CPE 487: Digital System Design
Spring 2018

Lecture 10
Subprograms & Overloading

Bryan Ackland
Department of Electrical and Computer Engineering
Stevens Institute of Technology
Hoboken, NJ 07030

Subprograms

 As behavioral description of a system grows, we need
mechanisms to help structure code and facilitate re-use

— similar to procedures, subroutines, function calls in conventional
programming languages

* A subprogram defines a sequential algorithm that
performs a certain computation. There are two kinds of
subprograms:

— Function:
e computes a single value.
e executes in zero simulation time

— Procedure:
e can compute several values
* may not execute in zero simulation time

Example of Function

e A function to return the maximum of two integers...

function max (signal A, B: in integer) return integer is

-- declarations of constants & variables local to function here
-- no signal declarations allowed here

begin

-- body: sequential statements

return (expression)
end max;

* A function has a number of input parameters characterized
by their class, mode and type

« A function has a single output (the returned value)
characterized only by type

Function Input Parameters

e Class can be signal, constant (or file)
— Default class is constant

 Mode can only be in
— Default mode is In

e Parameter names in function definition are called formal
parameters
 When function is called e.g. next := max (count, index)

— Actual parameters count and index take place of formal
parameters A and B

— Actuals may be associated with formals by name or position

« Actual parameter must match formal parameter in class,
mode and type

— Except formal parameter of class constant can match actual
parameter of class signal, variable, constant or expression) 4

Using Function Max

architecture behavioral of xyz is
function max (signal A, B: in integer) return integer is
variable result : integer ;

begin
result := A;
If B > A then result := B;
end if;
return (result);
end max;
signal s1, s2: integer;
begin
pO: process
variable vr: integer;
begin
vr:=max (sl1,s2); --orvr:=max (A=>sl, B=>s2);
end process po; 5

end architecture behavioral;

Example: Function Rising Edge

architecture behavioral of dff is

function rising_edge (signal clock : std_logic)
return boolean is

variable edge : boolean := FALSE;

begin
edge := (clock = 1’ and clock’event);
return (edge);

end rising_edge;

begin
output: process
begin
wait until (rising_edge(CIk));
Q <= D after 5 ns;
Qbar <= not D after 5 ns;
end process output;
end architecture behavioral,

Properties of Functions

* Functions cannot modify parameters

— no side effects

* Functions only execute when called

— EXxecute in zero time
— Wait statements not permitted

— Terminate when value is returned
e Variables are initialized on each call

 Compare to properties of process

Scope and Placement of Functions

Function code can be placed In:

e Declarative section of a process

— visible (can be called) only in that process

e Declarative section of an architecture

— visible to CSA expressions and all processes In
architecture

e |n package declaration

— visible to all code units that use that package

Pure vs. Impure Functions

[pure | impure] function function-name (parameter-list)
return return-type

e By default, functions are pure
— can only read parameters explicitly passed to the function

— always return same value when called with same actuals

e Impure functions can access other signals & variables
visible to parent (calling process or architecture)
— can return different values when called with same actuals

— examples are functions to return random number, simulation
time, next word from text file etc.

Example: Type Conversion Function

« Type conversion is common use of functions

— for example: std_logic_vector to bit_vector

function to_bitvector (svalue : std_logic_vector) return bit_vector is
variable outvalue : bit_vector (svalue’length-1 downto 0);
begin
for 1 in svalue’range loop -- scan all elements of the array
case svalue (i) Is
when ‘0’ => outvalue (i) := “‘0’;
when ‘1’ => outvalue (i) := ‘1’
when “‘H’ => outvalue (i) := “1’;
when others => outvalue (i) := “‘0’;
end case;
end loop;
return outvalue;
end to_bitvector 10

Resolution Functions

generated transactions

driverl - - J
Sy -

signal type is a resolved type rfejr?y:it(i)%n —> 1o event queue
3y -

driver2 > — -

e Resolution function is invoked whenever an event
occurs on this signal

11

Std_Logic Revisited

e Declaration of resolved type in IEEE std_logic_1164.vhd:
type std_ulogic is (

‘U’, -- Uninitialized

‘X’, -- Forcing Unknown

‘0’, --Forcing0

‘l’, --Forcingl

‘Z’, -- High Impedance

W - Weak Unknown declaration of function
L', - Weak 0 .-~ ‘“resolved”

‘H, --Weak1l 7

‘>, --Don’tcare -7

”
C 4
. -
PR
)’ -
-
-
-
’f
-

A
function resolved (s std_ulogic_vector) return std uloglc

subtype std_logic is resolved std_ulogic;

\\\\\\\ assigned as resolution
™~ function of type std_logic

12

Creating Resolved Type

e Four steps in creating a resolved signal type:

1. Start with unresolved type that can take on required range of
values

— e.g.typeabcis (‘U’, ‘Z’, ‘0’, ‘1%);

2. Create a new type that is a 1-D array of unresolved type
— e.g. type abc_vector is array (natural range <>) of abc;
— used by VHDL to capture multiple current assignments to a signal

3. Construct a resolution function that takes as input an array of
unresolved signals and outputs a single resolved value

— e.g. function res_abc (svec: abc_vector) return abc;

4. Declare new resolved type that is a sub-type of unresolved type
with the associated resolution function

— e.g. subtype abc_logic is res_abc abc; 13

Example: Resolved Logic

 Create aresolved data type that can be 0, 1 or X (undefined)

architecture behave of res_ex is

type mylogic is (*X’, ‘0, ‘1°); --step 1
type mylogic_vec is array (natural range <>) of mylogic; -- step 2
function connect(mvec: mylogic_vec) return mylogic is -- step 3
variable cml: mylogic;
begin
cml:=mvec(mvec'left);
for i in mvec'range loop A g 1
If (mvec(i) /= cml) then X X X X
r(_eturn(X); 0 > 0 >
end if;
end loop; 1 X X 1

return(cml);
end function connect;

subtype reslogic is connect mylogic; -- step 4

Simulation of reslogic example

signal a,b,z: reslogic;

begin
tpr: process
begin
a<="'0', '1' after 10 ns, 'X" after 20ns, '0" after 30ns;
b<="0', '1' after 15 ns, '0" after 25ns, 'X' after 35ns;
wait for 40 ns;
end process;
Z<=3a,
z<=b;
end behave;

Procedures

* Procedure is more powerful construct used to decompose
large, complex behaviors into modular sections

« Unlike a function a procedure can modify parameters
— parameter mode can be in, out or inout
— default class of in parameters is constant

— default class of out and inout parameters is variable
 No return statement

o Like functions:
— Actual parameters must match formals in class, mode and type

— Locally declared variables are initialized on each call

16

Procedures and Simulation Time

« Unlike functions, procedures do have a concept of time

— do not necessarily execute in zero time

* Procedures can include signal assignment statements
— to modify signals in parameter list (with time delay)

— can also modify other signals visible at the place procedure was
called (e.g. ports) — not recommended

* Procedures can be suspended with wait statements
— effectively suspends caller

— cannot be called from a process that has sensitivity list

17

Procedure Declaration

procedure procedure_name (formal_parameter_declarations) is
-- declarations of constants & variables local to procedure here
-- no signal declarations allowed here

begin

-- body: sequential statements

end procedure_name;

o formal parameter declarations includes inputs and
outputs

o Output parameters (signals & variables) may be
modified by procedure

18

Example: D Flip-flop as Procedure

procedure DFF (signal D, clk, Rbar : in std_logic;
signal Q, Qbar : out std_logic) Is

begin [
if (Rbar = ‘0’) then D— Q
Q <= ‘0’ after 5 ns; _
Qbar <= ‘1’ after 5 ns; clk—P 0— Q

elsif (rising_edge(clk)) then
Q <= D after 5 ns;
Qbar <= (not D) after 5 ns;
end if;
end DFF;

| —0

19

Scope and Placement of Procedures

Procedure code can be placed in:

e Declarative section of a process

— visible (can be called) only in that process

e Declarative section of an architecture

— visible to CSA expressions and all processes In
architecture

e |n package declaration

— visible to all code units that use that package

20

Example: Bit-Serial Adder

a >la
b b full add

—> |cin cout

sum >/

nx_carry

Q Dfe

carry

—5 <4— clk

21

Bit-Serial Adder with Concurrent Procedure Call

a————a

sum ——>»7
b———b tyI_add

architecture structural of serial _adder is

—>|cin cout
component full_add \ nx_carry
port (a, b, cin : in std_logic; carry Q@ D

sum, cout : out std_logic); @, ck

end component; reset Y

procedure DFF(signal D, clk, Rbar: in std_logic, signal Q, Qbar: out std_logic) is
begin

-- procedure body as described in earlier slide
end procedure DFF,;

signal carry, nx_carry: std_logic;

begin
C1: full_add port map (a =>a, b => b, cin => carry, sum =>z, cout => nx_carry);

DFF(clk => clk, Rbar =>reset, D=> nx_carry, Q=>carry, Qbar =>open);

end architectural structural: 99

Bit-Serial Adder with Sequential Procedure Call

architecture structural of serial adder is a—a sum ——>7
- b———b full_add
component full_add I cout
port (a, b, cin : in std_logic; carry
- Q D

sum, cout : out std_logic); _d

end component; R
reset

procedure DFF(signal D, clk, Rbar: in std_logic, signal Q, Qbar: out std_logic) is
begin

-- procedure body as described in earlier slide
end procedure DFF;

<te— clk

O]

signal s1, s2 : std_logic;
begin
C1: full_add port map (a=>a, b => b, cin =>s1, sum =>z, cout => s2);
dpr: process
begin
DFF(clk => clk, Rbar =>reset, D=> s2, Q=>s1, Qbar =>o0pen);
wait on clk, reset;
end process;
end architectural structural;

23

Subprogram Overloading

* One of the more powerful aspects of VHDL
subprograms (functions & procedures) is abllity to
overload the sub-program name

e e.dg., negate(20) vs. negate(‘l’)

e Overloading is giving two or more sub-programs the
same name e.g.:

function negate(arg: integer) return integer,

function negate(arg: bit) return bit;

 When a call to negate is made, it is possible to identify
the exact function to which the call is made from the
number and type of actuals passed
24

Example: How many D flip-flops do we need?

type bit std_logic std_logic_vector
style (reqister)
D— [Q b— [Q b= [Q
simple T Clk—_ PQ Clk—__ P~Q
D
R R R
. 5 b 4
D with o 1o o Fo b1 o
async Clk—t__ Q Clk—__PQ Ck—t _Q
R/S ? ? 7

 How many flip-flop procedures do we need to create?
dff_bit (clk, d, g, gbar)
asynch_dff_bit (clk, d,q,qbar,reset,clear)
dff_std (clk,d,q,gbar)
asynch_dff_std (clk, d,q,gbar,reset,clear)

etc. 25

D Flip-flops with overloaded names

e Solution: give all D flip-flop procedures same name

* Allow compiler to work out which procedure is
appropriate

 If there is ambiguity, compiler will generate an error.

-- call a simple D flip-flop operating on bit signals
signal clk, d, q, gbar: bit
dff (clk, d, q, gbar);

-- call an RS 8-bit register operating on 8-bit std_logic_vector signals
signal clk, reset, clear: std_logic;

signal d, g, gbar: std_logic_vector (7 downto 0);
dff (clk, d, q, gbar, reset, clear);

26

Hiding Existing Subprograms

« If there is a conflict in subprogram names, priority goes
to subprogram with most local scope e.qg.

* A call to function xyz within a process will use xyz
declared In that process over xyz declared in the
architecture over xyz declared in some external

package

* Allows us to over-ride previously defined subprograms

27

Example using Packages

package P1is
function ADD (X, Y : BIT_VECTOR) return BIT_VECTOR;

end P1;

use WORK.P1.all;

architecture overloaded of abc is

function ADD (X, Y : BIT_VECTOR) return BIT_VECTOR;
function ADD (A, B : BIT_VECTOR) return BIT_VECTOR,;
signal IN1, IN2: BIT_VECTOR(3 downto 0);

begin

SUM_CORRECT <= ADD (X =>1IN1, Y =>1IN2);

SUM_ERROR <= ADD (IN1, IN2); -- compiler error: ambiguous
end overloaded,;

28

Operator Overloading

 When a standard operator symbol is made to behave
differently based on the type of its operands, the
operator is said to be overloaded.

 For example in the standard package, and operation
IS only defined for arguments of type BIT and
BOOLEAN, and for one-dimensional arrays of BIT
and BOOLEAN.

 What if the arguments were of type my_logic (where
my_logic is a user defined enumeration type with
values ‘0’, ‘1’ and ‘X'?)

e Itis possible to augment the and operation as a

function that operates on arguments of type my_logic
— the and operator is then said to be overloaded.

29

Operator Overloading: my_logic Data Type

e In package:
type my_logic is (*X’, ‘07, ‘1%);
function “and” (L, R : my_logic) return my_logic is
begin
If L="1" and R=*1" return “1’;
elsif L=*X’ or R=*X" return “‘X’;
else return “‘07;
end if;
end function “and”;

-- note: since and, or and not operators are predefined operator
symbols, they have to be enclosed within double quotes when used as
overloaded operator function names.

30

Operator Overloading: my_logic Data Type

* In package:
type my_logic is (‘X’, ‘07, “1°);
function “and” (L, R : my_logic) return my_logic;
function “or” (L, R : my_logic) return my_logic;
function “not” (R : my_logic) return my_logic;

e In architecture:
signal A, B, C : my_logic;
signal X, Y, Z: BIT,

A<=COR ‘1’ --- refer to the overloaded operator

B <=*“or” (‘0’, A); --- overloaded operator - function call notation
X<=notY; -- refer to predefined operator

Z<=Xand; -- refer to predefined operator
C<=(AorB)and (notC); --referto the overloaded operator(s)

Z<=(XandY)orA; -- this is error:

31

	CPE 487: Digital System Design�Spring 2018
	Subprograms
	Example of Function
	Function Input Parameters
	Using Function Max
	Example: Function Rising Edge
	Properties of Functions
	Scope and Placement of Functions
	Pure vs. Impure Functions
	Example: Type Conversion Function
	Resolution Functions
	Std_Logic Revisited
	Creating Resolved Type
	Example: Resolved Logic
	Simulation of reslogic example
	Procedures
	Procedures and Simulation Time
	Procedure Declaration
	Example: D Flip-flop as Procedure
	Scope and Placement of Procedures
	Example: Bit-Serial Adder
	Bit-Serial Adder with Concurrent Procedure Call
	Bit-Serial Adder with Sequential Procedure Call
	Subprogram Overloading
	Example: How many D flip-flops do we need?
	D Flip-flops with overloaded names
	Hiding Existing Subprograms
	Example using Packages
	Operator Overloading
	Operator Overloading: my_logic Data Type
	Operator Overloading: my_logic Data Type

