
CPE 487: Digital System Design
Spring 2018

Lecture 14
Test Bench Design

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Testing Digital Circuits

• In our class examples, circuits were limited to a
few input & outputs
– Easy to set up test bench with processes to explicitly

drive the inputs
– Look at output waveforms to check correct operation

2

A
B

Y

But how do we
test this one?

Processor for
SONY PlayStation 3

Test Vectors

• For large complex designs, designers will set up a suite
of test vectors
– One or more files that contain a sequence of inputs and expected

outputs

• Input vectors are typically applied to circuit under test at
some regular clock rate. Outputs are read at same rate
and compared to expected outputs

• It can take many millions of vectors to adequately test a
complex chip e.g., a microprocessor 3

inputs expected outputs
0010011100000110 11XX010110
1101001101100101 11X0111010
0100011010011010 1101101110
1110011111010100 0110001110

Design Verification vs. Product Testing

• During the design process, we develop functional test
vectors
– Apply vectors similar to what might be expected in normal operation

of chip
– Look for correct functionality across broad range of expected inputs
– Purpose of these functional vectors is to debug the design
– Each time design is refined, we reapply the functional vectors to

check that no mistake has been made in moving from behavioral
modeling to implementation

• Once design has been synthesized into gates, and
checked once more using the functional vectors, we
develop a new set of manufacturing test vectors
– Now checking for manufacturing defects

4

Testing for Manufacturing Defects

• Popular approach is to assume that all manufacturing
faults can be modeled as a single node being stuck-at
either a ‘0’ or a ‘1’

• Ideally, develop a set of test vectors that would show an
error if any node is stuck-at ‘0’ or ‘1’
– Not practical as it would take too many vectors to exhaustively test

for all stuck at faults – tradeoff between test time and cost of
sending bad chips into the field

– Ratio of tested faults to all possible faults is known as fault
coverage – 90% is considered good for a large, complex chip

Production chip tester:

5

Developing a Functional Test Bench

• Develop a set of functional test benches using simple
example: full adder

• Move towards fully automated model:

6

Device Under Test: Full-Adder

7

A
B

cin

cout

sum

TB1: A Simple Test Bench

8

TB1: Visually Check Simulation Result

9

Assert Statement (revisited)

• The boolean-expression is evaluated and if the
expression is false, the string-expression specified in
report statement is displayed in the simulator window

• The severity statement then indicates to the simulator
what action should be taken in response to the
assertion failure.

• Severity: NOTE, WARNING, ERROR, FAILURE.
10

assert boolean-expression

[report string-expression]

[severity expression];

TB2: Using Assert Statement

11

TB2: Using Assert – no errors

12

TB2: Using Assert – Introduce error

13

Use or instead of xor

TB3: Using Test Vector Array

14

TB3: Using Test Vector Array – no errors

15

Reading and Writing Files – TEXTIO Package

• A file is a class of object in VHDL (like signal, variable
& constant). Each file has a type.

• The standard VHDL library contains the TEXTIO
package which provides a set of file types, data
types and I/O procedures for simple text I/O to and
from files

• To make the package visible:

use std.textio.all;

• TEXTIO read and write procedures are available for
predefined types bit, bit_vector, character and string

• The ieee.std_logic_textio package overloads these
procedures to support std_logic and std_logic_vector

16

Declaring and Opening Files

• New Types:

text -- a file of character strings
line – a string (to or from a text file)

• Example Declarations
file testfile: text; -- testfile is “file handle”

variable L: line; -- L is a single line buffer

• Procedure to open a file:
file_open(file_handle, filename, open_kind);

– where open_kind is one of (read_mode, write_mode or
append_mode), for example:

file_open (testfile, “my_file.txt”, read_mode);
17

Reading Files

• readline (file_handle, line_buffer);
– Read one line from "text" file file_handle into line_buffer

• read(line_buffer, value);
– Read one item from line_buffer into variable value.

– Variable value can be bit, bit_vector, character or string

– Variable can also be std_logic or std_logic vector if IEEE
std_logic_textio package is used.

• endfile(file_handle); --returns boolean (TRUE if at EOF)

• For example:
variable buf_in: line;
variable bit0: std_logic;
begin

readline(my_file, buf_in);
read(buf_in, bit0); 18

TB4: Reading Vectors from File

19

Writing Files

• writeline (file_handle, line_buffer);
– Write one line to "text" file file_handle from line_buffer

• write(line_buffer, value);
– Write variable value into line_buffer

– Variable value can be bit, bit_vector, character or string

– Variable can also be std_logic or std_logic vector if IEEE
std_logic_textio package is used.

• For example:
variable buf_out: line;
variable abc : bit_vector (3 downto 0);
begin

write(buf_out, “abc is”);
write(buf_out, abc);
writeline(my_file, buf_in); 20

TB5: Writing Results to File

21

TB5: Writing Results to File (2)

22

TB5: Writing Results to File (2)

23

TB5: Writing Results with OR/XOR error

24

Example: Writing Test Vectors

• Write a set of test vectors to test the following 2-bit
binary counter:

25

count2

⁄up dn

ck

res

𝑄𝑄1

𝑄𝑄0

res ck ⁄𝐮𝐮𝐮𝐮 𝐝𝐝𝐝𝐝 Q
0 X X 00
1  1 count up
1  0 count dn

	CPE 487: Digital System Design�Spring 2018
	Testing Digital Circuits
	Test Vectors
	Design Verification vs. Product Testing
	Testing for Manufacturing Defects
	Developing a Functional Test Bench
	Device Under Test: Full-Adder
	TB1: A Simple Test Bench
	TB1: Visually Check Simulation Result
	Assert Statement (revisited)
	TB2: Using Assert Statement
	TB2: Using Assert – no errors
	TB2: Using Assert – Introduce error
	TB3: Using Test Vector Array
	TB3: Using Test Vector Array – no errors
	Reading and Writing Files – TEXTIO Package
	Declaring and Opening Files
	Reading Files
	TB4: Reading Vectors from File
	Writing Files
	TB5: Writing Results to File
	TB5: Writing Results to File (2)
	TB5: Writing Results to File (2)
	TB5: Writing Results with OR/XOR error
	Example: Writing Test Vectors

