
CpE 487 Digital Design Lab

Lab 4: Hex Calculator

1. Introduction
In this lab, we will program the FPGA on the Nexys2 board to function as a simple hexadecimal
calculator capable of adding and subtracting four-digit hexadecimal numbers. We will use a 16-
buttom keypad to input hex numbers and the push-buttons on the Nexys2 board to act as
operation buttons (+, –, = and clear). The results will be displayed on the four 7-segment
displays on the Nexys2 board. The reason we build a hex calculator (rather than a decimal one) is
that it makes the 7-segment display operation much simpler. Converting the output to decimal
format would require a large amount of additional VHDL code.

2. Keypad Interface
We will be using a 16-button keypad module PmodKYPD which plugs into one of the PMOD
connectors on the Nexys2 board. The module and its connections are shown in Figure 1. The 16-
buttons are labeled “0 1 2 3 4 5 6 7 8 9 A B C D E F”, so we can use this keyboard to enter
numbers in hexadecimal format. Documentation on the module can be found on the course
website.

The keyboard is set up as a matrix in which each row of buttons from left to right are tied to a
row pin, and each column from top to bottom is tied to a column pin. There are four row pins and
four column pins. When a button is pushed, it connects its row pin to its column pin.

Each row is normally held high (‘1’) by a pull-up resistor connected to VCC. To test the buttons
in a particular column, that column should be driven low (‘0’), while all other columns are held
high. If a button in that row is depressed while its column pin is low, it will pull the
corresponding row pin low. The FPGA can therefore read the state of the buttons by driving the
column lines and reading the row lines. The FPGA “walks” a logic ‘0’ through each column line

Figure 1 PmodKYPD 16-button Keypad

2

(in turn, while keeping the other column lines high) and reads the row pins to determine if any
buttons have been pushed.

3. Hardware Setup
Plug the PmodKYPD module into PMOD jack JA1 on the Nexys2 boards as shown in Figure 2.
Note that the PmodKYPD uses all 12 pins of jack JA1 and must be connected with a 12 pin
cable. Note the white alignment marks on the connectors as shown in Figure 2. The alignment
mark should be on the top-right for the connector attaching to the Nexys2 board and the top-left
for the connector attaching to the PmodKYPD module. Please be careful not to bend the pins on
the PmodKYPD module.

Figure 2 PmodKYPD Module connected to PMOD jack JA1

4. Configuring the FPGA

4.1 Create a New Project

Use the Xilinx ISE software to create a new project named Hexcalc using the same project
settings as in Labs 1 and 2.

3

4.2 Add Source for “keypad”

Create a new VHDL source module called keypad and load the following source code into the
edit window. Expand the Synthesize command in the Process window and run Check Syntax
to verify that you have entered the code correctly.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity keypad is
 Port (samp_ck : in STD_LOGIC; -- clock to strobe columns
 col : out STD_LOGIC_VECTOR (4 downto 1); -- output column lines
 row : in STD_LOGIC_VECTOR (4 downto 1); -- input row lines
 value : out STD_LOGIC_VECTOR (3 downto 0); -- hex value of key depressed
 hit : out STD_LOGIC); -- indicates when a key has been pressed
end keypad;

architecture Behavioral of keypad is
signal CV1, CV2, CV3, CV4: std_logic_vector (4 downto 1) := "1111"; -- column vector of each row
signal curr_col: std_logic_vector (4 downto 1) := "1110"; -- current column code
begin

-- This process synchronously tests the state of the keypad buttons. On each edge of samp_ck,
-- this module outputs a column code to the keypad in which one column line is held low while the
-- other three column lines are held high. The row outputs of that column are then read
-- into the corresponding column vector. The current column is then updated ready for the next
-- clock edge. Remember that curr_col is not updated until the process suspends.

strobe_proc: process
 begin
 wait until rising_edge(samp_ck);
 case curr_col is
 when "1110" =>
 CV1 <= row; curr_col <= "1101";
 when "1101" =>
 CV2 <= row; curr_col <= "1011";
 when "1011" =>
 CV3 <= row; curr_col <= "0111";
 when "0111" =>
 CV4 <= row; curr_col <= "1110";
 when others =>
 curr_col <= "1110";
 end case;
 end process;

-- This process runs whenever any of the column vectors change. Each vector is tested to see
-- if there are any '0's in the vector. This would indicate that a button had been pushed in
-- that column. If so, the value of the button is output and the hit signal is assereted. If
-- not button is pushed, the hit signal is cleared

4

out_proc: process (CV1, CV2, CV3, CV4)
 begin
 hit <= '1';
 if CV1(1) = '0' then value <= X"1";
 elsif CV1(2) = '0' then value <= X"4";
 elsif CV1(3) = '0' then value <= X"7";
 elsif CV1(4) = '0' then value <= X"0";
 elsif CV2(1) = '0' then value <= X"2";
 elsif CV2(2) = '0' then value <= X"5";
 elsif CV2(3) = '0' then value <= X"8";
 elsif CV2(4) = '0' then value <= X"F";
 elsif CV3(1) = '0' then value <= X"3";
 elsif CV3(2) = '0' then value <= X"6";
 elsif CV3(3) = '0' then value <= X"9";
 elsif CV3(4) = '0' then value <= X"E";
 elsif CV4(1) = '0' then value <= X"A";
 elsif CV4(2) = '0' then value <= X"B";
 elsif CV4(3) = '0' then value <= X"C";
 elsif CV4(4) = '0' then value <= X"D";
 else hit <= '0'; value <= X"0";
 end if;
 end process;

 col <= curr_col;

end Behavioral;

This module synchronously tests the state of the keypad buttons. On each rising edge of the
clock samp_ck (approx. every 1.5 ms) the module outputs a code to the 4 column lines of the
switch matrix, a code which will enable exactly one column. The first time it outputs 1110,
setting column 1 low and all others high. On the second edge, it outputs 1101, setting column 2
low and all others high, continuing to columns 3 and 4 and then returning to column 1 to repeat
the process. Each time it enables one of the columns, it reads the row lines into a column vector
to determine if any button in that column has been pushed. A separate process runs whenever
any of the column vectors change. When that happens, the process searches for a ‘0’ in any of
the column vectors. If it finds a ‘0’, it outputs the appropriate hex value and asserts the hit signal.
If there are no ‘0’s in the column vectors (meaning no buttons are currently being pushed), it
clears the hit signal. The code assumes that only one button is pushed at a time.

4.2 Add Source for “leddec16”

Create a new VHDL source module called leddec16 and load the following source code into the
edit window. Expand the Synthesize command in the Process window and run Check Syntax
to verify that you have entered the code correctly.

5

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity leddec16 is
 Port (dig : in STD_LOGIC_VECTOR (1 downto 0); -- which digit to currently display
 data : in STD_LOGIC_VECTOR (15 downto 0); -- 16-bit (4-digit) data
 anode: out STD_LOGIC_VECTOR (3 downto 0); -- which anode to turn on
 seg : out STD_LOGIC_VECTOR (6 downto 0)); -- segment code for current digit
end leddec16;

architecture Behavioral of leddec16 is
signal data4: STD_LOGIC_VECTOR (3 downto 0); -- binary value of current digit
begin

-- Select digit data to be displayed in this mpx period

 data4 <= data(3 downto 0) when dig="00" else --digit 0
 data(7 downto 4) when dig="01" else --digit 1
 data(11 downto 8) when dig="10" else --digit 2
 data(15 downto 12); --digit 3

-- Turn on segments corresponding to 4-bit data word
 seg <= "0000001" when data4="0000" else --0
 "1001111" when data4="0001" else --1
 "0010010" when data4="0010" else --2
 "0000110" when data4="0011" else --3
 "1001100" when data4="0100" else --4
 "0100100" when data4="0101" else --5
 "0100000" when data4="0110" else --6
 "0001111" when data4="0111" else --7
 "0000000" when data4="1000" else --8
 "0000100" when data4="1001" else --9
 "0001000" when data4="1010" else --A
 "1100000" when data4="1011" else --B
 "0110001" when data4="1100" else --C
 "1000010" when data4="1101" else --D
 "0110000" when data4="1110" else --E
 "0111000" when data4="1111" else --F
 "1111111";

-- Turn on anode of 7-segment display addressed by 2-bit digit selector dig
 anode <= "1110" when dig="00" else -- digit 0
 "1101" when dig="01" else -- digit 1
 "1011" when dig="10" else -- digit 2
 "0111" when dig="11" else -- digit 3
 "1111";
end Behavioral;
__

6

This module is similar to the code developed in Lab 2 to display a 16-bit hex counter. The four
7-segment displays are time multiplexed using an input signal dig which counts from 0 to 3 at a
rate of approx. 380 Hz. The four digits are thus refreshed approx. 95 times per second. The
segment code determines which anode to take low (‘0’). It also determines which 4-bits of the
16-bit data to display. These four bits are translated into a 7-segment code and output to the
common display segment lines.

4.3 Add Source for top level “hexcalc”

Create a new VHDL source module called hexcalc and load the following source code into the
edit window. Expand the Synthesize command in the Process window and run Check Syntax
to verify that you have entered the code correctly.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity hexcalc is
Port (clk_50MHz : in STD_LOGIC; -- system clock (50 MHz)
 SEG7_anode : out STD_LOGIC_VECTOR (3 downto 0); -- anodes of four 7-seg displays
 SEG7_seg : out STD_LOGIC_VECTOR (6 downto 0); -- common segments of 7-seg displays
 bt_clr: in STD_LOGIC; -- calculator "clear" button
 bt_plus: in STD_LOGIC; -- calculator "+" button
 bt_eq: in STD_LOGIC; -- calculator "-" button
 KB_col: out STD_LOGIC_VECTOR (4 downto 1); -- keypad column pins
 KB_row: in STD_LOGIC_VECTOR (4 downto 1)); -- keypad row pins
end hexcalc;

architecture Behavioral of hexcalc is
component keypad is
 Port (samp_ck : in STD_LOGIC;
 col : out STD_LOGIC_VECTOR (4 downto 1);
 row : in STD_LOGIC_VECTOR (4 downto 1);
 value : out STD_LOGIC_VECTOR (3 downto 0);
 hit : out STD_LOGIC);
end component;
component leddec16 is
 Port (dig : in STD_LOGIC_VECTOR (1 downto 0);
 data : in STD_LOGIC_VECTOR (15 downto 0);
 anode: out STD_LOGIC_VECTOR (3 downto 0);
 seg : out STD_LOGIC_VECTOR (6 downto 0));
end component;

signal cnt: std_logic_vector(20 downto 0); -- counter to generate timing signals
signal kp_clk, kp_hit, sm_clk: std_logic;
signal kp_value: std_logic_vector (3 downto 0);
signal nx_acc, acc: std_logic_vector (15 downto 0); -- accumulated sum

7

signal nx_operand, operand: std_logic_vector (15 downto 0); -- operand
signal display: std_logic_vector (15 downto 0); -- value to be displayed
signal led_mpx: STD_LOGIC_VECTOR (1 downto 0); -- 7-seg multiplexing clock

type state is (ENTER_ACC, ACC_RELEASE, START_OP, OP_RELEASE,
 ENTER_OP, SHOW_RESULT); -- state machine states
signal pr_state, nx_state: state; -- present and next states

begin

ck_proc: process(clk_50MHz)
 begin
 if rising_edge(clk_50MHz) then -- on rising edge of clock
 cnt <= cnt+1; -- increment counter
 end if;
 end process;
 kp_clk <= cnt(15); -- keypad interrogation clock
 sm_clk <= cnt(20); -- state machine clock
 led_mpx <= cnt(18 downto 17); -- 7-seg multiplexing clock

kp1: keypad port map (samp_ck => kp_clk, col => KB_col,
 row => KB_row, value => kp_value, hit => kp_hit);

led1: leddec16 port map (dig => led_mpx, data => display,
 anode => SEG7_anode, seg => SEG7_seg);

sm_ck_pr: process (bt_clr, sm_clk) -- state machine clock process
 begin
 if bt_clr = '1' then -- reset to known state
 acc <= X"0000";
 operand <= X"0000";
 pr_state <= ENTER_ACC;
 elsif rising_edge (sm_clk) then -- on rising clock edge
 pr_state <= nx_state; -- update present state
 acc <= nx_acc; -- update accumulator
 operand <= nx_operand; -- update operand
 end if;
 end process;

-- state maching combinatorial process
-- determines output of state machine and next state
sm_comb_pr: process (kp_hit, kp_value, bt_plus, bt_eq, acc, operand, pr_state)
 begin
 nx_acc <= acc; -- default values of nx_acc, nx_operand & display
 nx_operand <= operand;
 display <= acc;
 case pr_state is -- depending on present state...
 when ENTER_ACC => -- waiting for next digit in 1st operand entry
 if kp_hit = '1' then
 nx_acc <= acc(11 downto 0) & kp_value;

8

 nx_state <= ACC_RELEASE;
 elsif bt_plus = '1' then
 nx_state <= START_OP;
 else nx_state <= ENTER_ACC;
 end if;
 when ACC_RELEASE => -- waiting for button to be released
 if kp_hit = '0' then
 nx_state <= ENTER_ACC;
 else nx_state <= ACC_RELEASE;
 end if;
 when START_OP => -- ready to start entering 2nd operand
 if kp_hit = '1' then
 nx_operand <= X"000" & kp_value;
 nx_state <= OP_RELEASE;
 display <= operand;
 else nx_state <= START_OP;
 end if;
 when OP_RELEASE => -- waiting for button ot be released
 display <= operand;
 if kp_hit = '0' then
 nx_state <= ENTER_OP;
 else nx_state <= OP_RELEASE;
 end if;
 when ENTER_OP => -- waiting for next digit in 2nd operand
 display <= operand;
 if bt_eq = '1' then
 nx_acc <= acc + operand;
 nx_state <=SHOW_RESULT;
 elsif kp_hit = '1' then
 nx_operand <= operand(11 downto 0) & kp_value;
 nx_state <= OP_RELEASE;
 else nx_state <= ENTER_OP;
 end if;
 when SHOW_RESULT => -- display result of addition
 if kp_hit = '1' then
 nx_acc <= X"000" & kp_value;
 nx_state <= ACC_RELEASE;
 else nx_state <= SHOW_RESULT;
 end if;
 end case;
 end process;

end Behavioral;

This is the top level that hooks it all together. This module:

a) Creates an instance of the keypad interface and 7-segment decoder interface modules
b) Make connection to the external keypad, display and buttons
c) Has a timing process to generate clocks for the keypad, display multiplexer and state

machine

9

d) Implements a finite state machine to implement the operations of the calculator in
response to button pushes.

The finite state machine uses a number of variables to keep track of the addition operation. The
variable acc is an accumulator that holds the current summation result. The variable operand
holds the value of the next operand that will be added to the accumulator. The variable display
holds the value currently being displayed on the 7-segment displays. The variable pr_state is the
current state of the state machine. Depending on the current state, the machine will react to
pushed keypad buttons or operation buttons to update variables, change the output and select the
next state. Operation of the state machine is summarized in Figure 3.

When the clear button is pushed, the machine enters the ENTER_ACC state. In this state the
machine waits for a keypad button to be pushed. When a keypad button is pushed, the code adds
the new digit to the 16-bit word in the accumulator and then waits in the ACC_RELEASE state
for the button to be released. It then returns to the ENTER_ACC state to wait for the next digit.
This process continues until the “+” button is pushed. The machine then enters the START_OP
state where it waits for the first digit of the second operand. Once a keypad button has been
pushed, it records the hex digit and then enters the OP_RELEASE state waiting for the keypad

Figure 3 Calculator State Transition Diagram

10

button to be released. Once released, the machine enters the ENTER_OP state where it continues
to received operand digits each time a keypad button is pushed. This continues until the user
presses the “=’ button at which point it performs the addition and goes to the SHOW_RESULT
state. Once in the SHOW_RESULT state, it shows the result of the addition and waits for a
keypad button push to start a new calculation.

4.4 Synthesis and Implementation

Highlight the hexcalc module in the Hierarchy window and execute the Synthesis command in
the Process window.

Add an Implementation Constraint source file hexcalc.ucf and enter the following data into the
edit window:
__

NET "clk_50MHz" LOC = B8;

NET "KB_col(1)" LOC = M15;
NET "KB_col(2)" LOC = L17;
NET "KB_col(3)" LOC = K12;
NET "KB_col(4)" LOC = L15;

NET "KB_row(1)" LOC = M16;
NET "KB_row(2)" LOC = M14;
NET "KB_row(3)" LOC = L16;
NET "KB_row(4)" LOC = K13;

NET "bt_clr" LOC = H13; # BTN3
NET "bt_plus" LOC = B18; # BTN0
NET "bt_eq" LOC = D18; # BTN1

NET "SEG7_seg[0]" LOC = H14;
NET "SEG7_seg[1]" LOC = J17;
NET "SEG7_seg[2]" LOC = G14;
NET "SEG7_seg[3]" LOC = D16;
NET "SEG7_seg[4]" LOC = D17;
NET "SEG7_seg[5]" LOC = F18;
NET "SEG7_seg[6]" LOC = L18;

NET "SEG7_anode[0]" LOC = F17;
NET "SEG7_anode[1]" LOC = H17;
NET "SEG7_anode[2]" LOC = C18;
NET "SEG7_anode[3]" LOC = F15;
__
The configuration file sets up push-button BTN0 as the “+” key, BTN1 as the “=” key and BTN3
as the “clear” key.

11

Now highlight the hexcalc module in the Hierarchy window and run Implement Design
followed by Generate Programming File (don’t forget to change the FPGA Start-up Clock to
be the JTAG Clock).

4.5 Download and Run

Use the Adept software to download your configuration file hexcalc.bit. Once loaded, you should
see “0000” appear on the seven segment displays. Enter a multi-digit hex number using the
keypad. It should appear, once character at a time on the 7-segments displays. Once you have
entered the first operand, press the “+” key (BTN0). Now enter the second operand and press the
“=” key (BTN1). The value of the sum of the operands should now appear on the display. You
can now start a second calculation by once again entering the first operand using the keypad. The
“clear” key (BTN3) should always set the result on the display to zero.

4.6 Now let’s make some changes …

Modify your VHDL code to do the following:

(a) Modify the leddec16 module to that it performs leading zero suppression (i.e. it does not
display zeros ahead of the first non-zero digit). For example, the number “0023” should
appear as “23” with the leading zeros suppressed. Hint: You can turn off any digit in the
display by never taking its anode to ‘0’. Modify the “anode <=” conditional assignment
statement in leddec16 so that it only turns on a particular digit if it is non-zero or if there
is non-zero information in the higher order digits of the data word.

(b) Expand the calculator to also do subtraction operations. Use the button BTN2 (pin E18
on the Nexys2 board) as the “–” key. Hint: Modify the ENTER_ACC state to also test for
the “–” key being depressed. Create a new signal which will record whether the “+” key
or the “–” key was pushed. Then, when in state ENTER_OP and the “=” key is pressed,
test your new signal to determine whether you should do an addition or a subtraction.

