
CPE 487: Digital System Design
Spring 2018

Lecture 12
VHDL Synthesis

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

What is Synthesis?

• Process of creating a RTL or gate level net-list from a
VHDL model

• Net-list can be used to create a physical (hardware)
implementation

2

VHDL

simulation
synthesis

PLD FPGA CMOS
ASIC

Synthesis Process

3

VHDL
Model

Synthesis

RTL/gate
Net-list

Technology
Mapping

Technology
Specific
Net-list

Logic
Optimizer

Optimized
Net-list

Place &
Route

Physical
Implementation
(ASIC, FPGA etc.)

Area &
Timing

ConstraintsTarget
Tech.

Limitations of Synthesis

• VHDL can model a hardware system at different levels
of abstraction from gate level up algorithmic level

• Synthesis tools cannot, in general, map arbitrary high
level behavioral models into hardware.

• Many VHDL constructs have no hardware equivalent:
wait for 10 ns;
signal a1: real;
y<= x’last_value;
assert a=b report “mismatch” severity error;

• Even if VHDL code is synthesizable, it may lead to very
inefficient (in terms of area, speed) implementation

• In moving from VHDL high level behavioral description
to synthesizable VHDL hardware description, designer
needs to know:
– What subset of VHDL is synthesizable
– What hardware in inferred by various VHDL constructs 4

Example of inefficient synthesis

• 8 x 8 matrix multiply:

5

mpr: process (A,B) is
variable sum: integer;
begin

for i in 1 to 8 loop
for j in 1 to 8 loop

sum:=0;
for k in 1 to 8 loop

sum := sum + A(i)(k)*B(k)(j);
end loop;
C(i)(j) <= sum;

end loop;
end loop;

end process;

Uses: 512 multipliers
448 adders

Inference

• Synthesis is the process of hardware inference followed
by optimization

• The synthesis compiler infers hardware structures from
your VHDL code

• Those hardware structures are subsequently optimized
to meet your area and/or speed constraints.

• Part of being a good synthesis designer is being able to
put yourself in the place of the compiler and understand
what hardware constructs are likely to be inferred from
your code.

6

Inferring Hardware from VHDL Code
entity synth is
port(A,B,C,D: in integer;

sel: in std_logic_vector(1 downto 0);
Z:out integer);

architecture behavioral of synth is
begin

with sel select
Z <= A+B when “00”
C+D when “10”
0 when others;
end architecture behavioral;

• We need an adder (and a multiplexer).
– How large (how many bits) should the adder be?
– Integers can be up to 32 bits
– What if A,B,C and D are in the range 0-20?

• Do we need two adders, or can one adder be shared?
– Are we more concerned with speed or area? 7

Inferring Signals

• In regular programming languages, declared variables &
constants are used to allocate storage.

• In VHDL, signals are used to represent timed
information flow between subsystems.
– How are signals represented in hardware?

• When synthesizing from VHDL, the basic hardware
implementations of signals are:
– Wires
– Latches (level sensitive)
– Flip-flops (edge triggered)

• Signals generated by combinational expressions (where
signal value depends only on the current value of the
inputs) will infer wires

• Signals generated by sequential expressions (where
signal value depends on current and previous value of
inputs) will infer latches or flip-flops 8

Flip-flop vs. Latch

9

D

Clk

Q

Flip-flop
stores data when
clock rises

Clk

D

Q

Latch
passes data when G is high
stores data when G is low

D

G

Q

Gate

D

Q

Inference from Declarations

• When a signal is declared, there needs to be sufficient
information to determine the correct number of bits

signal result: std_logic_vector (12 downto 0);
signal count: integer;
signal index: integer range 0 to 18:= 0;

type state_type is (state0, state1, state2, state3);
signal next_state: state_type;

• How many bits are required to represent count ?
– Compilers are conservative: they will only perform transformations

that are guaranteed not to produce incorrect answers

• Initializations are often ignored
– Need to include run-time initialization in hardware (e.g. reset)

• How many bits are required to represent next_state ?

10

Inference from Simple CSA’s

target_signal <= expression;

e.g. A <= (B nand C) or Y after 12 ns;

• A simple CSA assigns a value to a target signal that is a
function of the present value of the signals in the RHS
expression.
– Whenever an event occurs on any signal in expression,

target_signal is re-evaluated.
– no memory of previous values

• The synthesis compiler will infer a combinational circuit
• Delay information (e.g. after 12 ns) will be ignored.
• You can control inferred structure by appropriately

grouping logic operations into assignment statements
11

Logical Grouping

entity abc is
port(w, x, y, z: in std_logic;

A, B, C: out std_logic);
end entity abc;

architecture dataflow of abc is
signal s1, s2: std_logic;
begin
A <= w and x and y and z;
s1 <= w and x;
s2 <= y and z;
B <= s1 and s2;
s3 <= w and x;
s4 <= s3 and y;
C <= s4 and z;
end architecture;

12

• Use of intermediate signals can be used to infer different
logical (RTL) implementations:

Logical Grouping Modified by Mapping

13

• RTL structure may be considerably modified by
technology mapping and optimization:

16x1
LUT

in CLB

w
x
y
z

a
b
c
d

z B

FPGA
implementation

z=a.b.c.d

CMOS standard cell
implementation

Inference from Conditional Signal Assignment

14

architecture cond_sa of mux is
begin

z <= a and b when sel=‘0’ else
a or b;

end cond_sa;

sel

a
b

z

8x1
LUT

a
b

sel

a
b
c z z

gate-level RTL

FPGA implementation

z=sel’.a.b + sel.(a+b)

• What happens if there are combinations of inputs that
do not result in an assignment?

• A latch is inferred to cover the case sel=‘0’
– This is now a sequential circuit – is that what we intended?

• We may not care what the result is when sel=‘0’
• Result is unnecessary, hazardous hardware

– If we really wanted sequential operation, better to use flip-flop

• If combinational circuit is intention, make sure output is
always assigned a value by using a final else clause

Incomplete Assignment Implies Latch

15

architecture cond_sa of mux is
begin

z <= a and b when sel=‘1’;
end cond_sa; sel

a zD

G

Q
b

• This is great for priority encoder, but what about
multiplexer where all conditions are mutually exclusive?

• Only red gates are needed to implement multiplexer
• Blue gates are inferred to maintain priority coding
• Not needed because the clauses are mutually exclusive

Conditional Maintains Priority Order

16

architecture behave of mux4 is
begin

z <= in0 when sel=“00” else
in1 when sel=“01” else
in2 when sel=“10” else
in3 when sel=“11” else
‘0’;

end behave;

in0

in1

in2

sel(1)

sel(0)

in3

z

• SSA is better construct for building a muliplexer
– No longer implied priority order
– Clauses are required to be mutually exclusive
– No redundant gates

Selected Signal Assignment

17

architecture SSA of mux4 is
begin

with sel select
z <= in0 when “00” ,

in1 when “01”,
in2 when “10” ,
in3 when “11”
‘X’ when others;

end SSA;

in0

in1

in2

sel(1)

sel(0)

in3

z

• Simple variable assignment statements generate
combinational logic

• Sensitivity list is usually ignored by synthesis compiler

Inferring Logic from Processes and Variables

18

entity syn_y is
port (x,y,z: in std_logic;

res: out std_logic);
end entity syn_v;

architecture behav of syn_v is
begin
pr1: process (x,y)

variable v1,v2: std_logic;
begin

v1 := x and y;
v2 := v1 xor z;
res <= v1 nand v2;

end process;
end behav;

x
y
z

res

architecture behav of syn_if is
begin
pr1: process (x,y,z,sel)

variable v1: std_logic;
begin

if sel=‘1’ then
v1 := x xor y;
w <= v1 and z;
end if;

end process;
end behav;

• Like conditional assignment statements, if-then-else
statements will generate latches unless every “output
signal” of the statement is assigned a value each time the
process executes
(a) One branch of the if-then-else clause must always be taken AND
(b) A signal assigned a value in one branch must be assigned a

value in all branches.

If-then-else Statements

19

x
y

sel

D

G

Q
z

w

architecture behav of syn_if is
begin
pr1: process (x,y,z,sel)

variable v1: std_logic;
begin

if sel=‘1’ then
v1 := x xor y;
w <= v1 and z;
p <= V1;

else
w<=0;

end if;
end process;

end behav;

If-then-else Statements

20

x
y

sel

D

G

Q

z

p

w

• Can ensure that a signal is always assigned in an if-then-
else clause by including a final else clause that assigns a
default value to all “output signals” of the statement

• Another alternative is to set a signal to a default value
within the process but before the if-then-else statement:

Avoiding latches by “initialization”

21

architecture behav of syn_if is
begin
pr1: process (x,y,z,sel)

variable v1: std_logic;
begin

w <= ‘0’;
if sel=‘1’ then
v1 := x xor y;
w <= v1 and z;
end if;

end process;
end behav;

x
y

sel
z

w

• Can a variable be used in a manner that implies a latch?
• Yes, if in a single active pass through the process a

variable is used before it is assigned:

Variables and Inferred Latches

22

architecture behav2 of syn_if is
begin
pr1: process (x,y,z,sel)

variable v1: std_logic;
begin

w <= ‘0’;
if sel=‘1’ then
w <= v1 and z;
v1 := x xor y;
end if;

end process;
end behav2;

x
y

sel
z

D

G

Q w

• Case statement is ideally suited for implementing
multiplexers
– all clauses must be mutually exclusive
– no implied priority between clauses (unlike if-then-else)
– no redundant logic

• Need to obey same rules to avoid latches
(a) One branch of the case statement must always be true AND
(b) If a signal is assigned a value in one branch of a case statement,

it must be assigned a value no matter which branch is taken.

Case Statement

23

4 input multiplexer

architecture behav of syn_mux is
begin
pr1: process (in0,in1,in2,in3,sel)

begin
case sel is
when “00” => z <= in0;
when “01” => z <= in1;
when “10” => z <= in2;
when “11” => z <= in3;
end case;

end process;
end behav2;

sel(0)
sel(1)

in3

in2

in1

in0

z

24

Sequential Circuits

• Any moderately complex digital system requires the use
of sequential circuits, e.g. to
– identify and modify current state of system
– store and hold data
– identify sequences of inputs
– generate sequences of outputs

• If and case statements and conditional signal
assignments can be used to infer latches

• Latches are not preferred means of generating sequential
circuits.
– A latch is transparent when LE is high – can lead to unintended

asynchronous sequential behavior when a result is fed back to an
input

– Latches are prone to generate race conditions
– Circuits with latches are difficult to verify timing
– Circuits with latches are difficult to test

25

Synchronous (Single Clock) Digital Design

• Preferred design style is combinational circuit modules
connected via positive (negative) edge-triggered flip-flops
that all use a common clock.

26

comb.
block

A
comb.
block

B

comb.
block

c

D Q

D Q D Q

D

D Q

D Q

clk

primary
input

primary
output

Finite State Machine

• Single clock synchronous system can be modeled as a
single combinational block and a multi-bit register

combinational
block

n-bit

clk

registern

n

k-bit
I/O

27

Advantages of single clock synchronous

• Edge triggered D flip-flops are never transparent
– no unintended asynchronous sequential circuits

• Timing can be analyzed by:
– determining all combinational delays
– just add them up
– checking flip-flop setup and hold times

• No race conditions
– only time signal values matter is on clock edge

• Easy to test
• Most real systems, however, cannot be designed using a

single clock
– different timing constraints on various I/O interfaces
– clock delays across chip
– goal is to make the single clock modules as large as possible28

D Flip-flop

• Edge triggered D flip-flops are preferred sequential
component

• Within a process, positive edge triggered operation is
inferred using:

if rising_edge (clk) then -- only with std_logic type
if clk’event and clk=‘1’ then

• For example:
architecture RTL of FFS is
begin
p0: process (a,b,clk)

begin
if rising_edge (clk) then

z <= a xor b;
end if;

end process;
end RTL;

D Qa
b

clk

z

29

Inferring D Flip-flop with Asynchronous Reset

• Asynchronous reset takes precedence over clock
• Flip-flop can also include asynchronous set

architecture RTL of ARFF is
begin
p0: process (a, b, resn, clk)

begin
if resn=‘0’ then

z <= ‘0’;
elsif rising_edge (clk) then

z <= a xor b;
end if;

end process;
end RTL;

a
b

clk

z D Q

AR

resn

30

Inferring D Flip-flop with Synchronous Reset

• Synchronous reset waits for clock
• Flip-flop can also include synchronous set

architecture RTL of ARFF is
begin
p0: process (a, b, resn, clk)

begin
if rising_edge (clk) then

if resn=‘0’ then
z <= ‘0’;

else
z <= a xor b;

end if;
end if;

end process;
end RTL;

a
b

clk

z D Q

SR

resn

31

Example: 4-bit synchronous counter
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity count4 is
port(clk, reset: in std_logic;

count: out std_logic_vector (3 downto 0));
end entity count4;

architecture RTL of count4 is
begin
p0: process (clk, reset)

variable vcount: std_logic_vector (3 downto 0);
begin

if rising_edge (clk) then
if reset=‘1’ then

vcount := “0000”;
else

vcount := vcount+1;
end if;

end if;
count <= vcount;

end process;
end RTL;

32

Example: 4-bit synchronous counter

D Q

D Q

D Q

D Q

reset
clk

count(3)

count(2)

count(1)

count(0)

0
0
0
1

4-bit
adder

33

Wait Statement

• Only one wait statement permitted per process
• Must be the first statement in the process
• Must be of the wait until form

– cannot use wait for or wait on constructs

• Either of these will trigger execution on rising clock edge:
wait until clk’event and clk=‘1’;
wait until rising_edge(clk); -- only with std_logic type

• A D flip-flop will be inferred for all signals assigned in the
process
– all signals are synchronously assigned in process

34

Wait Statement - Example

architecture RTL of ARFF is
begin
p0: process

begin
wait until rising_edge(clk);

if resn=‘0’ then
z <= ‘0’;

else
z <= a xor b;

end if;
end if;

end process;
end RTL;

a
b

clk

z D Q

SR

resn

a
b

clk

z D Q
resn

35

Loop Statements

• For loop is most commonly supported by synthesis
compilers

• Iteration range should be known at compile time
• While statements are usually not supported because

iteration range depends on a variable that may be data
dependent.

• Compiler will unroll the loop, e.g.:

for k in 1 to 3 loop
shift_reg(k) <= shift_reg(k-1);

end loop;
will be replaced by:
shift_reg(1) <= shift_reg(0);
shift_reg(2) <= shift_reg(1);
shift_reg(3) <= shift_reg(2);

36

Functions

• Since:
– functions are executed in zero time and
– functions do not remember local variable values between calls

• Functions will typically infer combinational logic
• Function call is essentially replaced by in-line code

function parity (data: std_logic_vector)
return std_logic is

variable par: std_logic:= ‘0’;
begin

for i in data’range loop
par := par xor data(i);

end loop;
return (par);

end function parity;
signal a: std_logic_vector (3 downto 0);
begin

z <= parity (a);
37

a(2)
a(1)
a(0)

z

a(3)

optimized

‘0’
a(3)
a(2)
a(1) z
a(0)

Procedures

• Like functions, procedures do not remember local
variable values between calls

• Procedures, however, do not necessarily execute in zero
time

• And procedures may assign new events to signals in
parameter list

• Like function, think of procedure calls as substituting the
procedure as inline code in the calling process or
architecture

• Can include a wait statement, but then cannot be called
from a process
– Generally avoid wait statements in a procedure
– Synchronous behavior can be inferred using if-then-else

• If procedure is called from a process with wait statement,
flip-flops will be inferred for all signals assigned in
procedure 38

Tri-state Gates

• A tri-state gate is inferred if the output value is
conditionally set to high impedance Z

en

din dout

din en dout

0 1 0

1 1 1

X 0 Z

39

Z

Examples of Tri-state Gates
architecture RTL of STATE3 is
begin

seq0 : process (Din, EN)
begin

if (EN = '1') then
Dout(0) <= Din(0) xor Din(1);

else DOUT(0) <= 'Z';
end if;

end process;
seq1 : process (EN, Din)
begin

case EN is
when '1' => Dout(1) <= Din(2) nor Din(3);
when others => Dout(1) <= 'Z';

end case;
end process;
Dout(2) <= Din(1) nand Din(2) when EN = '1' else 'Z';
with EN select

Dout(3) <= Din (3) when '1',
'Z' when others;

end RTL;
40

Think of the Hardware Cost

• Comparison operators like =,>,< require comparator
circuits

• Arithmetic operators like +,-, and * imply adder, subtractor,
and multiplier

• Multiplication and division by powers of 2 can be
implemented using an arithmetic shift

• Multiplication by simple constants can be accomplished
with explicit shift & add (e.g. multiply by 3)

• Order of logic and arithmetic operations:

41

Think of the Hardware Cost

• Compare the following:

architecture RTL of modX is
signal A1, B1: unsigned(15 downto 0);
begin

A1 <= A - 1;
B1 <= B - 1;

seq: process
begin

wait until clk;
case SEL is

when ‘0’ => DOUT <= A1;
when ‘1’ => DOUT <= B1;

end case;
end process;

end RTL;

architecture RTL of modX is
begin
seq: process
variable v1: unsigned (15 downto 0);

begin
wait until clk;
case SEL is

when ‘0’ => v1:=A;
when ‘1’ => v1:=B;

end case;
DOUT <= v1 - 1;

end process;
end RTL;

42

Example: Inferring Synthesis

• Draw the logic inferred by the following VHDL code:

entity abc is
port (

A,B, clk, reset: IN bit;
C: OUT bit
);

end abc;

43

architecture RTL of abc is
signal W, X, Y, Z;
begin

W <= X xor Z;
p0: process (clk, A, B, reset)
begin

X <= ‘0’;
if clk=’1’ then

X <= A;
Z <= A and B;

end if;
if reset=’0’ then

Y <= ‘0’;
elsif clk’event and clk=’1’ then

Y <= A nor B;
end if;

end process;
C <= W nand Y;

end RTL;

Summary – Guidelines for Synthesis

(1) While loop is generally not supported
(2) All for loops must have statically determined loop ranges
(3) To avoid a latch being inferred in a conditional CSA,

every execution of the statement must assign a value to
the target signal

(4) To avoid a latch being inferred for a signal in a process,
every executable path through the process must assign a
value to that signal (assign default values before conditionals)

(5) Using a variable in a process before it is assigned will
infer a latch for that variable

(6) Do not specify initial values for signals
(7) Include all signals in process sensitivity list to avoid

mismatch between pre- and post-synthesis simulation
(8) All code should infer hardware structure – avoid

“algorithmic” descriptions of hardware 44

Summary – Guidelines for Synthesis

9) If possible, specify data ranges explicitly in declarations
10)Minimize signal assignment within a process – use

variables
11)If you wish to use both combinational and sequential logic

in a process, use if-then statements to infer flip-flops
rather than wait statement.

12)When possible, move common complex operations out of
the branches of conditional code and place them after the
conditional code. This will generally lead to less hardware

13)Use a case statement rather than if-then-else if clauses
are mutually exclusive – avoids redundant priority logic

14)Avoid level sensitive latches if they are not part of the
target technology library

45

	CPE 487: Digital System Design�Spring 2018
	What is Synthesis?
	Synthesis Process
	Limitations of Synthesis
	Example of inefficient synthesis
	Inference
	Inferring Hardware from VHDL Code
	Inferring Signals
	Flip-flop vs. Latch
	Inference from Declarations
	Inference from Simple CSA’s
	Logical Grouping
	Logical Grouping Modified by Mapping
	Inference from Conditional Signal Assignment
	Incomplete Assignment Implies Latch
	Conditional Maintains Priority Order
	Selected Signal Assignment
	Inferring Logic from Processes and Variables
	If-then-else Statements
	If-then-else Statements
	Avoiding latches by “initialization”
	Variables and Inferred Latches
	Case Statement
	4 input multiplexer
	Sequential Circuits
	Synchronous (Single Clock) Digital Design
	Finite State Machine
	Advantages of single clock synchronous
	D Flip-flop
	Inferring D Flip-flop with Asynchronous Reset
	Inferring D Flip-flop with Synchronous Reset
	Example: 4-bit synchronous counter
	Example: 4-bit synchronous counter
	Wait Statement
	Wait Statement - Example
	Loop Statements
	Functions
	Procedures
	Tri-state Gates
	Examples of Tri-state Gates
	Think of the Hardware Cost
	Think of the Hardware Cost
	Example: Inferring Synthesis
	Summary – Guidelines for Synthesis
	Summary – Guidelines for Synthesis

