
CPE 487: Digital System Design
Spring 2018

Lecture 13
Finite State Machines (FSM)

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Structure of Typical Digital System

Provides necessary resources
& interconnect to perform
specified task e.g.:
Adders, Multipliers, Shifters,
Registers, Memories, etc.

2

Execution
Unit

(Datapath)

Data Inputs

Data Outputs

Control
Unit

(Control)

Control Inputs

Control Outputs

Control
Signals

Controls data movement and
operation of execution unit.
Usually follows some “program”
or “sequence”.
Often implemented as one or
more Finite State Machine(s)

Synchronous (Single Clock) Digital Design

• Preferred design style is combinational circuit modules
connected via positive (negative) edge-triggered flip-flops
that all use a common clock.

3

comb.
block

A
comb.
block

B

comb.
block

c

D Q

D Q D Q

D

D Q

D Q

clk

primary
input

primary
output

Finite State Machine

• Single clock synchronous system can be modeled as a
single combinational block and a multi-bit register

• Values stored in registers are state of the system
• Number of states is finite (≤ 2n)
• State may change as a function of inputs
• Outputs are function of state and inputs

combinational
block

n-bit

clk

registern

n

k-bit
I/O

4

General Architecture of FSM

• Next state (nx_state) is a function of present state
(pr_state) and inputs

• Output is a function of pr_state. May also be a function of
inputs

• Reset allows system to be set to a known state

Combinational
Logic

Sequential
Logic

input output

nx_statepr_state

clock
reset

5

Mealy Machine

• Output is a function of pr_state and inputs
• Fast response (input -> output) – no FF’s in way
• Leads to a fewer number of states
• Propagates asynchronous behavior (e.g. glitches) from

input to output

Sequential
Logic

input output

nx_statepr_state

clock
reset

Next State
Function

Output
Function

6

Moore Machine

• Output is a function of pr_state only
• Slower response: (input -> output) requires clock

transition
• Usually requires more states
• Operation is fully synchronous

Sequential
Logic

input

output

nx_statepr_state

clock
reset

Next State
Function

Output
Function

7

Example: Toggle Multiplexer

• Design a synchronous multiplexer that selects between
two 1-bit inputs a and b. The multiplexer switches from
one input to the other whenever a third input s is set to ‘1’

• This is a Mealy machine 8

a
b
s

clk rst

z

State
A

State
B

s=0,
z=b

s=0,
z=a

s=1, z=b

s=1, z=a

Example: As a Moore Machine

• This is a Moore machine
9

State
A1
z=1

State
A0
z=0

s=0,
a=0

s=0,
a=1

s=0,
a=0

s=0,
a=1

State
B1
z=1

State
B0
z=0

s=0,
b=1

s=0,
b=0

s=0,
b=0

s=0,
b=1

s=1, b=0

s=1, a=0

s=1, a=1

s=1, b=1

Toggle Multiplexer as Mealy Machine

• General approach is to model FSM as two communicating
concurrent processes
– Combinational process
– Edge triggered clock process

10

library ieee;
use ieee.std_logic_1164.all;

entity tmpx is
port(a,b,s,clk,rst: in std_logic;

z: out std_logic);
end entity tmpx;

architecture mealy of tmpx is
type state is (stateA, stateB);
signal pr_state, nx_state : state;
begin

Clock Process

11

p_clk: process (rst, clk)
begin

if (rst = ‘1’) then
pr_state <= stateA;

elsif (clk’event and clk = ‘1’) then
pr_state <= nx_state;

end if;
end process;

Combinational Process uses Case Statement

• Make sure all signals are assigned in all branches of
case statement to avoid inferring latches 12

p_comb: process (a, b, s, pr_state)
begin

case pr_state is
when stateA =>

z <= a;
if (s = ‘1’) then nx_state <= stateB;

else nx_state <= stateA;
end if;

when stateB =>
z <= b;
if (s = ‘1’) then nx_state <= stateA;

else nx_state <= stateB;
end if;

end case;
end process;

end architecture mealy;

Moore Machine Implementation

architecture moore of tmpx is
type state is (A0, A1, B0, B1);
signal pr_state, nx_state: state;

begin
p0: process (rst, clk)

begin
if (rst = ‘1’) then

pr_state <= A0;
elsif (clk’event and clk = ‘1’) then

pr_state <= nx_state;
end if;

end process;

13

Moore Machine Implementation (2)

p_comb: process (a, b, s, pr_state)
begin

case pr_state is
when A0 =>

z<=‘0’;
if s=‘0’ and a=‘1’ then nx_state<=A1;
elsif s=‘1’ and b=‘0’ then nx_state<= B0;
elsif s=‘1’ and b=‘1’ then nx_state<= B1;
else nx_state<=A0;
end if;

when A1 =>
z<=‘1’;
if s=‘0’ and a=‘0’ then nx_state<=A0;
elsif s=‘1’ and b=‘0’ then nx_state<= B0;
elsif s=‘1’ and b=‘1’ then nx_state<= B1;
else nx_state<=A1;
end if;

14

Moore Machine Implementation (3)

when B0 =>
z<=‘0’;
if s=‘0’ and b=‘1’ then nx_state<=B1;
elsif s=‘1’ and a=‘0’ then nx_state<= A0;
elsif s=‘1’ and a=‘1’ then nx_state<= A1;
else nx_state<=B0;
end if;

when B1 =>
z<=‘1’;
if s=‘0’ and b=‘0’ then nx_state<=B0;
elsif s=‘1’ and a=‘0’ then nx_state<= A0;
elsif s=‘1’ and a=‘1’ then nx_state<= A1;
else nx_state<=B1;
end if;

end case;
end process;
end moore;

15

Example: Sequence Detection

Build a Mealy FSM that has looks for sequence “101” in
a serial input stream. When it detects the sequence, it
outputs a 1 and holds that value until the machine is
reset.

16

SD101
reset
din

…10100110…

z

clk

A B C D

0/0

reset 1/0

1/0

0/0 1/1

0/1

1/10/0

Sequence Detection: Clock Process

17

SD101
reset
din

z

clk

library ieee;
use ieee.std_logic_1164.all;

entity SD101 is
port(din, reset,clk: in std_logic;

z: out std_logic);
end entity SD101;

architecture mealy of SD101 is
type state is (stateA, stateB, stateC, stateD);
signal pr_state, nx_state : state;
begin
p_clk: process (rst, clk)

begin
if (reset = ‘1’) then

pr_state <= stateA;
elsif (clk’event and clk = ‘1’) then

pr_state <= nx_state;
end if;

end process;

Sequence Detection: Combinational Process

18

p_comb: process (din, pr_state)
begin

case pr_state is
when stateA =>

z <= ‘0’;
if (din = ‘1’) then nx_state <= stateB;
else nx_state <= stateA;
end if;

when stateB =>
z <= ‘0’;
if (din = ‘1’) then nx_state <= stateB;
else nx_state <= stateC;
end if;

when stateC =>
if (din = ‘1’) then z <= ‘1’;

nx_state <= stateD;
else z <= ‘0’;

nx_state <= stateA;
end if;

when stateD =>
z <= ‘1’;
nx_state <= stateD;

end case;
end process;

A B C D

0/0

reset 1/0

1/0

0/0 1/1

0/1

1/10/0

Example: Read-Write Controller
• Suppose we have a read-write controller RWCNTL that acts as

an interface between a processor and a DMA unit.
– The DMA unit is used to transfer blocks of data between the processors

memory and an external storage device like a hard disk.
– Assume the processor has already communicated the memory address and

byte count information to the DMA unit (this is part of the “data path”)

• Operation:
– Processor raises start signal with RW=1 for reading, RW=0 for writing
– RWCNTL sets (and holds) RDSIG or WRSIG to enable data transfer
– When transfer is complete, DMA raises signal LAST
– RWCNTL then resets RDSIG/WRSIG and raises DONE flag

• Implement RWCNTL as a FSM

19

RWCNTL

START

RW

DONE LAST

RDSIG

WRSIG

CLK

processor DMA

address # bytes

Read/Write Controller – State Transition Diag.
• RWCNTL starts at state IDLE, waiting for input signal START to

go to ‘1’ and then changes to either state READING or state
WRITING depending on the value of RW input.

• States READING and WRITING persist until input signal LAST
goes to ‘1’ which changes state to WAITING. After one clock
cycle, state WAITING always goes to state IDLE.

• The FSM has three outputs RDSIG, WRSIG, and DONE. They
are ‘1’ when they are in state READING, WRITING, and
WAITING, respectively, otherwise they are ‘0’.

20

RWCNTL

START
RW

DONE LAST

RDSIG
WRSIG

CLK

RWCNTL: Clock Process

21

RWCNTL

START
RW

DONE LAST

READING
WRITING

CLK

entity RWCNTL is
port(

CLK : in std_logic;
START : in std_logic;
RW : in std_logic;
LAST : in std_logic;
RDSIG : out std_logic;
WRSIG : out std_logic;
DONE : out std_logic);

end entity RWCNTL;

architecture RTL of RWCNTL is
type STATE is (IDLE, READING,

WRITING, WAITING);
signal PR_STATE, NX_STATE: STATE;

begin

seq : process
begin

wait until CLK'event and CLOCK = '1';
PR_STATE <= NX_STATE;

end process;
end RTL;

RWCNTL: Combinational Process

22

comb : process (PR_STATE, START, RW, LAST)
begin

DONE <= '0'; RDSIG <= '0'; WRSIG <= '0';
case PR_STATE is

when IDLE =>
if START = '0' then

NX_STATE <= IDLE;
elsif RW = '1' then

NX_STATE <= READING;
else

NX_STATE <= WRITING;
end if;

when READING =>
RDSIG <= '1';
if LAST = '0' then

NX_STATE <= READING;
else

NX_STATE <= WAITING;
end if;

RWCNTL: Combinational Process (2)

23

when WRITING =>
WRSIG <= '1';

if LAST = '0' then
NX_STATE <= WRITING;

else
NX_STATE <= WAITING;

end if;
when WAITING =>

DONE <= '1';
NX_STATE <= IDLE;

end case;
end process;

Simulation Waveforms

24

Synthesized RWCNTL

25

RWCNTL: Add Asynchronous Reset

26

seq : process
begin

if (RESETn = '0') then
PR_STATE <= IDLE;

elsif (CLOCK'event and CLOCK = '1') then
PR_STATE <= NX_STATE;

end if;
end process;

end RTL;
RWCNTL

START
RW

DONE LAST

READING
WRITING

CLK RESETn

Synthesized RWCNTL with Asynch. Reset

27

State Space Explosion

• Until now, we have considered state machines in
which all possible states can be explicitly enumerated
– e.g. stateA, stateB, etc.

• Sometimes a FSM, in order to respond to a particular
sequence of external events, will need to process
and store some data – and the value of that data
effectively becomes part of the state of the machine

• Because an n-bit data word can take on 2n different
values, this can lead to a state space explosion in
which there are more states than can be explicitly
enumerated

28

State Space Explosion - Example

Build a Moore FSM that has looks for sequence of 93
successive ‘1’s in a serial input stream. When it detects
the sequence, it outputs a 1 and holds that value until
the machine is reset.

29

SD93
reset
din

11…111111010…

z

clk
0

reset 1 1 1

0

1

0

A
0

B1
0

B2
0

0

1B92
0

C
1

1

0

Augment State with Synchronous Data

• A solution is to keep the ones count in a data word that
effectively becomes part of the machine state

• Machine state is a combination of symbolic (pr_state) and
numerical (pr_data) values 30

input

output

nx_statepr_state

clock
reset

Next State
Function

Output
Function

ones count

nx_data
pr_data

Sequential
Logic

Augment State with Synchronous Data

• We have augmented the state with a computed data value

• “count” data is synchronously updated in clock process
• “count” becomes part of the machine state

31

reset

din=0

A

0
din=1

din=1, count<92

din=0

din=1, count=92

din=0

din=1

count=1

B

0

C

1

count=count+1

count:=0 count=count

count=0

count=0

SD93 Sequence Detection: Clock Process

32

SD93
reset
din

z

clk

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
entity SD93 is

port(din, reset,clk: in std_logic;
z: out std_logic);

end entity SD93;
architecture moore of SD93 is
type state is (stateA, stateB, stateC);
signal pr_state, nx_state: state;
signal pr_count, nx_count: std_logic vector (6 downto 0);
begin
p_clk: process (rst, clk)

begin
if (reset = ‘1’) then

pr_state <= stateA;
pr_count <= (others=>’0’);

elsif (clk’event and clk = ‘1’) then
pr_state <= nx_state;
pr_count <= nx_count;

end if;
end process;

SD93 Sequence Detection: Comb. Process

33

p_comb: process (din, pr_state, pr_count)
begin

z <= ‘0’; nx_count <= pr_count;
case pr_state is
when stateA =>

if din = ‘1’ then
nx_state <= stateB;
nx_count <= “0000001”;

else
nx_state <= stateA;
nx_count <= (others=> ‘0’)

end if;

when stateB =>
if din = ‘1’ and pr_count >= 92 then

nx_state <= stateC;
elsif din = ‘1’ then

nx_state <= stateB;
nx_count <= pr_count + 1;

else
nx_state <= stateA;
nx_count <= (others => ‘0’);

end if;
when stateC =>

z <= ‘1’;
nx_state <= stateC;

end case;
end process;

Example: Another Sequence Detector
• You are required to design a circuit that takes as input a serial

bit stream and outputs a ‘1’ whenever there are two successive
transitions, i.e. whenever the sequences 101 or 010 occur.
Overlaps must be considered. For example:

Input: …11010011…
Output: …00011000…

Draw the Mealy and Moore FSM state diagrams.

34

	CPE 487: Digital System Design�Spring 2018
	Structure of Typical Digital System
	Synchronous (Single Clock) Digital Design
	Finite State Machine
	General Architecture of FSM
	Mealy Machine
	Moore Machine
	Example: Toggle Multiplexer
	Example: As a Moore Machine
	Toggle Multiplexer as Mealy Machine
	Clock Process
	Combinational Process uses Case Statement
	Moore Machine Implementation
	Moore Machine Implementation (2)
	Moore Machine Implementation (3)
	Example: Sequence Detection
	Sequence Detection: Clock Process
	Sequence Detection: Combinational Process
	Example: Read-Write Controller
	Read/Write Controller – State Transition Diag.
	RWCNTL: Clock Process
	RWCNTL: Combinational Process
	RWCNTL: Combinational Process (2)
	Simulation Waveforms
	Synthesized RWCNTL
	RWCNTL: Add Asynchronous Reset
	Synthesized RWCNTL with Asynch. Reset
	State Space Explosion
	State Space Explosion - Example
	Augment State with Synchronous Data
	Augment State with Synchronous Data
	SD93 Sequence Detection: Clock Process
	SD93 Sequence Detection: Comb. Process
	Example: Another Sequence Detector

