File -> Save. Set the View:Simulation radio button at the top of the Design panel (see Figure 9). Select the full_adder-
gate_level file in the Hierarchy window. Then double-click on Behavioral Check Syntax in the Processes window. This
will find any syntax errors. If your design is syntax error-free, you will be notified that your files parsed correctly in the
console sub-window as shown in Figure 9. If not, there will be a series of error messages in this window.

To illustrate what happens when an error occurs, change the VHDL code to create an error. Looking at the VHDL
program window in Figure 8, change the reference to signal a in line 43 to be aa as shown in Figure 10. Save the file and
then run Behavioral Check Syntax. The compiler will now generate error statements in the console window as shown in
Figure 10 (you may have to scroll the console window to see these). If you click on one of these errors (click on the pink
filename), a yellow pointer will appear next to line 43 showing you where the error occurred. Correct the error, save the
file and run Behavioral Check Syntax to make sure your code is, once again, correct.

7

Figure 9

Figure 10

8

2. Simulating the circuit
Now that we have a design that has been checked, we can proceed to a simulation of the circuit designed. In order to

simulate out circuit, we first need a set of signals to drive our inputs a, b and cin. We do this by constructing a separate
VHDL source file called a testbench. This VHDL code defines the signals and then applies them to the entity under test.

Select from the Project Navigator window Project -> New Source. The same New Source Wizard (Figure 11) appears
that was used earlier to enter our full_adder source. This time, instead of selecting VHDL Module, select VHDL Test
Bench. Name the file full_adder_tb (to distinguish it from the actual full_adder file) and click Next. A new window will
pop-up asking you which file describes the circuit you want to test. There is only one choice – full_adder. Select this file
and then click Next. The New Source Wizard now shows a summary page. Click Finish.

Figure 11

Clicking on Finish, the Project Navigator screen reappears and you will see that the wizard has already generated
some more VHDL code, for a new entity called full_adder_tb as shown in Figure 12. There may be some compiler errors
that appear in the console window. Ignore them because we are going to edit this testbench file. It is not necessary for you
to understand the semantics of this testbench entity at this stage. Simply make the following changes.

1. Remove the “constant <clock>_period” line.
2. Remove all the code from “--Clock process definitions” to the end of the file and replace with:

 a_waveform: process is
 begin
 a<='0', '1' after 20ns;
 wait for 40ns;
 end process;

 b_waveform: process is
 begin
 b<='0', '1' after 40ns;
 wait for 80ns;
 end process;

 cin_waveform: process is
 begin
 cin<='0', '1' after 80ns;
 wait for 160ns;
 end process;

END;

9

Figure 12.

Figure 13.

10

The code window of the testbench should now appear as shown in Figure 13 (this window is scrolled to show the end
of the file). Save the file. Select full_adder_tb in the Hierarchy window and then double click on Behavioral Check Syntax
to check for errors. Correct any errors and then save and check again. Once the code is free of errors, right-click on
Simulate Behavioral Model and select Process Properties. This will generate the Isim Properties pop-up window as
shown in Figure 14. Set the Simulation Run Time to 200 ns and click OK.

Figure 14

We are now ready to run the simulation. Double-click on Simulate Behavioral Model. This brings up the ISim
simulation window as shown in Figure 15. Waveforms are plotted in the top right-hand window. Note that the simulator
very conveniently plots the last 3ps of the simulation! In order to see the whole simulation, click the Zoom to Full View
icon in the tool-bar immediately above the simulation window. The waveforms will now appear as shown in Figure 16.
Check for correct functionality of the full adder. Note the timing delays as outputs respond to inputs according to the
delays we specified in the VHDL code.

Experiment with some of the icons on the toolbars of the simulator to see their effect. Then answer the following:

1. Note that the simulation does not show the internal signals s1, s2 and s3. How can you add these signals to the
waveform window (hint: start by right-clicking on full_adder_tb in the Instance and Process Name window).
Once you have added these signals to the waveform window, you can re-run the simulation by clicking Restart
and then Run for the Time Specified on the Toolbar icons on the toolbar immediately above the waveform
window.

2. Change the timing in the source VHDL so that all gates have a delay of 2ns, and then re-run the simulation. You
can do this in one of two ways. Either:

a. Exit the simulator (not WebPack – just the simulator – and you do not need to save the Default.wcfg file).

Go back and change the source in the original WebPack VHDL file by double-clicking full_adder in the
Hierarchy window, making the source code changes, reselecting the test-bench full_adder_tb and then
double-clicking on Simulate Behavioral Model. OR

b. You can edit the VHDL right in the simulator. Go to the pull-down menus in the simulator and select

View->Panels->Source Files. A list of the source files will appear in the left hand window of the
simulator. Double click on full_adder.vhd. The source code will appear in the right hand window. Modify
the source and then click on the Re-launch icon above the right-hand window. Save the source file when
asked. This will save and compile the modified source and re-run the simulation. Click on the

11

Default.wcfg tab below the right hand window to see the new simulation results. Note that this method
does not change the original source back in the WebPack project. So, if you really want to change your
design you should use method (a). But this technique (b) can be useful for quick experimentation without
having to create a new simulation window each time the code is modified.

3. Reverse the order of the 5 assignment statements in the architecture of the full adder as below:

cout <= s2 or s3 after 3 ns;
sum <= (s1 xor cin) after 5 ns;
s3 <= (a and b) after 3 ns;
s2 <= (cin and s1) after 3 ns;
s1 <= (a xor b) after 5 ns;

 In what way, if any, does this change the simulation result? Why?

Figure 15

12

Figure 16

	1. Entering the Design
	2. Simulating the circuit

