
CPE 487: Digital System Design
Spring 2018

Lecture 10
Subprograms & Overloading

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Subprograms

• As behavioral description of a system grows, we need
mechanisms to help structure code and facilitate re-use
– similar to procedures, subroutines, function calls in conventional

programming languages

• A subprogram defines a sequential algorithm that
performs a certain computation. There are two kinds of
subprograms:

– Function:
• computes a single value.
• executes in zero simulation time

– Procedure:
• can compute several values
• may not execute in zero simulation time

2

Example of Function

• A function to return the maximum of two integers…

• A function has a number of input parameters characterized
by their class, mode and type

• A function has a single output (the returned value)
characterized only by type 3

function max (signal A, B: in integer) return integer is
-- declarations of constants & variables local to function here
-- no signal declarations allowed here
begin
--
-- body: sequential statements
--
return (expression)
end max;

Function Input Parameters
• Class can be signal, constant (or file)

– Default class is constant

• Mode can only be in
– Default mode is in

• Parameter names in function definition are called formal
parameters

• When function is called e.g. next := max (count, index)
– Actual parameters count and index take place of formal

parameters A and B
– Actuals may be associated with formals by name or position

• Actual parameter must match formal parameter in class,
mode and type
– Except formal parameter of class constant can match actual

parameter of class signal, variable, constant or expression) 4

Using Function Max

5

architecture behavioral of xyz is
function max (signal A, B: in integer) return integer is
variable result : integer ;
begin

result := A;
if B > A then result := B;
end if;
return (result);

end max;
signal s1, s2: integer;
begin
p0: process

variable vr: integer;
begin

…
vr := max (s1, s2); -- or vr := max (A=>s1, B=>s2);
…

end process p0;
end architecture behavioral;

Example: Function Rising Edge

6

architecture behavioral of dff is
function rising_edge (signal clock : std_logic)

return boolean is
variable edge : boolean := FALSE;
begin

edge := (clock = ‘1’ and clock’event);
return (edge);

end rising_edge;

begin
output: process

begin
wait until (rising_edge(Clk));
Q <= D after 5 ns;
Qbar <= not D after 5 ns;

end process output;
end architecture behavioral;

Properties of Functions

• Functions cannot modify parameters
– no side effects

• Functions only execute when called
– Execute in zero time

– Wait statements not permitted

– Terminate when value is returned

• Variables are initialized on each call

• Compare to properties of process

7

Scope and Placement of Functions

Function code can be placed in:

• Declarative section of a process
– visible (can be called) only in that process

• Declarative section of an architecture
– visible to CSA expressions and all processes in

architecture

• In package declaration
– visible to all code units that use that package

8

[pure | impure] function function-name (parameter-list)
return return-type

Pure vs. Impure Functions

• By default, functions are pure
– can only read parameters explicitly passed to the function

– always return same value when called with same actuals

• Impure functions can access other signals & variables
visible to parent (calling process or architecture)
– can return different values when called with same actuals

– examples are functions to return random number, simulation
time, next word from text file etc.

9

Example: Type Conversion Function

• Type conversion is common use of functions
– for example: std_logic_vector to bit_vector

10

function to_bitvector (svalue : std_logic_vector) return bit_vector is
variable outvalue : bit_vector (svalue’length-1 downto 0);
begin

for i in svalue’range loop -- scan all elements of the array
case svalue (i) is

when ‘0’ => outvalue (i) := ‘0’;
when ‘1’ => outvalue (i) := ‘1’;
when ‘H’ => outvalue (i) := ‘1’;
when others => outvalue (i) := ‘0’;

end case;
end loop;
return outvalue;

end to_bitvector

Resolution Functions

11

• Resolution function is invoked whenever an event
occurs on this signal

driver2

driver1

signal type is a resolved type

1

2

to event queue

generated transactions

resolution
function

type std_ulogic is (
‘U’, -- Uninitialized
‘X’, -- Forcing Unknown
‘0’, -- Forcing 0
‘1’, -- Forcing 1
‘Z’, -- High Impedance
‘W’, -- Weak Unknown
‘L’, -- Weak 0
‘H’, -- Weak 1
‘-’, -- Don’t care
);

type std_ulogic_vector is array (natural range <>) of std_ulogic;

function resolved (s: std_ulogic_vector) return std_ulogic;

subtype std_logic is resolved std_ulogic;

Std_Logic Revisited

• Declaration of resolved type in IEEE std_logic_1164.vhd:

12

declaration of function
“resolved”

assigned as resolution
function of type std_logic

Creating Resolved Type

• Four steps in creating a resolved signal type:

1. Start with unresolved type that can take on required range of
values
– e.g. type abc is (‘U’, ‘Z’, ‘0’, ‘1’);

2. Create a new type that is a 1-D array of unresolved type
– e.g. type abc_vector is array (natural range <>) of abc;
– used by VHDL to capture multiple current assignments to a signal

3. Construct a resolution function that takes as input an array of
unresolved signals and outputs a single resolved value
– e.g. function res_abc (svec: abc_vector) return abc;

4. Declare new resolved type that is a sub-type of unresolved type
with the associated resolution function
– e.g. subtype abc_logic is res_abc abc;

13

Example: Resolved Logic

• Create a resolved data type that can be 0, 1 or X (undefined)

X 0 1

X X X X

0 X 0 X

1 X X 1

architecture behave of res_ex is

type mylogic is (‘X’, ‘0’, ‘1’); -- step 1
type mylogic_vec is array (natural range <>) of mylogic; -- step 2

function connect(mvec: mylogic_vec) return mylogic is -- step 3
variable cml: mylogic;
begin

cml:=mvec(mvec'left);
for i in mvec'range loop

if (mvec(i) /= cml) then
return('X');

end if;
end loop;
return(cml);

end function connect;

subtype reslogic is connect mylogic; -- step 4

Simulation of reslogic example

signal a,b,z: reslogic;

begin
tpr: process

begin
a<= '0', '1' after 10 ns, 'X' after 20ns, '0' after 30ns;
b<= '0', '1' after 15 ns, '0' after 25ns, 'X' after 35ns;
wait for 40 ns;

end process;
z<=a;
z<=b;

end behave;

Procedures

• Procedure is more powerful construct used to decompose
large, complex behaviors into modular sections

• Unlike a function a procedure can modify parameters
– parameter mode can be in, out or inout

– default class of in parameters is constant

– default class of out and inout parameters is variable

• No return statement

• Like functions:
– Actual parameters must match formals in class, mode and type

– Locally declared variables are initialized on each call

16

Procedures and Simulation Time

• Unlike functions, procedures do have a concept of time
– do not necessarily execute in zero time

• Procedures can include signal assignment statements
– to modify signals in parameter list (with time delay)

– can also modify other signals visible at the place procedure was
called (e.g. ports) – not recommended

• Procedures can be suspended with wait statements
– effectively suspends caller

– cannot be called from a process that has sensitivity list

17

Procedure Declaration

• formal_parameter_declarations includes inputs and
outputs

• Output parameters (signals & variables) may be
modified by procedure

18

procedure procedure_name (formal_parameter_declarations) is
-- declarations of constants & variables local to procedure here
-- no signal declarations allowed here
begin
--
-- body: sequential statements
--
end procedure_name;

Example: D Flip-flop as Procedure

19

procedure DFF (signal D, clk, Rbar : in std_logic;
signal Q, Qbar : out std_logic) is
begin

if (Rbar = ‘0’) then
Q <= ‘0’ after 5 ns;
Qbar <= ‘1’ after 5 ns;

elsif (rising_edge(clk)) then
Q <= D after 5 ns;
Qbar <= (not D) after 5 ns;

end if;
end DFF;

clk

D Q

Q

R

Scope and Placement of Procedures

Procedure code can be placed in:

• Declarative section of a process
– visible (can be called) only in that process

• Declarative section of an architecture
– visible to CSA expressions and all processes in

architecture

• In package declaration
– visible to all code units that use that package

20

Example: Bit-Serial Adder

21

reset: 1 1 1 1 1 1 1 1 0
cin: 0 0 1 1 1 1 1 0 X

a: 0 0 0 1 1 0 1 1 0
b: 0 0 0 0 0 1 1 1 0
Z: 0 0 1 0 0 0 1 0 0

time

full_add
a
b

cin

sum

cout

DQ

Q
R

a
b

z

carry

reset

clk

nx_carry

Bit-Serial Adder with Concurrent Procedure Call

22

architecture structural of serial_adder is

component full_add
port (a, b, cin : in std_logic;

sum, cout : out std_logic);
end component;

procedure DFF(signal D, clk, Rbar: in std_logic, signal Q, Qbar: out std_logic) is
begin

-- procedure body as described in earlier slide
end procedure DFF;

signal carry, nx_carry: std_logic;

begin
C1: full_add port map (a => a, b => b, cin => carry, sum =>z, cout => nx_carry);

DFF(clk => clk, Rbar =>reset, D=> nx_carry, Q=>carry, Qbar =>open);

end architectural structural;

Bit-Serial Adder with Sequential Procedure Call

23

architecture structural of serial_adder is

component full_add
port (a, b, cin : in std_logic;

sum, cout : out std_logic);
end component;

procedure DFF(signal D, clk, Rbar: in std_logic, signal Q, Qbar: out std_logic) is
begin

-- procedure body as described in earlier slide
end procedure DFF;

signal s1, s2 : std_logic;
begin
C1: full_add port map (a => a, b => b, cin => s1, sum =>z, cout => s2);
dpr: process

begin
DFF(clk => clk, Rbar =>reset, D=> s2, Q=>s1, Qbar =>open);
wait on clk, reset;

end process;
end architectural structural;

Subprogram Overloading

• One of the more powerful aspects of VHDL
subprograms (functions & procedures) is ability to
overload the sub-program name

• e.g., negate(20) vs. negate(‘1’)

• Overloading is giving two or more sub-programs the
same name e.g.:

function negate(arg: integer) return integer;

function negate(arg: bit) return bit;

• When a call to negate is made, it is possible to identify
the exact function to which the call is made from the
number and type of actuals passed

24

Example: How many D flip-flops do we need?

• How many flip-flop procedures do we need to create?
dff_bit (clk, d, q, qbar)
asynch_dff_bit (clk, d,q,qbar,reset,clear)
dff_std (clk,d,q,qbar)
asynch_dff_std (clk, d,q,qbar,reset,clear)

etc. 25

D

Clk

Q

Q

D

Clk

S

Q

R

Q

style
simple

D

D with
async
R/S

type bit std_logic std_logic_vector
(register)

D

Clk

Q

Q

D

Clk

Q

Q

D

Clk

S

Q

R

Q

D

Clk

S

Q

R

Q

D Flip-flops with overloaded names

• Solution: give all D flip-flop procedures same name

• Allow compiler to work out which procedure is
appropriate

• If there is ambiguity, compiler will generate an error.

-- call a simple D flip-flop operating on bit signals
signal clk, d, q, qbar: bit
dff (clk, d, q, qbar);

-- call an RS 8-bit register operating on 8-bit std_logic_vector signals
signal clk, reset, clear: std_logic;
signal d, q, qbar: std_logic_vector (7 downto 0);
dff (clk, d, q, qbar, reset, clear);

26

Hiding Existing Subprograms

• If there is a conflict in subprogram names, priority goes
to subprogram with most local scope e.g.

• A call to function xyz within a process will use xyz
declared in that process over xyz declared in the
architecture over xyz declared in some external
package

• Allows us to over-ride previously defined subprograms

27

Example using Packages

package P1 is
function ADD (X, Y : BIT_VECTOR) return BIT_VECTOR;

end P1;

use WORK.P1.all;

architecture overloaded of abc is
function ADD (X, Y : BIT_VECTOR) return BIT_VECTOR;
function ADD (A, B : BIT_VECTOR) return BIT_VECTOR;
signal IN1, IN2: BIT_VECTOR(3 downto 0);

begin
SUM_CORRECT <= ADD (X => IN1, Y => IN2);
SUM_ERROR <= ADD (IN1, IN2); -- compiler error: ambiguous

end overloaded;

28

Operator Overloading

29

• When a standard operator symbol is made to behave
differently based on the type of its operands, the
operator is said to be overloaded.

• For example in the standard package, and operation
is only defined for arguments of type BIT and
BOOLEAN, and for one-dimensional arrays of BIT
and BOOLEAN.

• What if the arguments were of type my_logic (where
my_logic is a user defined enumeration type with
values ‘0’, ‘1’ and ‘X’?)

• It is possible to augment the and operation as a
function that operates on arguments of type my_logic
– the and operator is then said to be overloaded.

Operator Overloading: my_logic Data Type

30

• In package:
type my_logic is (‘X’, ‘0’, ‘1’);
function “and” (L, R : my_logic) return my_logic is
begin

if L=‘1’ and R=‘1’ return ‘1’;
elsif L=‘X’ or R=‘X’ return ‘X’;
else return ‘0’;
end if;

end function “and”;

-- note: since and, or and not operators are predefined operator
symbols, they have to be enclosed within double quotes when used as
overloaded operator function names.

Operator Overloading: my_logic Data Type

31

• In package:
type my_logic is (‘X’, ‘0’, ‘1’);
function “and” (L, R : my_logic) return my_logic;
function “or” (L, R : my_logic) return my_logic;
function “not” (R : my_logic) return my_logic;

• In architecture:
signal A, B, C : my_logic;
signal X, Y, Z : BIT;
A <= C OR ‘1’; --- refer to the overloaded operator
B <= “or” (‘0’, A); --- overloaded operator - function call notation
X <= not Y; -- refer to predefined operator
Z <= X and Y; -- refer to predefined operator
C <= (A or B) and (not C); -- refer to the overloaded operator(s)
Z <= (X and Y) or A; -- this is error:

	CPE 487: Digital System Design�Spring 2018
	Subprograms
	Example of Function
	Function Input Parameters
	Using Function Max
	Example: Function Rising Edge
	Properties of Functions
	Scope and Placement of Functions
	Pure vs. Impure Functions
	Example: Type Conversion Function
	Resolution Functions
	Std_Logic Revisited
	Creating Resolved Type
	Example: Resolved Logic
	Simulation of reslogic example
	Procedures
	Procedures and Simulation Time
	Procedure Declaration
	Example: D Flip-flop as Procedure
	Scope and Placement of Procedures
	Example: Bit-Serial Adder
	Bit-Serial Adder with Concurrent Procedure Call
	Bit-Serial Adder with Sequential Procedure Call
	Subprogram Overloading
	Example: How many D flip-flops do we need?
	D Flip-flops with overloaded names
	Hiding Existing Subprograms
	Example using Packages
	Operator Overloading
	Operator Overloading: my_logic Data Type
	Operator Overloading: my_logic Data Type

