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Structure of Typical Digital System

Provides necessary resources 
& interconnect to perform 
specified task e.g.:
Adders, Multipliers, Shifters, 
Registers, Memories, etc.
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Controls data movement and 
operation of execution unit. 
Usually follows some “program” 
or “sequence”.
Often implemented as one or 
more Finite State Machine(s)



Synchronous (Single Clock) Digital Design

• Preferred design style is combinational circuit modules 
connected via positive (negative) edge-triggered flip-flops 
that all use a common clock.
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Finite State Machine

• Single clock synchronous system can be modeled as a 
single combinational block and a multi-bit register

• Values stored in registers are state of the system
• Number of states is finite (≤ 2n)
• State may change as a function of inputs
• Outputs are function of state and inputs
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General Architecture of FSM

• Next state (nx_state) is a function of present state 
(pr_state) and inputs

• Output is a function of pr_state. May also be a function of 
inputs 

• Reset allows system to be set to a known state
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Mealy Machine

• Output is a function of pr_state and inputs
• Fast response (input -> output) – no FF’s in way
• Leads to a fewer number of states
• Propagates asynchronous behavior (e.g. glitches) from 

input to output
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Moore Machine

• Output is a function of pr_state only
• Slower response:  (input -> output) requires clock 

transition
• Usually requires more states
• Operation is fully synchronous
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Example: Toggle Multiplexer

• Design a synchronous multiplexer that selects between 
two 1-bit inputs a and b. The multiplexer switches from 
one input to the other whenever a third input s is set to ‘1’

• This is a Mealy machine 8
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Example: As a Moore Machine

• This is a Moore machine
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Toggle Multiplexer as Mealy Machine

• General approach is to model FSM as two communicating 
concurrent processes
– Combinational process
– Edge triggered clock process
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library ieee;
use ieee.std_logic_1164.all;

entity tmpx is
port(a,b,s,clk,rst: in std_logic;

z: out std_logic);
end entity tmpx;

architecture mealy of tmpx is
type state is (stateA, stateB);
signal pr_state, nx_state : state;
begin



Clock Process
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p_clk: process (rst, clk)
begin

if (rst = ‘1’) then
pr_state <= stateA;

elsif (clk’event and clk = ‘1’) then
pr_state <= nx_state;

end if;
end process;



Combinational Process uses Case Statement

• Make sure all signals are assigned in all branches of 
case statement to avoid inferring latches 12

p_comb: process (a, b, s, pr_state)
begin

case pr_state is
when stateA => 

z <= a;
if (s = ‘1’) then nx_state <= stateB;

else nx_state <= stateA;
end if;

when stateB => 
z <= b;
if (s = ‘1’) then nx_state <= stateA;

else nx_state <= stateB;
end if;

end case;
end process;

end architecture mealy;



Moore Machine Implementation

architecture moore of tmpx is
type state is (A0, A1, B0, B1);
signal pr_state, nx_state: state;

begin
p0: process (rst, clk)

begin
if (rst = ‘1’) then

pr_state <= A0;
elsif (clk’event and clk = ‘1’) then

pr_state <= nx_state;
end if;

end process;
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Moore Machine Implementation (2)

p_comb: process (a, b, s, pr_state)
begin

case pr_state is
when A0 => 

z<=‘0’;
if s=‘0’ and a=‘1’ then nx_state<=A1;
elsif s=‘1’ and b=‘0’ then nx_state<= B0;
elsif s=‘1’ and b=‘1’ then nx_state<= B1;
else nx_state<=A0;
end if;

when A1 => 
z<=‘1’;
if s=‘0’ and a=‘0’ then nx_state<=A0;
elsif s=‘1’ and b=‘0’ then nx_state<= B0;
elsif s=‘1’ and b=‘1’ then nx_state<= B1;
else nx_state<=A1;
end if;
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Moore Machine Implementation (3)

when B0 => 
z<=‘0’;
if s=‘0’ and b=‘1’ then nx_state<=B1;
elsif s=‘1’ and a=‘0’ then nx_state<= A0;
elsif s=‘1’ and a=‘1’ then nx_state<= A1;
else nx_state<=B0;
end if;

when B1 => 
z<=‘1’;
if s=‘0’ and b=‘0’ then nx_state<=B0;
elsif s=‘1’ and a=‘0’ then nx_state<= A0;
elsif s=‘1’ and a=‘1’ then nx_state<= A1;
else nx_state<=B1;
end if;

end case;
end process;
end moore;
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Example: Sequence Detection

Build a Mealy FSM that has looks for sequence “101” in 
a serial input stream. When it detects the sequence, it 
outputs a 1 and holds that value until the machine is 
reset.
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Sequence Detection: Clock Process
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library ieee;
use ieee.std_logic_1164.all;

entity SD101 is
port(din, reset,clk: in std_logic;

z: out std_logic);
end entity SD101;

architecture mealy of SD101 is
type state is (stateA, stateB, stateC, stateD);
signal pr_state, nx_state : state;
begin
p_clk: process (rst, clk)

begin
if (reset = ‘1’) then

pr_state <= stateA;
elsif (clk’event and clk = ‘1’) then

pr_state <= nx_state;
end if;

end process;



Sequence Detection: Combinational Process

18

p_comb: process (din,  pr_state)
begin

case pr_state is
when stateA => 

z <= ‘0’;
if (din = ‘1’) then nx_state <= stateB;
else nx_state <= stateA;
end if;

when stateB => 
z <= ‘0’;
if (din = ‘1’) then nx_state <= stateB;
else nx_state <= stateC;
end if;

when stateC => 
if (din = ‘1’) then z <= ‘1’;

nx_state <= stateD;
else z <= ‘0’;

nx_state <= stateA;
end if;

when stateD => 
z <= ‘1’;
nx_state <= stateD;

end case;
end process;
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Example: Read-Write Controller
• Suppose we have a read-write controller RWCNTL that acts as 

an interface between a processor and a DMA unit. 
– The DMA unit is used to transfer blocks of data between the processors 

memory and an external storage device like a hard disk.
– Assume the processor has already communicated the memory address and 

byte count information to the DMA unit (this is part of the “data path”)

• Operation:
– Processor raises start signal with RW=1 for reading, RW=0 for writing
– RWCNTL sets (and holds) RDSIG or WRSIG to enable data transfer
– When transfer is complete, DMA raises signal LAST
– RWCNTL then resets RDSIG/WRSIG and raises DONE flag

• Implement RWCNTL as a FSM
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Read/Write Controller – State Transition Diag.
• RWCNTL starts at state IDLE, waiting for input signal START to 

go to ‘1’ and then changes to either state READING or state 
WRITING depending on the value of RW input.

• States READING and WRITING persist until input signal LAST 
goes to ‘1’ which changes state to WAITING. After one clock 
cycle, state WAITING always goes to state IDLE.

• The FSM has three outputs RDSIG, WRSIG, and DONE. They 
are ‘1’ when they are in state READING, WRITING, and 
WAITING, respectively, otherwise they are ‘0’.
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RWCNTL: Clock Process
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entity RWCNTL is
port(

CLK : in  std_logic;
START : in std_logic;
RW    : in std_logic;
LAST : in std_logic;
RDSIG : out std_logic;
WRSIG : out std_logic;
DONE : out std_logic);

end entity RWCNTL;

architecture RTL of RWCNTL is
type STATE is (IDLE, READING,

WRITING, WAITING);
signal PR_STATE, NX_STATE: STATE;

begin

seq : process
begin

wait until CLK'event and CLOCK = '1';
PR_STATE <= NX_STATE;

end process;
end RTL;



RWCNTL: Combinational Process
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comb : process (PR_STATE, START, RW, LAST)
begin

DONE <= '0'; RDSIG <= '0'; WRSIG <= '0';
case PR_STATE is

when IDLE =>
if START = '0' then

NX_STATE <= IDLE;
elsif RW = '1' then

NX_STATE <= READING;
else

NX_STATE <= WRITING;
end if;

when READING =>
RDSIG <= '1';
if LAST = '0' then

NX_STATE <= READING;
else

NX_STATE <= WAITING;
end if;



RWCNTL: Combinational Process (2)
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when WRITING =>
WRSIG <= '1';

if LAST = '0' then
NX_STATE <= WRITING;

else
NX_STATE <= WAITING;

end if;
when WAITING =>

DONE <= '1';
NX_STATE <= IDLE;

end case;
end process;



Simulation Waveforms

24



Synthesized RWCNTL
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RWCNTL: Add Asynchronous Reset
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seq : process
begin

if (RESETn = '0') then
PR_STATE <= IDLE;

elsif (CLOCK'event and CLOCK = '1') then
PR_STATE <= NX_STATE;

end if; 
end process;

end RTL;
RWCNTL

START
RW

DONE LAST

READING
WRITING

CLK RESETn



Synthesized RWCNTL with Asynch. Reset
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State Space Explosion

• Until now, we have considered state machines in 
which all possible states can be explicitly enumerated
– e.g. stateA, stateB, etc.

• Sometimes a FSM, in order to respond to a particular 
sequence of external events,  will need to process 
and store some data – and the value of that data 
effectively becomes part of the state of the machine

• Because an n-bit data word can take on 2n different 
values, this can lead to a state space explosion in 
which there are more states than can be explicitly 
enumerated
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State Space Explosion - Example

Build a Moore FSM that has looks for sequence of 93 
successive ‘1’s in a serial input stream. When it detects 
the sequence, it outputs a 1 and holds that value until 
the machine is reset.
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Augment State with Synchronous Data

• A solution is to keep the ones count in a data word that 
effectively becomes part of the machine state

• Machine state is a combination of symbolic (pr_state) and 
numerical (pr_data) values 30

input

output

nx_statepr_state

clock
reset

Next State
Function

Output
Function

ones count

nx_data
pr_data

Sequential
Logic



Augment State with Synchronous Data

• We have augmented the state with a computed data value

• “count” data is synchronously updated in clock process
• “count” becomes part of the machine state
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SD93 Sequence Detection: Clock Process
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library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity SD93 is

port(din, reset,clk: in std_logic;
z: out std_logic);

end entity SD93;
architecture moore of SD93 is
type state is (stateA, stateB, stateC);
signal pr_state, nx_state: state;
signal pr_count, nx_count: std_logic vector (6 downto 0);
begin
p_clk: process (rst, clk)

begin
if (reset = ‘1’) then

pr_state <= stateA;
pr_count <= (others=>’0’);

elsif (clk’event and clk = ‘1’) then
pr_state <= nx_state;
pr_count <= nx_count;

end if;
end process;



SD93 Sequence Detection: Comb. Process
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p_comb: process (din,  pr_state, pr_count)
begin

z <= ‘0’; nx_count <= pr_count;
case pr_state is
when stateA => 

if din = ‘1’ then
nx_state <= stateB;
nx_count <= “0000001”;

else
nx_state <= stateA;
nx_count <= (others=> ‘0’)

end if;

when stateB => 
if din = ‘1’ and pr_count >= 92  then 

nx_state <= stateC;
elsif din = ‘1’ then 

nx_state <= stateB;
nx_count <= pr_count + 1;

else 
nx_state <= stateA;
nx_count <= (others => ‘0’);

end if;
when stateC => 

z <= ‘1’;
nx_state <= stateC;

end case;
end process;



Example: Another Sequence Detector
• You are required to design a circuit that takes as input a serial 

bit stream and outputs a ‘1’ whenever there are two successive 
transitions, i.e. whenever the sequences 101 or 010 occur. 
Overlaps must be considered. For example:

Input:    …11010011…
Output: …00011000…

Draw the Mealy and Moore FSM state diagrams.
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