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What is Synthesis?

• Process of creating a RTL or gate level net-list from a 
VHDL model

• Net-list can be used to create a physical (hardware)  
implementation
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Synthesis Process
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Limitations of Synthesis

• VHDL can model a hardware system at different levels 
of abstraction from gate level up algorithmic level

• Synthesis tools cannot, in general, map arbitrary high 
level behavioral models into hardware.

• Many VHDL constructs have no hardware equivalent:
wait for 10 ns;
signal a1: real;
y<= x’last_value;
assert a=b report “mismatch” severity error;

• Even if VHDL code is synthesizable, it may lead to very 
inefficient (in terms of area, speed) implementation

• In moving from VHDL high level behavioral description 
to synthesizable VHDL hardware description, designer 
needs to know:
– What subset of VHDL is synthesizable
– What hardware in inferred by various VHDL constructs 4



Example of inefficient synthesis

• 8 x 8 matrix multiply:
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mpr: process (A,B) is
variable sum: integer;
begin

for i in 1 to 8 loop
for j in 1 to 8 loop

sum:=0;
for k in 1 to 8 loop

sum := sum + A(i)(k)*B(k)(j);
end loop;
C(i)(j) <= sum;

end loop;
end loop;

end process;

Uses: 512 multipliers
448 adders 



Inference

• Synthesis is the process of hardware inference followed 
by optimization

• The synthesis compiler infers hardware structures from 
your VHDL code

• Those hardware structures are subsequently optimized
to meet your area and/or speed constraints.

• Part of being a good synthesis designer is being able to 
put yourself in the place of the compiler and understand 
what hardware constructs are likely to be inferred from 
your code.
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Inferring Hardware from VHDL Code
entity synth is
port(A,B,C,D: in integer;

sel: in std_logic_vector(1 downto 0);
Z:out integer);

architecture behavioral of synth is
begin

with sel select
Z <= A+B when “00”
C+D when “10”
0 when others;
end architecture behavioral;

• We need an adder (and a multiplexer).
– How large (how many bits) should the adder be?
– Integers can be up to 32 bits
– What if A,B,C and D are in the range 0-20?

• Do we need two adders, or can one adder be shared?
– Are we more concerned with speed or area? 7



Inferring Signals

• In regular programming languages, declared variables & 
constants are used to allocate storage.

• In VHDL, signals are used to represent timed 
information flow between subsystems.
– How are signals represented in hardware?

• When synthesizing from VHDL, the basic hardware 
implementations of signals are:
– Wires
– Latches (level sensitive)
– Flip-flops (edge triggered)

• Signals generated by combinational expressions (where 
signal value depends only on the current value of the 
inputs) will infer wires

• Signals generated by sequential expressions (where 
signal value depends on current and previous value of 
inputs) will infer latches or flip-flops 8



Flip-flop vs. Latch
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Inference from Declarations

• When a signal is declared, there needs to be sufficient 
information to determine the correct number of bits

signal result: std_logic_vector (12 downto 0);
signal count: integer;
signal index: integer range 0 to 18:= 0;

type state_type is (state0, state1, state2, state3);
signal next_state: state_type;

• How many bits are required to represent count ?
– Compilers are conservative: they will only perform transformations 

that are guaranteed not to produce incorrect answers

• Initializations are often ignored
– Need to include run-time initialization in hardware (e.g. reset)

• How many bits are required to represent next_state ?
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Inference from Simple CSA’s

target_signal <= expression;

e.g. A <= (B nand C) or Y after 12 ns;

• A simple CSA assigns a value to a target signal that is a 
function of the present value of the signals in the RHS 
expression.
– Whenever an event occurs on any signal in expression, 

target_signal is re-evaluated.
– no memory of previous values

• The synthesis compiler will infer a combinational circuit
• Delay information (e.g. after 12 ns) will be ignored.
• You can control inferred structure by appropriately 

grouping logic operations into assignment statements
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Logical Grouping

entity abc is
port(w, x, y, z: in std_logic;

A, B, C: out std_logic);
end entity abc;

architecture dataflow of abc is
signal s1, s2: std_logic;
begin
A <= w and x and y and z;
s1 <= w and x;
s2 <= y and z;
B <= s1 and s2;
s3 <= w and x;
s4 <= s3 and y;
C <= s4 and z;
end architecture;

12

• Use of intermediate signals can be used to infer different 
logical (RTL) implementations:



Logical Grouping Modified by Mapping 
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Inference from Conditional Signal Assignment
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architecture cond_sa of mux is
begin

z <=  a and b when sel=‘0’ else
a or b;

end cond_sa;
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• What happens if there are combinations of inputs that 
do not result in an assignment?

• A latch is inferred to cover the case sel=‘0’
– This is now a sequential circuit – is that what we intended?

• We may not care what the result is when sel=‘0’
• Result is unnecessary, hazardous hardware

– If we really wanted sequential operation, better to use flip-flop

• If combinational circuit is intention, make sure output is 
always assigned a value by using a final else clause

Incomplete Assignment Implies Latch
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architecture cond_sa of mux is
begin

z <=  a and b when sel=‘1’;
end cond_sa; sel
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• This is great for priority encoder, but what about 
multiplexer where all conditions are mutually exclusive?

• Only red gates are needed to implement multiplexer
• Blue gates are inferred to maintain priority coding
• Not needed because the clauses are mutually exclusive

Conditional Maintains Priority Order
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architecture behave of mux4 is
begin

z <=  in0 when sel=“00” else
in1 when sel=“01” else
in2 when sel=“10” else
in3 when sel=“11” else
‘0’;

end behave;
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• SSA is better construct for building a muliplexer
– No longer implied priority order
– Clauses are required to be mutually exclusive
– No redundant gates

Selected Signal Assignment
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architecture SSA of mux4 is
begin

with sel select
z <=  in0 when “00” ,

in1 when “01”,
in2 when “10” ,
in3 when “11”
‘X’ when others;

end SSA;
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• Simple variable assignment statements generate 
combinational logic

• Sensitivity list is usually ignored by synthesis compiler

Inferring Logic from Processes and Variables
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entity syn_y is
port ( x,y,z: in std_logic;

res: out std_logic);
end entity syn_v;

architecture behav of syn_v is
begin
pr1: process (x,y) 

variable v1,v2: std_logic;
begin

v1 := x and y;
v2 := v1 xor z;
res <= v1 nand v2;

end process;
end behav;

x
y
z

res



architecture behav of syn_if is
begin
pr1: process (x,y,z,sel) 

variable v1: std_logic;
begin

if sel=‘1’ then
v1 := x xor y;
w <= v1 and z;
end if;

end process;
end behav;

• Like conditional assignment statements, if-then-else 
statements will generate latches unless every “output 
signal” of the statement is assigned a value each time the 
process executes
(a) One branch of the if-then-else clause must always be taken AND
(b) A signal assigned a value in one branch must be assigned a 

value in all branches.

If-then-else Statements
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architecture behav of syn_if is
begin
pr1: process (x,y,z,sel) 

variable v1: std_logic;
begin

if sel=‘1’ then
v1 := x xor y;
w <= v1 and z;
p <= V1;

else
w<=0;

end if;
end process;

end behav;

If-then-else Statements
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• Can ensure that a signal is always assigned in an if-then-
else clause by including a final else clause that assigns a 
default value to all “output signals” of the statement 

• Another alternative is to set a signal to a default value 
within the process but before the if-then-else statement:

Avoiding latches by “initialization”
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architecture behav of syn_if is
begin
pr1: process (x,y,z,sel) 

variable v1: std_logic;
begin

w <= ‘0’;
if sel=‘1’ then
v1 := x xor y;
w <= v1 and z;
end if;

end process;
end behav;
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• Can a variable be used in a manner that implies a latch?
• Yes, if in a single active pass through the process a 

variable is used before it is assigned:

Variables and Inferred Latches
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architecture behav2 of syn_if is
begin
pr1: process (x,y,z,sel) 

variable v1: std_logic;
begin

w <= ‘0’;
if sel=‘1’ then
w <= v1 and z;
v1 := x xor y;
end if;

end process;
end behav2;
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• Case statement is ideally suited for implementing 
multiplexers
– all clauses must be mutually exclusive 
– no implied priority between clauses (unlike if-then-else)
– no redundant logic

• Need to obey same rules to avoid latches
(a) One branch of the case statement must always be true AND
(b) If a signal is assigned a value in one branch of a case statement, 

it must be assigned a value no matter which branch is taken.

Case Statement
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4 input multiplexer

architecture behav of syn_mux is
begin
pr1: process (in0,in1,in2,in3,sel) 

begin
case sel is
when “00” => z <= in0;
when “01” => z <= in1;
when “10” => z <= in2;
when “11” => z <= in3;
end case;

end process;
end behav2;

sel(0) 
sel(1) 

in3 

in2 

in1 

in0 

z 
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Sequential Circuits

• Any moderately complex digital system requires the use 
of sequential circuits, e.g. to 
– identify and modify current state of system
– store and hold data
– identify sequences of inputs
– generate sequences of outputs

• If and case statements and conditional signal 
assignments can be used to infer latches

• Latches are not preferred means of generating sequential 
circuits.
– A latch is transparent when LE is high – can lead to unintended 

asynchronous sequential behavior when a result is fed back to an 
input

– Latches are prone to generate race conditions
– Circuits with latches are difficult to verify timing
– Circuits with latches are difficult to test

25



Synchronous (Single Clock) Digital Design

• Preferred design style is combinational circuit modules 
connected via positive (negative) edge-triggered flip-flops 
that all use a common clock.
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Finite State Machine

• Single clock synchronous system can be modeled as a 
single combinational block and a multi-bit register
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Advantages of single clock synchronous

• Edge triggered D flip-flops are never transparent
– no unintended asynchronous sequential circuits

• Timing can be analyzed by:
– determining all combinational delays 
– just add them up
– checking flip-flop setup and hold times

• No race conditions
– only time signal values matter is on clock edge

• Easy to test 
• Most real systems, however, cannot be designed using a 

single clock
– different timing constraints on various I/O interfaces
– clock delays across chip
– goal is to make the single clock modules as large as possible28



D Flip-flop

• Edge triggered D flip-flops are preferred sequential 
component

• Within a process, positive edge triggered operation is 
inferred using:

if  rising_edge (clk) then -- only with std_logic type
if clk’event and clk=‘1’ then

• For example:
architecture RTL of FFS is
begin
p0: process (a,b,clk)

begin
if rising_edge (clk) then

z <= a xor b;
end if;

end process;
end RTL;

D Qa 
b 

clk

z 
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Inferring D Flip-flop with Asynchronous Reset

• Asynchronous reset takes precedence over clock
• Flip-flop can also include asynchronous set

architecture RTL of ARFF is
begin
p0: process (a, b, resn, clk)

begin
if resn=‘0’  then

z <= ‘0’;
elsif rising_edge (clk) then

z <= a xor b;
end if;

end process;
end RTL;

a 
b 

clk

z D Q

AR

resn
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Inferring D Flip-flop with Synchronous Reset

• Synchronous reset waits for clock
• Flip-flop can also include synchronous set

architecture RTL of ARFF is
begin
p0: process (a, b, resn, clk)

begin
if rising_edge (clk) then

if resn=‘0’  then
z <= ‘0’;

else
z <= a xor b;

end if;
end if;

end process;
end RTL;

a 
b 

clk

z D Q

SR

resn
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Example: 4-bit synchronous counter
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity count4 is
port( clk, reset: in std_logic;

count: out std_logic_vector (3 downto 0));
end entity count4;

architecture RTL of count4 is
begin
p0: process (clk, reset)

variable vcount: std_logic_vector (3 downto 0);
begin

if rising_edge (clk) then
if reset=‘1’  then

vcount := “0000”;
else

vcount := vcount+1;
end if;

end if;
count <= vcount;

end process;
end RTL;
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Example: 4-bit synchronous counter
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Wait Statement

• Only one wait statement permitted per process
• Must be the first statement in the process
• Must be of the wait until form

– cannot use wait for or wait on constructs

• Either of  these will trigger execution on rising clock edge:
wait until clk’event and clk=‘1’;
wait until rising_edge(clk);    -- only with std_logic type

• A D flip-flop will be inferred for all signals assigned in the 
process 
– all signals are synchronously assigned in process
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Wait Statement - Example

architecture RTL of ARFF is
begin
p0: process 

begin
wait until rising_edge(clk);

if resn=‘0’  then
z <= ‘0’;

else
z <= a xor b;

end if;
end if;

end process;
end RTL;
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clk

z D Q
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resn

a 
b 

clk

z D Q
resn

35



Loop Statements

• For loop is most commonly supported by synthesis 
compilers

• Iteration range should be known at compile time
• While statements are usually not supported because 

iteration range depends on a variable that may be data 
dependent.

• Compiler will unroll the loop, e.g.:

for k in 1 to 3 loop
shift_reg(k) <= shift_reg(k-1);

end loop;
will be replaced by:
shift_reg(1) <= shift_reg(0);
shift_reg(2) <= shift_reg(1);
shift_reg(3) <= shift_reg(2);
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Functions

• Since:
– functions are executed in zero time and 
– functions do not remember local variable values between calls

• Functions will typically infer combinational logic
• Function call is essentially replaced by in-line code

function parity (data: std_logic_vector)
return std_logic is

variable par: std_logic:= ‘0’;
begin

for i in data’range loop
par := par xor data(i);

end loop;
return (par);

end function parity;
signal a: std_logic_vector (3 downto 0);
begin

z <= parity (a);
37
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Procedures

• Like functions, procedures do not remember local 
variable values between calls

• Procedures, however, do not necessarily execute in zero 
time

• And procedures may assign new events to signals in 
parameter list

• Like function, think of procedure calls as substituting the 
procedure as inline code in the calling process or 
architecture

• Can include a wait statement, but then cannot be called 
from a process
– Generally avoid wait statements in a procedure
– Synchronous behavior can be inferred using if-then-else

• If procedure is called from a process with wait statement, 
flip-flops will be inferred for all signals assigned in 
procedure 38



Tri-state Gates

• A tri-state gate is inferred if  the output value is 
conditionally set to high impedance Z

en

din dout

din en dout

0 1 0

1 1 1

X 0 Z
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Examples of Tri-state Gates
architecture RTL of STATE3 is
begin

seq0 : process (Din, EN)
begin

if (EN = '1') then
Dout(0) <= Din(0) xor Din(1);

else DOUT(0) <= 'Z';
end if;

end process;
seq1 : process (EN, Din)
begin

case EN is
when '1' => Dout(1) <= Din(2) nor Din(3);
when others => Dout(1) <= 'Z';

end case;
end process;
Dout(2) <= Din(1) nand Din(2) when EN = '1' else 'Z';
with EN select

Dout(3) <= Din (3) when '1',
'Z'    when others;

end RTL;
40



Think of the Hardware Cost

• Comparison operators like =,>,< require comparator 
circuits

• Arithmetic operators like +,-, and * imply adder, subtractor, 
and multiplier

• Multiplication and division by powers of 2 can be 
implemented using an arithmetic shift

• Multiplication by simple constants can be accomplished 
with explicit shift & add (e.g. multiply by 3)

• Order of logic and arithmetic operations:
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Think of the Hardware Cost 

• Compare the following:

architecture RTL of modX is
signal A1, B1: unsigned(15 downto 0);
begin

A1 <= A - 1;
B1 <= B - 1;

seq: process 
begin

wait until clk;
case SEL is

when ‘0’  => DOUT <= A1; 
when ‘1’  => DOUT <= B1;

end case;
end process;

end RTL;

architecture RTL of modX is
begin
seq: process 
variable v1: unsigned (15 downto 0);

begin
wait until clk;
case SEL is

when ‘0’  => v1:=A; 
when ‘1’  => v1:=B;

end case;
DOUT <= v1 - 1;

end process;
end RTL;
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Example: Inferring Synthesis

• Draw the logic inferred by the following VHDL code:

entity abc is 
port (

A,B, clk, reset: IN bit;
C: OUT bit
);

end abc;

43

architecture RTL of abc is
signal W, X, Y, Z; 
begin

W <= X xor Z;
p0: process (clk, A, B, reset)
begin

X <=  ‘0’;
if clk=’1’ then

X <=  A;
Z  <=  A and B;

end if;
if reset=’0’ then

Y  <=  ‘0’;
elsif clk’event and clk=’1’ then

Y  <=  A nor B;
end if;

end process;
C <=  W nand Y;

end RTL;



Summary – Guidelines for Synthesis

(1) While loop is generally not supported
(2) All for loops must have statically determined loop ranges
(3) To avoid a latch being inferred in a conditional CSA, 

every execution of the statement must assign a value to 
the target signal

(4) To avoid a latch being inferred for a signal in a process, 
every executable path through the process must assign a 
value to that signal (assign default values before conditionals)

(5) Using a variable in a process before it is assigned will 
infer a latch for that variable

(6) Do not specify initial values for signals
(7) Include all signals in process sensitivity list to avoid 

mismatch between pre- and post-synthesis simulation
(8) All code should infer hardware structure – avoid 

“algorithmic” descriptions of hardware 44



Summary – Guidelines for Synthesis

9) If possible, specify data ranges explicitly in declarations
10)Minimize signal assignment within a process – use 

variables
11)If you wish to use both combinational and sequential logic 

in a process, use if-then statements to infer flip-flops 
rather than wait statement.

12)When possible, move common complex operations out of 
the branches of conditional code and place them after the 
conditional code. This will generally lead to less hardware

13)Use a case statement rather than if-then-else if clauses 
are mutually exclusive – avoids redundant priority logic

14)Avoid level sensitive latches if they are not part of the 
target technology library

45
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