
CpE 487 Digital Design Lab

Lab 2: Four Digit Hex Counter

1. Implementing the Counter
In Lab1, we built a single-digit (4-bit) hex counter that displayed its value on one of the 7-
segment displays. In this lab, we will extend our design to create a four digit (16-bit) counter that
will display its value using all four 7-segment displays on the Nexys2 board.

1.1 Time Multiplexing the Displays

The first issue we have to deal with is how to display 4 different digits on the 7-segment displays
if they all share the same cathode lines (CA~CG). We do this my time multiplexing the displays;
that is, we only drive one display at a time. Suppose we turn on display0 for a few milliseconds
by enabling its common anode AN0 and decoding count (0~3) to drive the cathode lines. Then
we switch to display1 for a few milliseconds by turning off AN0, turning on AN1 and decoding
count(4~7) to drive the cathode lines. We then shift to display2 for a few milliseconds and then
finally display3 for a few milliseconds, after which we go back and start again at display0. Each
digit is this illuminated only one quarter of the time, but if we do this multiplexing fast enough
(at least 60 complete cycles per second), it will appear to our eye as if all four displays are
continuously illuminated – each with their own 4-bits of information. Timing waveforms for this
technique are shown in Figure 1.

Figure 1 Four Digit 7-segment Display Timing Diagram

1.2 VHDL Design

a) Open your Lab1 project hexcounter in the ISE WebPack software. Use FileCopy
Project to make a copy of your project named hex4digit. Note that even ‘though we have
created a new project, the ISE software still has the old project hexcounter open. So,
close the old project hexcounter and open the new project hex4counter.

b) Expand the hexcount hierarchy in the Hierarchy window and open up the source code to
the counter module. Modify the counter module to generate a 16-bit count value using
bits 23~38 of the binary counter as shown in Figure 2. We also create a second output

2

mpx. This will be used to multiplex the four 7-segment displays. We drive mpx using
binary counter bits 17-18. These will generate a 0-3 count sequence counting at a
frequency of 50 MHz ÷ 217 ≈ 381 Hz. The sequence will repeat at a frequency of
approx. 381 ÷ 4 = 95 𝐻𝑧 which is fast enough to eliminate any visual flicker in the 7-
segment displays.

c) Double-click Check Syntax in the Process window to make sure the counter module is
free of syntax errors.

Figure 2 Modified counter module

d) Now open the source code for the top level module hexcount. Modify the hexcount
module to implement the structure shown in Figure 3. The mpx output from the new
counter module now drives the dig input of the leddec module. The 2-bit mpx signal is
also used to select which 4-bits of the 16-bit count output should be sent to the data input
of the leddec module. You will need to add some code to the hexcount module to perform
this data multiplexing operation.

Figure 3 Modified hexcount module

3

1.3 Synthesize, Download & Run

Run the Synthesis process on the module hexcount to check for any VHDL design errors. Then
run Impement Design and Generate Programming File. Once you have created the
hexcount.bit configuration file, you can load it into the FPGA with the Adept software.
Remember to browse to the correct project so that you download the new hexcount.bit – not the
old one from Lab1.

2. Storing Configuration Code in the Platform Flash
When we download the FPGA configuration (.bit) file directly into the FPGA, the configuration
data is stored in SRAM on the FPGA device. This SRAM is erased whenever power is removed
or the FPGA board is reset. Once you have completed a design, you may wish to store your
configuration data in the Platform FLASH ROM so that your design will be loaded and executed
directly on power-up. To do this, we need to create a .mcs file to program the Platform FLASH.

Highlight the hexcount module in the Hierarchy window. Expand the Configure Target Device
command in the Process window and double click on Manage Configuration Project. An ISE
iMPACT window will pop up as in Figure 4.

Figure 4 ISE Impact Window

Double click on Create PROM File in the iMPACT Flows window. This brings up the PROM
File Formatter window.

Step 1: Select Xilinx Flash/PROM in the Storage Device Type and click the green arrow.

Step2: Select Platform Flash as the PROM Family and xcf04s as the Device. Click Add
Storage Device and then click the green arrow.

4

Step 3: Enter hexcount as the Output File Name. Use the browser button to set the Output File
Location to the current project (hex4counter) folder. The formatter window should now appear
as in Figure 5.

Figure 5 ISE Completed PROM File Formatter Window

Click OK at the bottom of the window. Click OK on the Add Device pop-up window and an Add
Device browsing window appears. It should be pointing to your current project folder. Double
click hexcount.bit. Another pop-up asks you if you want to add another device file. Select No
and then click OK. The ISE impact Window should now appear as in Figure 6.

Figure 6 ISE Completed ISE impact Window

5

Double-click Generate File in the iMPACT Processes Window. This generates the hexcount.mcs
file and gives you a blue “Generate Succeeded” pop-up when complete.

You can now use the Adept software to program the Platform Flash. Select the Config tab and
use the Browse button on the PROM line to select the file hexcount.mcs. Click the Program
button. It may take about one minute to complete the programming process. Once the
programming is complete, push the reset button on the Nexys2 board. This will download your
FPGA configuration from the Platform FLASH and begin executing four digit counter. Try
turning the power off to your Nexys2 board. Turn it on again and your program should once
again load and start running.

