
CPE 487: Digital System Design
Spring 2018

Lecture 3
Introduction to VHDL

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Managing Design Complexity

2

To be successful, designer (or design team) must manage
placement and interconnect of up to 108 components…

That meet the original design specification
i.e. function + performance

while

• Minimizing chip area (die cost)
• Maximizing yield (die cost)
• Minimizing power dissipation (battery life)
• Maximizing reliability (design margin)
• Minimizing test time (product cost)
• Minimizing design cost (Non Recurring Expense)
• Minimizing time to market (market share)

3

cells
modules

chips

boards

algorithms

register transfers
Boolean expressions

transfer functions

processors
registers

gates
transistors

PHYSICAL

BEHAVIORAL STRUCTURAL

Source: D. Gajski and R. H. Kuhn

Abstraction of Design Space

• Three fundamentally different ways
(views) of representing a design

• Each view can be formed at many
different levels of abstraction
(amount of detail)

• Design process is one of moving
from highest behavioral level
(specification) to lowest (most
detailed) physical level

Managing Design Process

4

Taking a complex design from high level behavioral description
(spec.) to detailed physical implementation is accomplished using:

• Hierarchy, Modularity & Regularity
– Break design into manageable pieces
– Pieces that have well defined functionality and simple interface
– Pieces that can be re-used elsewhere in the hierarchy
– Gradually refine design to greater levels of detail

• Set of computer aided design (CAD) tools that
1. Capture design data (e.g., hardware description languages, text editors,

schematic & layout editors)
2. Translate from one representation to another (e.g., synthesis, component

mapping, place & route)
3. Verify correctness of translation (simulation, timing analysis, design rule

check)

• Design Methodology
– Recipe (or plan) of how to move from one design representation to

another, which tools to use and how to rigorously verify each design step

5

register transfers

cells

modules

chips

boards

algorithms

Boolean expressions
transfer functions

processors
registers

gates

transistors

PHYSICAL

BEHAVIORAL STRUCTURAL

Examples of Computer Aided Design Tools

synthesis

simulation

LVS: Layout vs. Schematic

Digital Design Specification – Boolean Equations

6

• Function represented by truth tables & logic equations

• Function simplified using boolean arithmetic

• Captures behavior but impractical for more than few
hundred gates

A

B
Z Z = A.B

A B Z
0 0 0

0 1 0

1 0 0

1 1 1

𝒁𝒁 = �𝑩𝑩. (𝑨𝑨. �𝑩𝑩 + 𝑪𝑪 + (𝑨𝑨 + 𝑩𝑩. �𝑪𝑪))
= �𝑩𝑩. (𝑨𝑨. �𝑩𝑩 + 𝑪𝑪 + �𝑨𝑨 .(�𝑩𝑩 + 𝑪𝑪)
= �𝑩𝑩. (𝑨𝑨 + �𝑨𝑨 . �𝑩𝑩 + 𝑪𝑪)
= �𝑩𝑩. �𝑩𝑩 + 𝑪𝑪
= �𝑩𝑩

Digital Design Specification – Schematic Capture

7

• Graphical entry supporting hierarchy, regularity, higher
level functions (register, multiplexer, ALU)

• Only captures structure – behavior must be inferred
• Limited to few thousand primitives (gates, registers etc.)

Digital Design – Hardware Description Languages

8

• Hardware Description Language (HDL) captures behavior
and/or structure that can be compiled into simulation or
physical implementation (e.g. gate array, FPGA)

• Early Hardware Description languages targeted at
Register Transfer or Gate Level behavior

• Different languages used at different levels of abstraction
and with different tool vendors leads to lost productivity

Evita Tutorial

Digital Design Specification – VHDL

9

• VHSIC Hardware Description Language
(VHSIC = Very High Speed Integrated Circuit)

• Standardized language that can represent behavior and
structure at many levels of abstraction

Evita Tutorial

Features of VHDL

10

• VHDL can represent:
– behavior (what the system does) or
– structure (how the components are connected) or
– a combination of these.

• VHDL can be used at different levels of abstraction:
– Switch level (switching behavior of transistors)
– Gate level
– Register transfer level (registers, multiplexers, alu’s etc.)
– High level architecture (e.g. functional behavior of microprocessor)

• Technology independent (ASIC, FPGA, PCB)
• IEEE Standard (Interoperability across tool vendors)
• Provides executable design documentation

Simulation & Synthesis

11

• VHDL “program” can be used to drive:
– simulation (functional verification, performance)

– synthesis (translating behavior into physical structure) or
– a combination of these.

VHDL

simulation
synthesis

PLD FPGA CMOS
ASIC

VHDL vs. Regular Programming Language

• Procedural programming languages implement an
algorithm or recipe
– for computation & data manipulation
– essentially single sequential thread (Program Counter)

• order of statements determines execution sequence
– no intrinsic concept of time
– program operates on variables

• VHDL describes a hardware system
– from different points of view: behavior, structure, dataflow
– can model highly concurrent operation
– intrinsic concept of time

• timed events determines execution sequence
– program operates on variables and signals

History of VHDL

13

• Launched in 1980 by Defense Advanced Research
Projects Agency (DARPA)

• July 1983
– Intermetrics, IBM and Texas Instruments were awarded a

contract to develop VHDL
• August 1985

– Release of final version of the language under government
contract, VHDL Version 7.2

• December 1987
– IEEE Standard 1076-1987

• 1988
– VHDL became an American National Standards Institute

(ANSI) standard
• September 1993

– IEEE VHDL standard revised

Nature of Digital Systems

14

• At all levels of abstraction, electronic
systems are composed of sub-systems
interconnected by signals*:

* Signals include wires, optical links & wireless links

VHDL Model of Digital Systems

15

• At all levels of abstraction:
• VHDL names and declares the interface to

each (sub-)system using a programming
abstraction known as an entity.

• VHDL models the operation (i.e. the
behavior or the internal structure) of a
(sub-)system using an abstraction known
as an architecture.

• VHDL describes the (timed) information
flow between (sub-)systems using an
abstraction known as a signal.

VHDL Entity

16

• An entity describes the external view of a
system

• An entity specifies:
– Name of the system
– Parameters of the system (get to this later)

– Connections to the system (external signals)

• Each of these could be an entity

Entity Example – 2-input NAND gate

17

entity nand2 is
port(a,b: in bit;

z: out bit);
end entity nand2;

name

external
connections

Note: words in bold are reserved keywords

A

B
Z

Entity Example – 8bit comparator

18

entity compare is
port(x,y: in bit_vector(7 downto 0);

eq: out bit);
end entity compare;

name

external
connections

=?
8

8

x

y
eq

VHDL Architecture

19

• An architecture describes an internal view
of a system

• An architecture describes the behavior or
internal structure of a declared entity

• There may be many architectures
associated with each entity e.g:
– structure vs behavior,
– different levels of abstraction (gate vs RTL)
– different timing constraints

• There is exactly one entity for each
architecture

Architecture Example – 2-input NAND gate

20

entity nand2 is
port(a,b: in bit;

z: out bit);
end entity nand2;

behavior

architecture ngate of nand2 is
begin

z <= not(a and b) after 5 ns;
end architecture ngate;

A

B
Z

architecture name

Architecture Example – 2 bit comparator

21

entity compare is
port(x,y: in bit_vector(1 downto 0);

eq: out bit);
end entity compare;

=?
2

2

x

y
eq

architecture cmp2 of compare is
begin

eq <= ‘1’ after 3 ns when (x=y) else
‘0’ after 3ns;

end architecture cmp2;

Alternative Architecture – 2 bit comparator

22

entity compare is
port(x,y: in bit_vector(1 downto 0);

eq: out bit);
end entity compare;

=?
2

2

x

y
eq architecture cmp_alt of compare is

signal a1, a0: bit;
begin

a1 <= x(1) xor y(1) after 2 ns;
a0 <= x(0) xor y(0) after 2 ns;
eq <= a0 nor a1 after 3 ns;

end architecture cmp_alt;

hints at
implementation

One Entity – Multiple Architectures

• Different architectures may describe different representations
(behavior, structure) of entity at different levels of abstraction

23

architecture struct
of abc

architecture xyz
of abc

architecture RTL
of abc

entity abc

VHDL - Signal

• Like conventional programming languages VHDL manipulates
basic objects such as constants and variables.

• VHDL introduces a new class of object: signal
• Signal is a sequence of value-time pairs
• A signal will be assigned a value at a specific time

– It will retain that value until a new value is assigned at a future point in
time.

24

signal mode: bit;
mode<=‘0’,‘1’ after 10ns,‘0’ after 30ns,‘1’ after 40ns,‘0’ after 70ns;

0 10 20 30 40 50 60 70 80 (ns)

mode

External & Internal Signals

25

entity compare is
port(x,y: in bit_vector(1 downto 0);

eq: out bit);
end entity compare;

architecture cmp_alt of compare is
signal a1, a0: bit;
begin

a1 <= x(1) xor y(1) after 2 ns;
a0 <= x(0) xor y(0) after 2 ns;
eq <= a0 nor a1 after 3 ns;

end architecture cmp_alt;

• Ports are external signals, visible inside & outside the system
• Signals declared in an architecture are internal signals

– manipulated by programming constructs within the architecture
– not visible outside the system

x(0)
y(0)

x(1)
y(1)

eq
a0

a1

internal signals

external signals

Signals Assignment Statement

26

• Signal assignment statement assigns a new value to a signal
at a specified (future) time

• Signal assignment statements can be concurrent or sequential
– describes when they are executed (more on this later)

• If assignment time is not specified, defaults to “after 0 ns”

abc <= y2 and mode after 2 ns;

signal to be
updated

signal
assignment

operator

new value
to be

assigned

when new
value

should be
assigned

Signal Types

27

• Like variables, all signals are typed e.g.:
– boolean (false, true)
– integer (…,-3,-2,-1,0,1,2,3,…)
– character (…,’A’,’B’,’C’,…)
– bit (‘0’,’1’)

• In digital circuits, often much more convenient to represent a
signal as a bus, rather then individual bits.

• Type bit_vector is an array of type bit
– bit positions are numbered left (msb) to right (lsb)

signal abus: bit_vector (0 to 7); -- 8-bit bus, abus(0) is msb
signal instr: bit_vector (15 downto 0); -- 16-bit bus, instr(15) is msb
signal opcode: bit_vector (6 downto 3); -- 4-bit bus, opcode(6) is msb

opcode <= instr(12 downto 9); -- bit_vector used in assignment statement

Sidebar: VHDL - Packages

28

• Standard VHDL has limited set of types, operators, functions.
• This set can be expanded through the use of packages.
• Packages contain definitions of types, functions & procedures

that can be shared by multiple designers.
• A very popular package is IEEE std_logic_1164

library IEEE; -- IEEE is a library of packages
use IEEE.std_logic_1164.all; -- load this package from IEEE library

entity half_adder is -- half_adder can use std_logic_1164
●
●

Std_logic type

29

• Standard bit type can only take on values ‘0’ or ‘1’
• In logic simulation, we often require a richer set of values
• IEEE std_logic type can take on 9 different values:

– ‘U’ Uninitialized
– ‘X’ Forcing unknown
– ‘0’ Forcing 0
– ‘1’ Forcing 1
– ‘Z’ High impedance
– ‘W’ Weak unknown
– ‘L’ Weak 0
– ‘H’ Weak 1
– ‘-’ Don’t care

Using std_logic type

30

• Like bit, std_logic has vector extension e.g.:

library IEEE;
use IEEE.std_logic_1164.all;

entity half_adder is
port(a,b: in std_logic;

sum, cout: out std_logic);
end entity half_adder;

signal addr: std_logic_vector (0 to 7);

signal dataout: std_logic_vector (31 downto 16);

More on Types

31

• VHDL is a strongly typed language
• Every object (signal, variable, constant) has a type
• The type determines which operations can be applied to the

object
• In assignment statements, LHS target must be of same type

as the RHS expression
– Type conversion functions (often defined in packages) allow explicit

casting from type to another:

signal addr: std_logic_vector (0 to 7);
signal index: integer;
begin

addr <= conv_std_logic_vector(index,8);

Some Scalar Types

32

• Numeric types:
– type integer is range -2147483647 to +21474843647;
– subtype Positive is integer range 1 to +21474843647;
– type real_voltage is range 0.0 to 3.3;

• Enumerated types - explicitly listed set of allowable values
– type BOOLEAN is (FALSE, TRUE);
– type BIT is (‘0’,’1’);
– type COLOR is (red, orange, yellow, green, blue, indigo, violet);
– type STD_ULOGIC is (‘U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’);

• Default value is “left-hand-side” of range of object’s type
• Uninitialized objects take on default value at start (t=0) of

simulation

Array Types

33

• An array is a collection of one or more objects of the same
type

• For example, std_logic_vector is an array of objects of type
std_logic

• More examples:
type data_16 is array (15 downto 0) of std_logic;
type reg_file is array (31 downto 0) of data_16;
signal abc: reg_file;

note that: abc (30) is of type data_16
whereas: abc (30) (5) is of type std_logic

type row_4 is array (1 to 4) of integer;
type matrix_4x4 is array (1 to 4) of row_4;

• Note: If an array is indexed by signal (or variable), the index
must be of type integer

Assignments to Arrays

34

• VHDL provides many different ways to assign values to array
objects:

signal abc: std_logic_vector (1 to 5);
signal xx, yy: std_logic;

abc <= “01001”; -- string literal
abc <= (‘0’, ‘1’, ‘0’, ‘0’, ‘1’); -- positional
abc <= (2=>’1’, 5=>’1’, others => ‘0’) -- named

abc <= (others => ’0’) ; -- sets all bits to ‘0’

abc <= (1=> xx, 4=> ‘0’, others => yy); -- other signals

	CPE 487: Digital System Design�Spring 2018
	Managing Design Complexity
	Abstraction of Design Space
	Managing Design Process
	Examples of Computer Aided Design Tools
	Digital Design Specification – Boolean Equations
	Digital Design Specification – Schematic Capture
	Digital Design – Hardware Description Languages
	Digital Design Specification – VHDL
	Features of VHDL
	Simulation & Synthesis
	VHDL vs. Regular Programming Language
	History of VHDL
	Nature of Digital Systems
	VHDL Model of Digital Systems
	VHDL Entity
	 Entity Example – 2-input NAND gate
	 Entity Example – 8bit comparator
	VHDL Architecture
	Architecture Example – 2-input NAND gate
	 Architecture Example – 2 bit comparator
	 Alternative Architecture – 2 bit comparator
	One Entity – Multiple Architectures
	VHDL - Signal
	 External & Internal Signals
	Signals Assignment Statement
	 Signal Types
	 Sidebar: VHDL - Packages
	Std_logic type
	Using std_logic type
	More on Types
	Some Scalar Types
	Array Types
	Assignments to Arrays

