CPE 487: Digital System Design
Spring 2018

Lecture 14
Test Bench Design

Bryan Ackland
Department of Electrical and Computer Engineering
Stevens Institute of Technology
Hoboken, NJ 07030

Testing Digital Circuits

* In our class examples, circuits were limited to a
few Input & outputs

— Easy to set up test bench with processes to explicitly
drive the inputs

— Look at output waveforms to check correct operation

[T wave - default
A - # Mestmyand_vhd/a |1

Processor for

But how do we .
SONY PlayStation 3

test this one?

Test Vectors

* For large complex designs, designers will set up a suite
of test vectors
— One or more files that contain a sequence of inputs and expected

outputs

iInputs expected outputs
0010011100000110 11XX010110
1101001101100101 11X0111010
0100011010011010 1101101110
1110011111010100 0110001110

* Input vectors are typically applied to circuit under test at
some regular clock rate. Outputs are read at same rate
and compared to expected outputs

|t can take many millions of vectors to adequately test a
complex chip e.g., a microprocessor ,

Design Verification vs. Product Testing

* During the design process, we develop functional test
vectors

— Apply vectors similar to what might be expected in normal operation
of chip

— Look for correct functionality across broad range of expected inputs
— Purpose of these functional vectors is to debug the design
— Each time design is refined, we reapply the functional vectors to
check that no mistake has been made in moving from behavioral
modeling to implementation
* Once design has been synthesized into gates, and
checked once more using the functional vectors, we
develop a new set of manufacturing test vectors

— Now checking for manufacturing defects

Testing for Manufacturing Defects

* Popular approach is to assume that all manufacturing
faults can be modeled as a single node being stuck-at
eithera‘O’ ora‘l’

» |deally, develop a set of test vectors that would show an
error if any node is stuck-at ‘O’ or ‘1’

— Not practical as it would take too many vectors to exhaustively test
for all stuck at faults — tradeoff between test time and cost of
sending bad chips into the field

— Ratio of tested faults to all possible faults is known as fault
coverage — 90% is considered good for a large, complex chip

Production chip tester:

Developing a Functional Test Bench

 Develop a set of functional test benches using simple
example: full adder

 Move towards fully automated model:

< [nput signals converted from {\

Design the test vector file Rooid tht -
Under file and s
Test do types i
(DUT) {Output signals Expected convertion
P | compare ——
from DUT e

|- - Pass or fail

Device Under Test: Full-Adder

library IEEE; A
use IEEE.STD LOGIC 1164.ALL; B D— O sum

entity fadder is }1
Port { & : in S5TD LOGIC: — cout
B : in STD LOGIC; E:::>4:>

end fadder:

architecture gates of fadder is=s
signal 51,52,53: =td logicy
begin
51 <= L xor B after 5 ns;
52 <= gcin and 51 after 3 ns;
53 <= 4L and B after 3 ns=:;
sum <= 51 xor cin after Sns;
cout <= 52 or 53 after 3 ns;

end gates;

TB1: A Simple Test Bench

ENTITY fadd tbhl IS
END fadd tbl;

ARCHITECTURE behavior OF fadd tbl
—— Component Declaration for
COMPOMNENT fadder

FORT |

sSum CUT td logic;
cout : OO =td logic

END COMPOMENT:

——Inputs

gignal A : =td logic := '0';
gignal B std logic := '0°;
2ignal cin ztd logic = "'0"';

——Cutputs
signal sum : =td logic:
signal cout 1

BEGIN

—— Instantiate the UUT

uut: fadder POET HMLE |
L =» 0L,
B =» B,
cin =» cin,
Sum => 3um,
cout => cout

Is
ooT

TE: process

constant BERICD:

BEGIN

END;

Lo="0"r Bg="0";
walt for BERIOCD:

Lo="0" Bag="1":
wait for BPERICD:

Le='1": Bes='0";:
walt for EFERICD:

D=ttt Bg=11";
wait for PERIOD:

Lo='0": Bog="'0":
wait for PERICD:

Le='0'> Bg="1";
walt for BERIOCD:

Le='1" Bag="0";
walt for PBERICD:

Lo='1"» Bag="1";
walt for BERIOCD:

time:= 20ins;

cin<="0";

cin<="0";

cin<="0";

cin<="'0";

cin<="1";

cin<="'1";

cin<="1";

cin<="1";

wait; —-— will wait forewver
END process;

TB1: Visually Check Simulation Result

s e R
C

This is a Lite version of ISim.

Time resolution is 1 ps

Simulator is doing drcuit initialization process.
Finished drcuit initialization process.

ISim=

Assert Statement (revisited)

assert boolean-expression

[report string-expression]

[severity expression];

 The boolean-expression is evaluated and if the
expression is false, the string-expression specified in
report statement is displayed in the simulator window

* The severity statement then indicates to the simulator
what action should be taken in response to the
assertion failure.

o Severity: NOTE, WARNING, ERROR, FAILURE.

10

TB2: Using Assert Statement

TE:

process
constant PERICD: time:= 20ns;
BECIN

A<='0"; B<="'0"; cin<="'0";

wait for PERIOCD;

assert (sun="0"'" and cout='0")
report "Test FATILED" severity

Bs='0"r Be="'1"; cin<='0";

wait for FERIOD;

assert (sun='"1"' and cout='0")

report "Test FAILED"™ severity

Be='1"r B<="0"; cin<="'0";

wait for PERICD:

assert(sun="1"' and cnut='ﬂ'”
report "Teszt FAILED" =severity

Bo='1"y B<="1"; cin<="'0";

wait for PERICD:

assert (sum='0"'" and cout='1")

report "Test FAILED" severity

error;

Erroxr;

Erroxr;

error;

Bo='1"; B<='1"; cin<='0"';

wait for PERICD;

assert (sum="0"' and cout="1l")
report "Test FAILED" sewverity

B<='0"; B<='0"; cin<='1"';

wait for PERICD;

assert (sum="'1l"'" and cout="'0")
report "Test FAILED" s=sewverity

L="'0"; B«<="'1'"; cin<='1";

walit for PERICD:

assert (sum="0"' and cout="1l")
report "Test FAILED" s=sewverity

Lo="1"; B<="'0"'"; cin<='1";

walit for PERICD:

assert (sum="0"' and cout="1l")
report "Te=t FAILED"™ s=sewverity

Lo="1"; B«<="'1"'"; cin<='1";

walit for PERICD:

assert (sum="'1l'" and cout="'1")
report "Te=t FAILED"™ s=sewverity

waitcy -—- will wait forewver

END process;

Eerror;

Eerror;

Eerror;

error;

error;

11

TB2: Using Assert —no errors

s e R
C

This is a Lite version of ISim.

Time resolution is 1 ps

Simulator is doing drcuit initialization process.
Finished drcuit initialization process.

ISim=

12

TB2: Using Assert — Introduce error

architecture gates of fadder is
signal 51,52,53: std logic:
begin

51 <= L xor B after 5 n=s;
52 <= cin and 31 after 3 ns;
53 <= L and B after 3 n=;
sum <= 51 in after LSn=;
cout <= 52 or 53 after 3 n=s;

Use or instead of xor

end gates;

0,000 ns

This is a Lite version of ISim,

Time resolution is 1 ps

Simulator is doing dircuit initialization process.
Finished drcuit initialization process.

at 120 ns: Error: Test FAILED
at 140 ns: Error: Test FAILED 13

ISim> |

TB3: Using Test Vector Array

ARCHITECTURE behavior OF fadd tbh3 IS

—— Component Declaration for UOT

COMEBCONENT fadder

PORT |
A,B,cin : IN =std logic;
sum, cout : OUT =td logic
)

END COMPOMENT

——Inputs

gignal & @ std logic := '0';
signal B : std logic := '0';
gignal cin : =std logic = '0';
——Cmtputs

gignal sum : std logic;

signal cout : std logicy

type test array 1s array(integer range<k)
of =td logic vector(0 to 4):

constant test wector: test_array(0 to 7):=(

(o', 'o*, 'o', "0', '0"),
(o', 'o*, '1', *1*', '0"),
(o', 'a+*, ‘o', *i', 'o"),
(rov, "i+, i+, "o, 1),
(*1', 'o*, 'o', *i', 'o"),
(r1i', 'o*, *'1i', "o', "1},
(*1', 'i*, 'o', o', '1"),
(*1*, *i*, 'a*, r1r, ravy
):

EEGIN
—-— Instantiate the UUT
uut: fadder POET MAFP |
L =» L,
E => B,
cin =»> cin,
sum =» Sum,
cout => cout
) :
TE: process
constant PERICOD: time:= 20ns=s;
variable testv: std logic wvector(0 to 4);
BEEGIN

for 1 in test vector'range loop
testv = test vector(i):
4 <= testw(0):
E == testv(l):
cin <= testv(2):
walit for PERICD;
assert (sum=testv(3) and cout=testwv(4))

report "Test FAILED" =sewverity error;
end loop:
wait; -- will wait forewver
END process;

END;

14

TB3: Using Test Vector Array — no errors

Value | [MIE 20ns 0ns 60 ns 30 ns 00 ns 20 ns 0ns 60 ns

#run 1000 ns
Simulator is doing circuit initialization process.

Finished drcuit initialization process.
ISim>

Name
1
g 3

15

Reading and Writing Files — TEXTIO Package

 Afileis a class of object in VHDL (like signal, variable
& constant). Each file has a type.

 The standard VHDL library contains the TEXTIO
package which provides a set of file types, data
types and I/O procedures for simple text I/0O to and
from files

 To make the package visible:
use std.textio.all;

« TEXTIO read and write procedures are available for
predefined types bit, bit_vector, character and string

 The ieee.std logic textio package overloads these

procedures to support std logic and std_logic_vector
16

Declaring and Opening Files

* New Types:

text -- a file of character strings
line — a string (to or from a text file)

 Example Declarations
file testfile: text; -- testfile is “file handle”

variable L: line; -- L is asingle line buffer

* Procedure to open a file:
file_open(file_handle, filename, open_kind);

— where open_kind is one of (read _mode, write_mode or
append_mode), for example:

file_open (testfile, “my_file.txt”, read_mode);
17

Reading Files

 readline (file_handle, line_buffer);

— Read one line from "text" file file_handle into line_buffer

 read(line_buffer, value);
— Read one item from line_buffer into variable value.
— Variable value can be bit, bit_vector, character or string

— Variable can also be std_logic or std_logic vector if IEEE
std_logic_textio package is used.

o endfile(file_handle); --returns boolean (TRUE if at EOF)

e For example:
variable buf _in: line;
variable bitO: std_logic;
begin
readline(my_file, buf _in);
read(buf_in, bit0): 18

TB4: Reading Vectors from File

LTIBELRY iecse;
USE ieee.std logic 11é&4
TJ5E =std.textio.all:;

LALL;

USE ieee.std logic textio.ALL;

Mj fadd_test.vec - Notepad I. =

= [

File Edit Format View Help

00000
00110
01010
01101
10010
10101
11001
11111

TE: process

constant PERIOD: time:= 20ns;

file vec file: text;

variable buf in: line;

variable testv: =td logic wvector (0 to 4):;
BEGIN i

file open(vec file,"fadd test.vec", read mode);
while not endfile(vec file) loop

readline (vec file, buf in):

read(buf in, testwv):;

——apply the =timulus from the wvector

L <= testw(0):

B <= testwv(l):

cin <= testvi(2):

wait for PERICD;

asszert ([(sum=testv(3) and cout=testwv(4))

report "Test FAILED"™ =everity error;

end loop:

waity —— will wait forewver
END process;
END:

19

Writing Files

« writeline (file_handle, line_buffer);

— Write one line to "text" file file_handle from line_buffer

o write(line_buffer, value);
— Write variable value into line_buffer
— Variable value can be bit, bit_vector, character or string

— Variable can also be std_logic or std_logic vector if IEEE
std_logic_textio package is used.

e For example:
variable buf out: line;
variable abc : bit_vector (3 downto 0);
begin
write(buf_out, “abc is”);
write(buf out, abc);
writeline(my _file, buf_in); 20

TB5: Writing Results to File

LIBERARY iege:

USE ieee.std logic 1164.ALL;
TJSE =td.textio.all;
USE ieee.std logic textioc.ALL;

ENTITY fadd tb5 IS
END fadd tb5;

ARCHITECTURE behavior OF fadd tbs IS
—— Component Declaration for UOT
COMPOHNENT fadder
FORT (
£,B,cin : IN =td logilce
sum, cout : OUT =td logic
) :
END CCMPONENT

——Inputs

signal & : =td logic := '0';
signal B : =td logic := '0';
signal cin : =td logic := '0';
——Cutputs

signal sum : =td loglc:

2ignal cout : =td logic:

BEGIN

—— Instantiate the UUT
uut: fadder PORT HMLP (|
L =» L,

B => B,
cin => cin,
sum => Sum,
cout => cout

21

TB5: Writing Results to File (2)

TE: process

constant PERICD: time:= 20ns:

file wvec file, result file: text;
variakle buf in, buf out: line;

variable testv: std logic vector (0 to 4);
BEGIN

|file_npenivec_file,“faﬁﬁ_:es:.?e:“, read mode);
file open(result file,"fadd test.cout", write mode);
while not endfile(vec file) loop

readline (vec file, buf in);

read(buf in, testv):

——apply the stimalus from the vector

L <= testwv(0);

B <= testwvi(l);

cin <= testwvi(l2):

walt for PERICD:

assert (sum~testv(3) and cout=testwvwi(4))

report "Test FAILED"™ sewverity error;
write(buf out, "Time="); write(buf out, now):
write (buf out,":4="}); write(buf out,testv(0));
write (buf out,",=2="); write(buf out,testv(l)):
write (buf out,",cin="}); write(buf out,testv(2));:
write (buf out," ---%> sum="); write(buf out,sum):’
write (buf out,",cout="}); write(buf out,cout):
writeline (result file,buf out):
end loop:
wait; —— will wait forewver

END process:

END;

22

TB5: Writing Results to File (2)

This is a Lite version of ISim.,

Time resolution is 1 ps

Simulator is doing drouit initialization process.
Finished drcuit initialization process.

ISim=>

fadd_test.out - Notepad | = | = |£§-]

File Edit Format View Help

Time=20 ns:A=0,B=0,cin=0 ---> sum=0,cout=0
Time=40 ns5:4=0,6=0,cin=1 ---> sum=1l,cout=0
Time=60 ns:4=0,B=1,cin=0 ---> sum=1l,cout=0
Time=80 ns:4=0,B=1,cin=1 ---> sum=0,cout=1
Time=100 ns:A=1,B=0,cin=0 ---> sum=1,cout=0
Time=120 ns:A=1,B=0,cin=1 ---> sum=0,cout=1
Time=140 ns:A=1,B=1,cin=0 ---> sum=0,cout=1
Time=160 ns:A=1,B=1,cin=1 ---> sum=1,cout=1

23

TB5: Writing Results with OR/XOR error

-_F-F

architecture gates of fadder is

signal S51,52,53: std logic;
begin
51 <= A xXor B after 5 ns;
52 <= cin and S1 after 3 ns;
53 <= A angd B after 3 ns;
sum <= 51 gin after 5ns;

cout <= 52 or S3 after 3 ns;

end gates;

This is a Lite version of ISim.
Time resolution is 1 ps

Simulator is doing drcuit initialization process.

Finished dircuit initialization process,

at 80 ns: Error: Test FAILED
at 120 ns: Error: Test FAILED

ISim=>

—

| fadd_test - Notepad | = | E |£h‘
File Edit Format View Help

Time=20 ns:A=0,B=0,cin=0 ---> sum=0,cout=0 .
Time=40 ns:4=0,B=0,cin=1 ---> sum=1, cout=0
Time=60 ns:A=0,B=1,cin=0 ---> sum=1,cout=0
Time=80 ns:4=0,B=1,cin=1 ---> sum=1l,cout=1
Time=100 ns:A=1,B=0,cin=0 ---> sum=l, cout=0
Time=120 ns:A=1,B=0,cin=1 ---> sum=l,cout=1
Time=140 ns:A=1,B=1,cin=0 ---> sum=0,cout=1
Time=160 ns:A=1,B=1,cin=1 ---> sum=l,cout=1

24

Example: Writing Test Vectors

e \Write a set of test vectors to test the following 2-bit
binary counter:

res ck | up/dn Q up/dn — __ 0,
0 X X 00 count2

1 1 1 count up ck _> — Qo
1 1 0 count dn

1

res

25

	CPE 487: Digital System Design�Spring 2018
	Testing Digital Circuits
	Test Vectors
	Design Verification vs. Product Testing
	Testing for Manufacturing Defects
	Developing a Functional Test Bench
	Device Under Test: Full-Adder
	TB1: A Simple Test Bench
	TB1: Visually Check Simulation Result
	Assert Statement (revisited)
	TB2: Using Assert Statement
	TB2: Using Assert – no errors
	TB2: Using Assert – Introduce error
	TB3: Using Test Vector Array
	TB3: Using Test Vector Array – no errors
	Reading and Writing Files – TEXTIO Package
	Declaring and Opening Files
	Reading Files
	TB4: Reading Vectors from File
	Writing Files
	TB5: Writing Results to File
	TB5: Writing Results to File (2)
	TB5: Writing Results to File (2)
	TB5: Writing Results with OR/XOR error
	Example: Writing Test Vectors

