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Managing Design Complexity

2

To be successful, designer (or design team) must manage 
placement and interconnect of up to 108 components…

That meet the original design specification
i.e. function + performance

while

• Minimizing chip area (die cost)
• Maximizing yield (die cost)
• Minimizing power dissipation (battery life)
• Maximizing reliability (design margin)
• Minimizing test time (product cost)
• Minimizing design cost (Non Recurring Expense)
• Minimizing time to market (market share)
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Source: D. Gajski and R. H. Kuhn

Abstraction of Design Space

• Three fundamentally different ways 
(views) of representing a design

• Each view can be formed at many 
different levels of abstraction 
(amount of detail)

• Design process is one of moving 
from highest behavioral level 
(specification) to lowest (most 
detailed) physical level



Managing Design Process
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Taking a complex design from high level behavioral description 
(spec.) to detailed physical implementation is accomplished using:

• Hierarchy, Modularity & Regularity
– Break design into manageable pieces
– Pieces that have well defined functionality and simple interface
– Pieces that can be re-used elsewhere in the hierarchy
– Gradually refine design to greater levels of detail

• Set of computer aided design (CAD) tools that
1. Capture design data (e.g., hardware description languages, text editors, 

schematic & layout editors)
2. Translate from one representation to another (e.g., synthesis, component 

mapping, place & route)
3. Verify correctness of translation (simulation, timing analysis, design rule 

check)

• Design Methodology
– Recipe (or plan) of how to move from one design representation to 

another, which tools to use and how to rigorously verify each design step
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Examples of Computer Aided Design Tools

synthesis
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LVS: Layout vs. Schematic



Digital Design Specification – Boolean Equations
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• Function represented by truth tables & logic equations

• Function simplified using boolean arithmetic

• Captures behavior but impractical for more than few 
hundred gates

A

B
Z Z = A.B

A B Z
0 0 0

0 1 0

1 0 0

1 1 1

𝒁𝒁 = �𝑩𝑩. (𝑨𝑨. �𝑩𝑩 + 𝑪𝑪 + (𝑨𝑨 + 𝑩𝑩. �𝑪𝑪))
= �𝑩𝑩. (𝑨𝑨. �𝑩𝑩 + 𝑪𝑪 + �𝑨𝑨 .(�𝑩𝑩 + 𝑪𝑪)
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= �𝑩𝑩. �𝑩𝑩 + 𝑪𝑪
= �𝑩𝑩



Digital Design Specification – Schematic Capture
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• Graphical entry supporting hierarchy, regularity, higher 
level functions (register, multiplexer, ALU)

• Only captures structure – behavior must be inferred
• Limited to few thousand primitives (gates, registers etc.)



Digital Design – Hardware Description Languages

8

• Hardware Description Language (HDL) captures behavior 
and/or structure that can be compiled into simulation or 
physical implementation (e.g. gate array, FPGA)

• Early Hardware Description languages targeted at 
Register Transfer or Gate Level behavior

• Different languages used at different levels of abstraction 
and with different tool vendors leads to lost productivity 

Evita Tutorial



Digital Design Specification – VHDL
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• VHSIC Hardware Description Language
(VHSIC = Very High Speed Integrated Circuit)

• Standardized language that can represent behavior and 
structure at many levels of abstraction

Evita Tutorial



Features of VHDL

10

• VHDL can represent:
– behavior (what the system does) or
– structure (how the components are connected) or 
– a combination of these. 

• VHDL can be used at different levels of abstraction:
– Switch level (switching behavior of transistors)
– Gate level
– Register transfer level (registers, multiplexers, alu’s etc.)
– High level architecture (e.g. functional behavior of microprocessor)

• Technology independent (ASIC, FPGA, PCB)
• IEEE Standard (Interoperability across tool vendors)
• Provides executable design documentation



Simulation & Synthesis
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• VHDL “program” can be used to drive:
– simulation (functional verification, performance)

– synthesis (translating behavior into physical structure) or 
– a combination of these. 

VHDL

simulation
synthesis

PLD FPGA CMOS
ASIC



VHDL vs. Regular Programming Language

• Procedural programming languages implement an 
algorithm or recipe
– for computation & data manipulation
– essentially single sequential thread (Program Counter)

• order of statements determines execution sequence
– no intrinsic concept of time
– program operates on variables

• VHDL describes a hardware system
– from different points of view: behavior, structure, dataflow
– can model highly concurrent operation
– intrinsic concept of time

• timed events determines execution sequence
– program operates on variables and signals



History of VHDL
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• Launched in 1980 by Defense Advanced Research 
Projects Agency (DARPA)

• July 1983
– Intermetrics, IBM and Texas Instruments were awarded a 

contract to develop VHDL
• August 1985

– Release of final version of the language under government 
contract, VHDL Version 7.2

• December 1987
– IEEE Standard 1076-1987

• 1988
– VHDL became an American National Standards Institute 

(ANSI ) standard
• September 1993

– IEEE VHDL standard revised



Nature of Digital Systems
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• At all levels of abstraction, electronic 
systems are composed of sub-systems 
interconnected by signals*:

* Signals include wires, optical links & wireless links



VHDL Model of Digital Systems
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• At all levels of abstraction:
• VHDL names and declares the interface to 

each (sub-)system using a programming 
abstraction known as an entity.

• VHDL models the operation (i.e. the 
behavior or the internal structure) of a 
(sub-)system using an abstraction known 
as an architecture.

• VHDL describes the (timed) information 
flow between (sub-)systems using an 
abstraction known as a signal.



VHDL Entity
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• An entity describes the external view of a 
system

• An entity specifies:
– Name of the system
– Parameters of the system (get to this later)

– Connections to the system (external signals)

• Each of these could be an entity



Entity Example – 2-input NAND gate
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entity nand2 is
port(a,b: in bit;

z: out bit);
end entity nand2;

name

external 
connections

Note: words in bold are reserved keywords

A

B
Z



Entity Example – 8bit comparator
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entity compare is
port(x,y: in bit_vector(7 downto 0);

eq: out bit);
end entity compare;

name

external 
connections

=?
8

8

x

y
eq



VHDL Architecture
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• An architecture describes an internal view 
of a system

• An architecture describes the behavior or 
internal structure of a declared entity

• There may be many architectures 
associated with each entity e.g:
– structure vs behavior, 
– different levels of abstraction (gate vs RTL)
– different timing constraints

• There is exactly one entity for each 
architecture



Architecture Example – 2-input NAND gate
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entity nand2 is
port(a,b: in bit;

z: out bit);
end entity nand2;

behavior

architecture ngate of nand2 is
begin

z <= not(a and b) after 5 ns;
end architecture ngate;

A

B
Z

architecture name



Architecture Example – 2 bit comparator
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entity compare is
port(x,y: in bit_vector(1 downto 0);

eq: out bit);
end entity compare;

=?
2

2

x

y
eq

architecture cmp2 of compare is
begin

eq <= ‘1’ after 3 ns when (x=y) else
‘0’ after 3ns;

end architecture cmp2;



Alternative Architecture – 2 bit comparator
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entity compare is
port(x,y: in bit_vector(1 downto 0);

eq: out bit);
end entity compare;

=?
2

2

x

y
eq architecture cmp_alt of compare is

signal a1, a0: bit;
begin

a1 <=  x(1) xor y(1) after 2 ns;
a0 <=  x(0) xor y(0) after 2 ns;
eq <=  a0 nor a1 after 3 ns;

end architecture cmp_alt;

hints at 
implementation



One Entity – Multiple Architectures

• Different architectures may describe different representations 
(behavior, structure) of entity at different levels of abstraction
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architecture struct
of abc

architecture xyz
of abc

architecture RTL
of abc

entity abc



VHDL - Signal

• Like conventional programming languages VHDL manipulates 
basic objects such as constants and variables. 

• VHDL introduces a new class of object: signal
• Signal is a sequence of value-time pairs
• A signal will be assigned a value at a specific time

– It will retain that value until a new value is assigned at a future point in 
time.
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signal mode: bit;
mode<=‘0’,‘1’ after 10ns,‘0’ after 30ns,‘1’ after 40ns,‘0’ after 70ns;

0 10 20 30 40 50 60 70 80 (ns)

mode



External & Internal Signals
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entity compare is
port(x,y: in bit_vector(1 downto 0);

eq: out bit);
end entity compare;

architecture cmp_alt of compare is
signal a1, a0: bit;
begin

a1 <=  x(1) xor y(1) after 2 ns;
a0 <=  x(0) xor y(0) after 2 ns;
eq <=  a0 nor a1 after 3 ns;

end architecture cmp_alt;

• Ports are external signals, visible inside & outside the system
• Signals declared in an architecture are internal signals

– manipulated by programming constructs within the architecture
– not visible outside the system

x(0)
y(0)

x(1)
y(1)

eq
a0

a1

internal signals

external signals



Signals Assignment Statement
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• Signal assignment statement assigns a new value to a signal 
at a specified (future) time

• Signal assignment statements can be concurrent or sequential 
– describes when they are executed (more on this later)

• If assignment time is not specified, defaults to “after 0 ns”

abc <=   y2 and mode after 2 ns;

signal to be 
updated

signal 
assignment 

operator

new value 
to be 

assigned

when new 
value 

should be 
assigned



Signal Types
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• Like variables, all signals are typed  e.g.:
– boolean (false, true)
– integer (…,-3,-2,-1,0,1,2,3,…)
– character (…,’A’,’B’,’C’,…)
– bit (‘0’,’1’)

• In digital circuits, often much more convenient to represent a 
signal as a bus, rather then individual bits.

• Type bit_vector is an array of type bit
– bit positions are numbered left (msb) to right (lsb)

signal abus: bit_vector (0 to 7);    -- 8-bit bus, abus(0) is msb
signal instr: bit_vector (15 downto 0);    -- 16-bit bus, instr(15) is msb
signal opcode: bit_vector (6 downto 3);    -- 4-bit bus, opcode(6) is msb

opcode <= instr(12 downto 9);        -- bit_vector used in assignment statement



Sidebar: VHDL - Packages
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• Standard VHDL has limited set of types, operators, functions.
• This set can be expanded through the use of packages.
• Packages contain definitions of types, functions & procedures 

that can be shared by multiple designers.
• A very popular package is IEEE std_logic_1164

library IEEE;                                     -- IEEE is a library of packages
use IEEE.std_logic_1164.all;              -- load this package from IEEE library

entity half_adder is                          -- half_adder can use std_logic_1164
●
●



Std_logic type
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• Standard bit type can only take on values ‘0’ or ‘1’
• In logic simulation, we often require a richer set of values
• IEEE std_logic type can take on 9 different values:

– ‘U’  Uninitialized
– ‘X’   Forcing unknown
– ‘0’   Forcing 0
– ‘1’   Forcing 1
– ‘Z’   High impedance
– ‘W’   Weak unknown
– ‘L’   Weak 0
– ‘H’   Weak 1
– ‘-’    Don’t care



Using std_logic type
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• Like bit, std_logic has vector extension e.g.:

library IEEE; 
use IEEE.std_logic_1164.all;              

entity half_adder is
port( a,b: in std_logic;

sum, cout: out std_logic);
end entity half_adder;

signal addr: std_logic_vector (0 to 7);

signal dataout: std_logic_vector (31 downto 16); 



More on Types
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• VHDL is a strongly typed language
• Every object (signal, variable, constant) has a type
• The type determines which operations can be applied to the 

object
• In assignment statements, LHS target must be of same type

as the RHS expression
– Type conversion functions (often defined in packages) allow explicit 

casting from type to another:

signal addr: std_logic_vector (0 to 7);
signal index: integer;
begin

addr <= conv_std_logic_vector(index,8);



Some Scalar Types

32

• Numeric types:
– type integer is range -2147483647 to +21474843647;
– subtype Positive is integer range 1 to +21474843647;
– type real_voltage is range 0.0 to 3.3;

• Enumerated types - explicitly listed set of allowable values
– type BOOLEAN is (FALSE, TRUE);
– type BIT is (‘0’,’1’);
– type COLOR is (red, orange, yellow, green, blue, indigo, violet);
– type STD_ULOGIC is (‘U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’);

• Default value is “left-hand-side” of range of object’s type
• Uninitialized objects take on default value at start (t=0) of 

simulation



Array Types
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• An array is a collection of one or more objects of the same 
type

• For example, std_logic_vector is an array of objects of type 
std_logic

• More examples:
type data_16 is array (15 downto 0) of std_logic;
type reg_file is array (31 downto 0) of data_16;
signal abc: reg_file;

note that:  abc (30) is of type data_16
whereas:  abc (30) (5) is of type std_logic

type row_4  is array (1 to 4) of integer;
type matrix_4x4  is array (1 to 4) of row_4;

• Note: If an array is indexed by signal (or variable), the index 
must be of type integer



Assignments to Arrays

34

• VHDL provides many different ways to assign values to array 
objects:

signal abc: std_logic_vector (1 to 5);
signal xx, yy: std_logic;

abc <= “01001”; -- string literal
abc <= (‘0’, ‘1’, ‘0’, ‘0’, ‘1’); -- positional
abc <= (2=>’1’, 5=>’1’, others => ‘0’) -- named

abc <= (others => ’0’) ; -- sets all bits to ‘0’

abc <= (1=> xx, 4=> ‘0’, others => yy); -- other signals


	CPE 487: Digital System Design�Spring 2018
	Managing Design Complexity
	Abstraction of Design Space
	Managing Design Process
	Examples of Computer Aided Design Tools
	Digital Design Specification – Boolean Equations
	Digital Design Specification – Schematic Capture
	Digital Design – Hardware Description Languages
	Digital Design Specification – VHDL
	Features of VHDL
	Simulation & Synthesis
	VHDL vs. Regular Programming Language
	History of VHDL
	Nature of Digital Systems
	VHDL Model of Digital Systems
	VHDL Entity
	 Entity Example – 2-input NAND gate
	 Entity Example – 8bit comparator
	VHDL Architecture
	Architecture Example – 2-input NAND gate
	 Architecture Example – 2 bit comparator
	 Alternative Architecture – 2 bit comparator
	One Entity – Multiple Architectures
	VHDL - Signal
	 External & Internal Signals
	Signals Assignment Statement
	 Signal Types
	 Sidebar: VHDL - Packages
	Std_logic type
	Using std_logic type
	More on Types
	Some Scalar Types
	Array Types
	Assignments to Arrays

