CPE 487: Digital System Design

 Spring 2018
Lecture 1
 Introduction to Digital Design

Bryan Ackland
Department of Electrical and Computer Engineering
Stevens Institute of Technology
Hoboken, NJ 07030

Analog \& Digital Amplification

MIXED SIGNAL: Analog and digital in same circuit (chip)

Why Analog?

- Analog circuits:
- Complex functions with few transistors
- Needed to interface to outside world
- Low power
- Circuit complexity limited by noise \& component variation (process, temperature, voltage etc.)
- Analog design requires significant skill and experience
- Limited design automation and little re-use of circuits
- Advanced (nanometer) processes provide reduced signal to noise ratio (because of reduced voltages)
- Difficult to test

Why Digital ?

- Digital circuits:
- Thousands of transistors to do simplest real-world function
- Higher power dissipation
- Highly immune to noise \& component (process) variation
- Same result every time
- Highly reliable circuits with hundreds of millions of transistors
- Significant re-use (libraries) and design automation (synthesis, formal verification)
- Digital designers don't need deep circuit knowledge
- Nanometer processes provide higher speed, greater density and lower power
- Much simpler to test

First Digital Computer: Babbage Difference Engine

(1832)

-Executed basic operations (add, sub, mult, div) in arbitrary sequences
-Operated in two-cycle sequence, "Store", and "Mill" (execute)
-Included features like pipelining to make it faster.
-Complexity: 25,000 parts.
-Cost: £17,470 (in 1834!)

ENIAC - The first electronic computer (1946)

- 100 kHz clock
- 20 words memory (100 bytes)
- 5000 operations/sec

10 feet tall, 30 tons
1,000 square feet of floor- space
More than 70,000 resistors
10,000 capacitors
6,000 switches
18,000 vacuum tubes
Requires 150 kilowatts of power;

Transistor Age

The Integrated Circuit

Jack Kilby, working at Texas Instruments, invented a monolithic "integrated circuit" in July 1959.

He constructed the flip-flop shown in the patent drawing above.

Planar transistors

In mid 1959, Noyce develops the first true IC using planar transistors,

This enabled designers to place and connect multiple transistors on silicon die using sophisticated "printing process"

First Digital ICs - early 60's

1961: TI and Fairchild introduced first logic IC's

\square
1963: Densities and yields improve. This circuit has four flip-flops.

Continuing Development - late 60's

1967: Fairchild markets the first semi-custom chip.
Transistors (organized in columns) can be easily rewired to create different circuits. Circuit had ~ 150 logic gates.

1968: Noyce and Moore leave Fairchild to form Intel. By 1971 Intel had 500 employees;

By 2004, 80,000 employees in 55 countries and $\$ 34.2 \mathrm{~B}$ in sales.

Continuing Development early 70's

1970: Intel starts selling a 1k bit RAM.

1971: Ted Hoff at Intel designed the first microprocessor. The 4004 had 4-bit busses and a clock rate of 108 KHz . It had 2300 transistors and was built in a 10 um process.

Continuing Development - Microprocessor

1972: 8008 introduced.
Had 3,500 transistors supporting a byte-wide data path.

1974: Introduction of the 8080 - first "truly usable microprocessor"

8-bit data, 16 -bit address bus (up to 64 kB memory)
Had 6,000 transistors in a 6 um process.
Clock rate was 2 MHz .

Exponential Growth

Planar "printing process" enabled continuing reductions in process "line width" which has led to increased density in transistors/mm²

How do we get this extraordinary growth?

Huge investments in and major advances in:

- Solid State Physics
-Materials Science
-Lithography and fab
-Device modeling
-Circuit design and layout
- Architecture design
-Algorithms
-CAD tools

Cost of building 65 nm fab is around $\$ 3 B$!
Cost of building 22nm fab is around \$7B !

Analog vs. Digital Revisited

Few large transistors High voltage (~15V)
Low speed High power (per transistor) "Ideal" transistor behavior

Well suited to analog

Many small transistors Low voltage ($\sim 0.5 \mathrm{~V}$) High speed
Low power (per transistor)
"Non-ideal" transistor behavior
Well suited to digital

High Performance Digital: Pentium 4-0.18 um

0.18-micron process technology

- Introduction date: November 20, 2000 (1.5, 1.4 GHz$)$
- Level Two cache: 256 KB Advanced Transfer Cache
- System Bus Speed: 400 MHz
- SSE2 SIMD Extensions
- Transistors: $\mathbf{4 2}$ Million
- Typical Use: Desktops and entry-level workstations

High Performance Digital: Intel i5-45 nm

- Introduced Sept. 2009 (2.6 GHz)
- Level 3 cache: 8MB
- 4 cores / 4 threads
- Transistors: 774 Million
- 95 W

Supercomputer for Sony's PlayStation 3 - 45nm

- IBM/Toshiba chip has 9 processor cores
- 192 billion floatingpoint operations per second (192 G)
- 240 M transistors
- Optimized for graphics \& multimedia

IBM Power 9 Processor

- 14 nm SOI FinFET process with 17 levels interconnect
- 24 x 64-bit 4.0 GHz cores optimized for cognitive computing
- 8.0B transistors
- 6 MB L2 / 120 MB L3
- $12.9 \mathrm{~Tb} / \mathrm{s}$ I/O BW
- $695 \mathrm{~mm}^{2}$ die (approx. 1.1 inches square)

Moore's Law

- In 1965, Gordon Moore noted that the number of transistors on a chip approximately doubled every 12 months.

- He made a prediction that IC cost effective component count would continue to double every 12 months

Moore's Law - how it checked out

- Actual growth has been a doubling every 18-24 months

Technology Directions: SIA Roadmap

Year	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 4}$
Feature size (nm)	180	130	100	70	50	35
Logic trans/cm ${ }^{2}$	6.2 M	18 M	39 M	84 M	180 M	390 M
Cost/trans (mc)	1.735	.580	.255	.110	.049	.022
\#pads/chip	1867	2553	3492	4776	6532	8935
Clock (MHz)	1250	2100	3500	6000	10000	16900
Chip size (mm ${ }^{2}$)	340	430	520	620	750	900
Wiring levels	$6-7$	7	$7-8$	$8-9$	9	10
Power supply (V)	1.8	1.5	1.2	0.9	0.6	0.5
High-perf pow (W)	90	130	160	170	175	183

- Roadmap has become a self-fulfilling prophecy!

Microprocessor Clock Frequency

ISSCC Trends Report 2010

Microprocessor Power Projection 2000

- Increasing processing speed thru clock rate is power prohibitive - Solution today is use of parallelism (\#processors, \#threads)

Courtesy, Intel

Transistors shipped per year

Decades of Progress

Intel 4004
Processor
$6^{\text {th }}$ Generation Intel Core Processor

Processor		4004 to 14 nm
Wafer Size	\uparrow	36 x area
Technology Linewidth	$\boldsymbol{\downarrow}$	700 x
Performance	\uparrow	$3,500 \mathrm{x}$
Price per Transistor	\downarrow	$60,000 \mathrm{x}$
Transistor Energy Efficiency	\uparrow	$90,000 \mathrm{x}$

Productivity Trends

- Today's high-end digital chips can require more than 100 person-years development

Digital Implementation Options

- ASIC - Application Specific Integrated Circuit
- Chip designed to do a specific dedicated hardware function
- Synthesis tools place \& route gates, memories, alu's, specialized IP (e.g. comm. interfaces, digital filters)
- Greatest performance, least flexibility
- Programmable Processors
- Microprocessors, DSPs etc.
- Function determined by software
- Greatest flexibility, least performance
- Programmable Logic Device (PLD)
- Fixed architecture with programmable hardware functions \& interconnect
- Programmed using fusible links, on-chip RAM, Flash etc.
- Synthesis tools generate programming sequence
- Trade-off in performance \& flexibility

Field Programmable Gate Array (FPGA)

- Most powerful \& flexible of today's PLD's
- All function is controlled by on-chip (re)writable RAM
- Can be configured "in the field"
- Fast configuration time
- Easily re-configured (bug fixes, upgrades etc)
- Basic Architecture:
- Array of Configurable Logic Blocks (CLBs) surrounded by
- Programmable Switch Matrix (PSM)

Xilinx XC 4000 Configurable Logic Block

courtesy Xilinx

Configuring an FPGA

- Powerful software tools map logic structure on to CLB and PSM resources
- Configuration "code" downloaded to on-chip SRAM
- CLB look-up tables
- Extra RAM controls CLB multiplexers
- Horizontal \& vertical routing resources can be cross-connected though switches controlled by SRAM
- Programmable I/O blocks provide
- CMOS, TTL, LVDS etc.
- Tri-state, in, out bidirectional
- Controlled rise/fall times
- Controlled impedance
- All configured via on-chip SRAM

Today’s FPGAs

- Also contain higher level functional blocks
- High density data RAMs
- Register Files
- Multipliers
- Standard bus interfaces
- Phase locked loop clock generators
- microprocessor cores
- High density and performance (e.g. Virtex 6):
- 760,000 logic cells (\sim 50,000 CLB's)
- 38Mb block RAM
- 2016 DSP slices (2.4 GMAC's)
- $11 \mathrm{~Gb} / \mathrm{s}$ serial I/O
- 1200 I/O pins

FPGA vs. ASIC

ASIC

Higher Density
Higher Performance
More Power Efficient
Lower Unit Cost

FPGA

Flexibility

Field reconfiguration
Faster to market
Lower up-front cost

