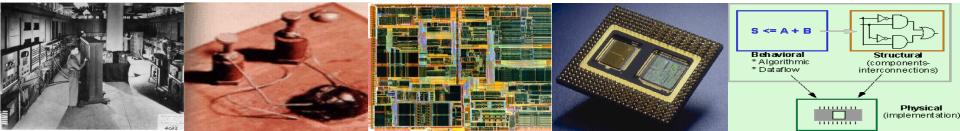
CPE 487: Digital System Design Spring 2018

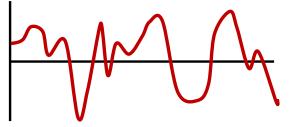
Lecture 2 Digital Logic Basics

Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology Hoboken, NJ 07030

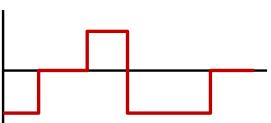


Digital Abstraction

- Most physical variables are **continuous**
 - voltage on a wire
 - frequency of an oscillation
 - position of a mass

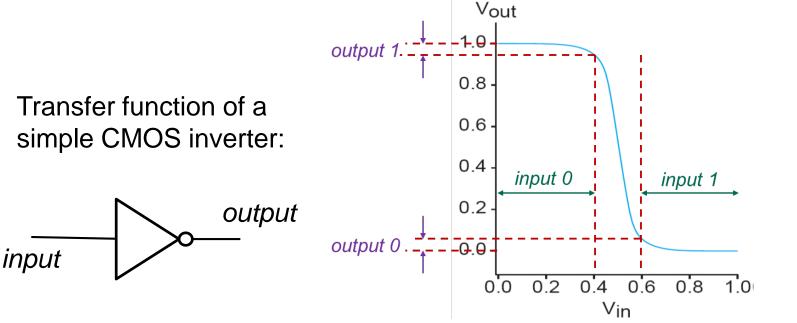


- Computation on continuous variables subject to noise and distortion
 - any computation will have finite error
 - errors will accumulate
- Digital abstraction considers discrete subset of values
 - output can be "restored" to correct value
 - error free (with very high probability)



Digital Discipline: Binary Values

- Early computing engines used multi-value digital variables
 - Babbage engine used gears with 10 different positions
 - Simplified base₁₀ arithmetic
- Very difficult to build electronic circuits that restore to multiple (>2) discrete values
- Very easy to build circuits that restore to two values
- Use two discrete (binary) values: 0 and 1



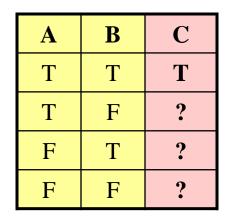
3

Digital Discipline: Binary Values

- Binary signals can be used to represent logical values:
 - **0** = FALSE **1** = TRUE
- Binary signals can be used to represent numerical values:
 - using base₂ representation
 - each binary signal represents one binary digit (bit)
- Binary signals can be used to represent any other variable that can only take on one of two different values
 - e.g. black/white, on/off, up/down
- In digital electronic circuits:
 - **0** is usually low voltage (ground, VSS, 0 volts)
 - **1** is usually high voltage (power supply, VDD, 3.3 volts)
- Beauty of (binary) digital abstraction is that the designer does not need to know the (physical) implementation details
 - can just focus on 0's and 1's

Formal (Philosopher's) Logic

- A: All dogs are warm blooded
- B: Molly is a dog
- C: Molly is warm blooded



If (A is true) **and** if (B is true), **then** (C is true)

What if B is not true. Does that make C false? e.g. What if Molly is a cat?

Formal logic does not address cases not explicitly covered in the logic statement

Digital (Boolean) Logic

In digital logic, there is always an implied else clause

If (A is true) **and** if (B is true), **then** (C is true); **else** (C is false) A: If you have come to a complete stop B: There is no traffic coming C: You may proceed

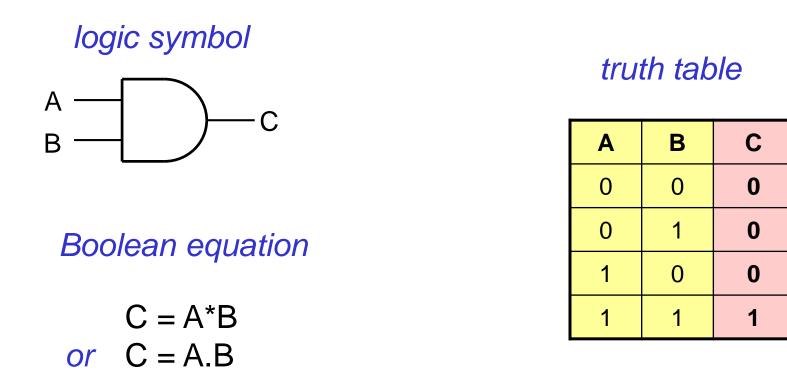
If (A is false) **or** if (B is false), then (C is false); else (C is true)

In digital logic, usually use '1' for true, '0' for false

Α	В	С
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

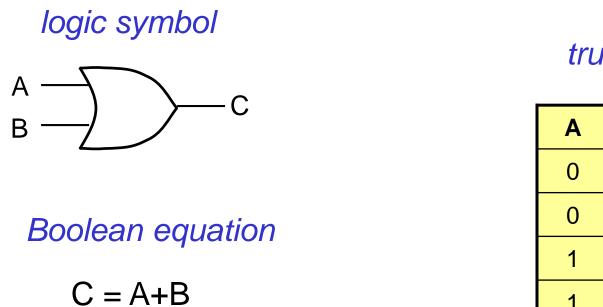
Α	В	С
1	1	1
1	0	0
0	1	0
0	0	0

AND gate

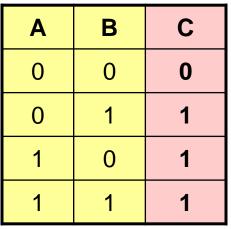


When more than two inputs, the output equals '1' only when all inputs are equal to '1'

OR gate



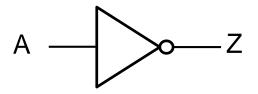
truth table



When more than two inputs, the output equals '1' when any input is equal to '1'

Inverter or NOT gate

logic symbol

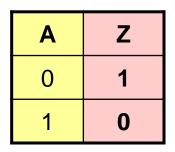


Boolean equation

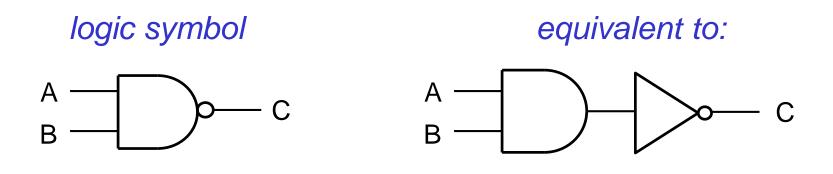
$$Z = \overline{A}$$

or $Z = A'$

truth table



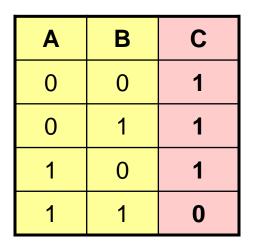
NAND gate



Boolean equation $C = \overline{A^*B}$ or $C = \overline{A.B}$

When more than two inputs, the output equals '0' *only* when all inputs are equal to '1'

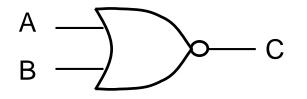
truth table

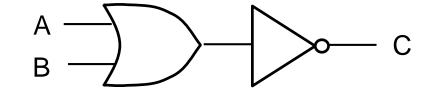


NOR gate

logic symbol

equivalent to:



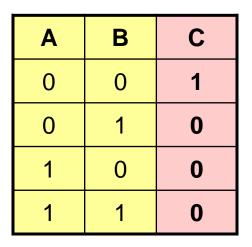


Boolean equation

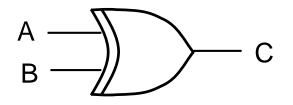
C = A+B

When more than two inputs, the output equals '0' *when any* input is equal to '1'

truth table

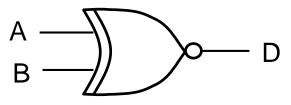


XOR and XNOR gate



C = A⊕B

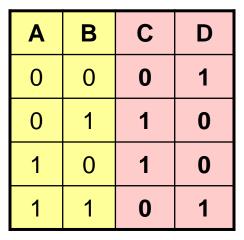
XNOR symbol



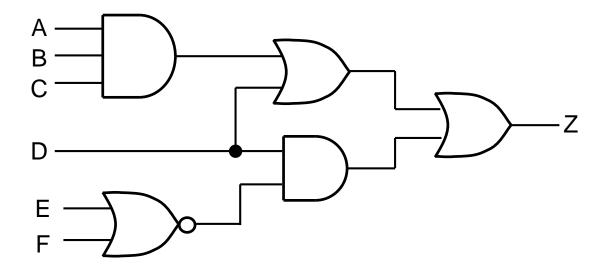
 $\mathsf{D} = \overline{\mathsf{A} \oplus \mathsf{B}}$

XOR/XNOR truth table

When more than two inputs, the output of XOR equals '1' *only when an odd number of* inputs are equal to '1'



Creating More Complex Logic Functions



Z=[(A.B.C) + D] + [D.(E+F)]

Some Useful Formulae

$$A + `0` =$$
 $A \oplus `0` =$ $A \cdot `0` =$ $A + `1` =$ $A \oplus `1` =$ $A \cdot `1` =$ $A + A =$ $A \oplus A =$ $A \cdot A =$ $A + \overline{A} =$ $A \oplus \overline{A} =$ $A \cdot \overline{A} =$

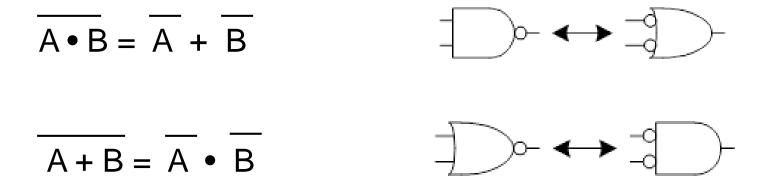
$$A \oplus B = (A \bullet \overline{B}) + (\overline{A} \bullet B)$$
$$\overline{A \oplus B} = (A \bullet B) + (\overline{A} \bullet \overline{B})$$

Some Useful Formulae

$$A + `0' = A$$
 $A \oplus `0' = A$ $A \cdot `0' = `0'$ $A + `1' = `1'$ $A \oplus `1' = \overline{A}$ $A \cdot `1' = A$ $A + A = A$ $A \oplus A = `0'$ $A \cdot A = A$ $A + \overline{A} = `1'$ $A \oplus \overline{A} = `1'$ $A \cdot \overline{A} = `0'$

$$A \oplus B = (A \bullet \overline{B}) + (\overline{A} \bullet B)$$
$$\overline{A \oplus B} = (A \bullet B) + (\overline{A} \bullet \overline{B})$$

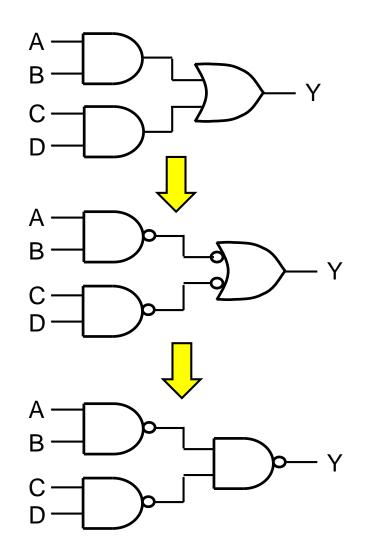
DeMorgan's Theorem



- 1. Change AND to OR (OR to AND)
- 2. Invert all inputs
- 3. Invert output

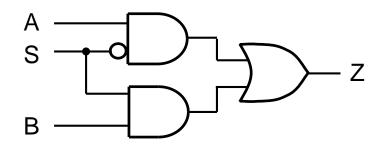
Example: AOI22

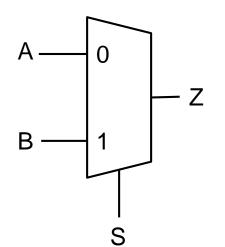
• Y = A.B + C.D

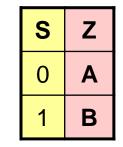


Multiplexer

• $Z = \overline{S}.A + S.B$





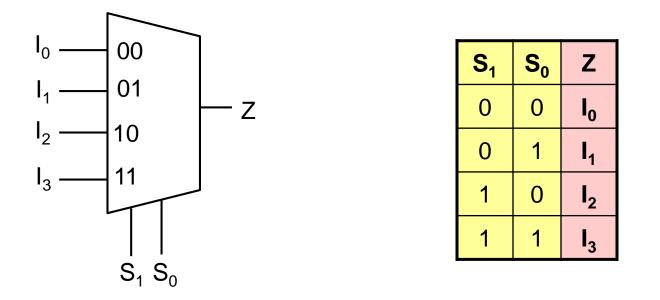


S	Α	В	Ζ
0	0	-	0
0	1	-	1
1	-	0	0
1	-	1	1

S	Α	В	Ζ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

4-input Multiplexer

•
$$Z = S_0 \cdot S_1 \cdot I_0 + S_0 \cdot S_1 \cdot I_1 + S_0 \cdot S_1 \cdot I_2 + S_0 \cdot S_1 \cdot I_3$$



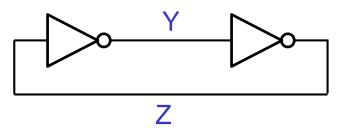
 Typically, an 2^N-way multiplexor will use N select signals to choose between one of 2^N inputs

Combinational vs. Sequential Logic

- A <u>combinational circuit</u> (logic) is one in which the output depends only on the current value of the inputs
 - All of the logic gates we have described so far (AND, NOR, XOR, multiplexer etc.) are combinational
 - If you know the inputs you know the outputs
- A <u>sequential circuit</u> (logic) is one in which the output depends on the current value and previous values of the inputs
 - Output depends on the sequence of applied inputs
 - Sequential circuits include some form of memory of previous inputs that modify output values
 - We often call these remembered values the <u>state</u> of the circuit or system.
 - All sequential circuits include some form of feedback loop to feed the remembered state back into the inputs of the circuit.

Memory – the cross coupled inverter

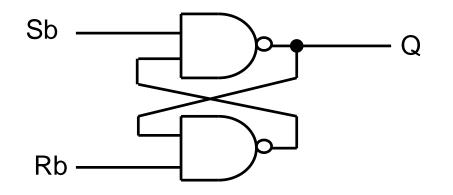
• Almost all form of digital memory are built around the idea of having two inverters (NOT gates) connected in a feedback loop.



- Positive feedback drives circuit into one of two stable states
- Either: (Y=1, Z=0) OR (Y=0, Z=1)
 - Circuit will hold state indefinitely
- How do we change the state?

RS Latch

• Simple "writable" storage element



Rb	Sb	Q
0	1	0
1	0	1
1	1	no change
0	0	illegal

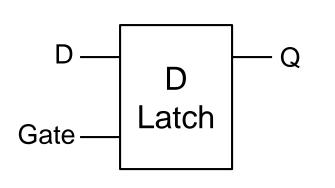
- Normally, Sb and Rb are both 1
- When Sb=0, Q is set to 1
- When Rb=0, Q is reset to 0

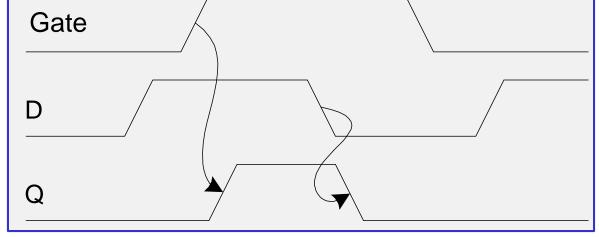
D Latch

- When Gate = 1, latch is transparent
- D flows through to Q like a buffer
- When gate = 0, the latch is opaque
- Q holds its old value independent of D

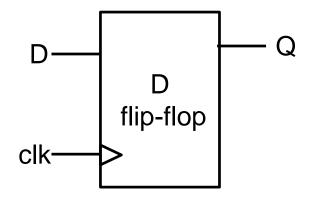
D	Gate	Q
0	1	0
1	1	1
0	0	no change
1	0	no change

• a.k.a. transparent latch or level-sensitive latch



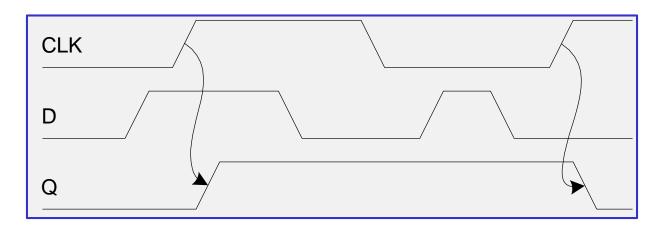


D Flip-flop



clk	D	Q
0	Х	no change
1	Х	no change
\uparrow	1	1
\uparrow	0	0

- When CLK rises, D is copied to Q
- At all other times, Q holds its value
- a.k.a. edge-triggered flip-flop, master-slave flip-flop



Number Systems

Decimal (base₁₀)

$$A = \sum_{i=0}^{n-1} a_i \cdot 10^i$$

$$10^2 \quad 10^1 \quad 10^0$$

$$1 \quad 5 \quad 7$$

$$(1\times100)+(5\times10)+(7\times1)$$

Binary (base₂)

$$A = \sum_{i=0}^{n-1} a_i \cdot 2^i$$

Powers of 2

- $2^0 = 1$
- $2^1 = 2$
- $2^2 = 4$
- $2^3 = 8$
- $2^4 = 16$
- $2^5 = 32$
- $2^6 = 64$
- $2^7 = 128$
- $2^8 = 256$

- $2^9 = 512$
- $2^{10} = 1024$
- $2^{11} = 2048$
- $2^{12} = 4096$
- $2^{13} = 8192$
- $2^{14} = 16384$
- $2^{15} = 32768$
- $2^{16} = 65536$
- handy to memorize up to 2^{10}

Range of Binary Numbers

- *N*-digit decimal number
 - How many values?
 - Range?
 - Example: 3-digit decimal number:

- *N*-bit binary number
 - How many values?
 - Range:
 - Example: 3-bit binary number:

Hexadecimal Numbers

- For humans, its clumsy to always work in binary
 - just too many bits!
- Divide a binary number into 4-bit groupings and represent each 4-bits by a single hexadecimal (base₁₆) digit.

- But, in hexadecimal, each digit can have a value of $0 15_{10}$!!
- We need new symbols to represent the values $10_{10} 15_{10}$
- Use symbols A, B, C, D, E and F

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
А	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

• For example:

$$4AF_{16} =$$

0100 1010 1111₂

$$=$$
 1199₁₀

29

Bits, Bytes and Nibbles...

Bits: (8-bit binary)

0010110 most significant bit (MSB)

least significant bit (LSB)

30

 Bytes & Nibbles: (8-bit binary)

Bytes: (32-bit hex)

3 A C F 2 4 D 7 LSbyte **MSbyte**

Addition

• Decimal:

3734 +5168

• Binary:

1 0 1 1 + 0 0 1 1

• Hex:

1 A 3 7 + 0 9 F 6

Overflow

• Note that if we add two n-bit numbers, we will (in general) get an (n+1) bit result:

 $\begin{array}{c}
1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
+ & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
\end{array}$ overflow

Signed Binary Representation

How do we deal with negative numbers?

Two common approaches:

- Sign-magnitude representation
- Two's complement representation

Sign-Magnitude Representation

- One sign bit plus n-1 magnitude bits
- MSBit is the sign bit:
 - MSB=0 means positive number
 - MSB=1 means negative number

$$A = (-1)^{a^{n-1}} \times \sum_{i=0}^{n-2} a_i \cdot 2^i$$

 n-bit sign-magnitude number can take on values -(2ⁿ⁻¹-1) to (2ⁿ⁻¹-1)

Problems with Sign-Magnitude

- 1. Addition doesn't work
 - for example, 4-bit addition of (-5) and (+2)

2. Two representations of zero (± 0) :

0000

Two's Complement Representation

• MSBit has value (-2^{n-1}) :

$$A = -(a_{n-1}, 2^{n-1}) + \sum_{i=0}^{n-2} a_i, 2^i$$

• for example, n=8:

 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0

= -128 + 64 + 32 + 0 + 8 + 0 + 0 + 1 = -23

 n-bit two's complement number can take on values (-2ⁿ⁻¹) to (2ⁿ⁻¹-1)

36

Two's Complement

- To form two's complement (i.e. flip the sign) of number A, either
- Working from LSB to MSB, complement (invert) all bits after (to the left of) first '1':

$$- e.g. A = 0101 (= 5)$$

complementing all bits to left of first '1' (occurs at bit 0):

$$-A = 1011 (= -5)$$

OR

• Invert all bits in A and add 1:

 $-A = \overline{A} + 1 = 1010 + 1 = 1011 (= -5)$

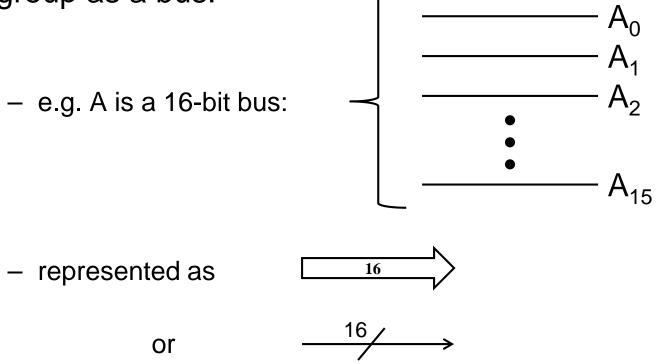
Convenience of Two's Complement

- 1. MSB still indicates sign
- 2. Addition does work

3. Only one representation of zero: 0 0 0 0

Busses

Frequently useful to group a number of signals into a group as a bus:



- Bus may carry a binary value (with a LSB and a MSB)
- Or just a collection of non-numerically related bits
 - e.g. binary instruction

Registers

- When we want to "remember" an N-bit value...
 - may be numerical value, instruction, code, address etc.
- We often group N D-flip-flops together to capture and store the value on the rising edge of a common clock
- We call this an N-bit register
 - e.g. 16-bit register

