
CPE 487: Digital System Design
Spring 2018

Lecture 4
Entities, Architectures & Signals

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Entity Template

2

• An entity names a system and defines its interface
(input/output signals):

• Entities, signals (and variables, constants,
architectures etc.) are named using identifiers

entity name_of_entity is
[generic generic_declarations);] -- will these cover later
port (signal_names: mode type;

signal_names: mode type;
:

signal_names: mode type);
end [entity] [name_of_entity] ;

VHDL Basic Identifiers

3

• an identifier can be any length (but no spaces)
• may contain only alpha-numeric characters (A to

Z, a to z, 0-9) and the underscore “_” character
• must start with a letter
• may not end with underscore “_”.

– no successive underscores“__”.
• VHDL is case insensitive

– (eg. And2 and AND2 or and2 are the same)
• cannot be a reserved keyword

Identifier Examples

4

Valid:
Bus, clock, comp1, LED_1, COUNT,
cout, c_out, AB2_5C, VHSIC, x1, FFT,
decoder, A_B_C, xyZ

Invalid:
1comp, bus_, 2CA, My-name, H$B,
_abc, A__B, Decode_, alpha 2, end,
AB AC, N#3

Ports

5

• In an entity description, the port construct defines the
input/output signals that make up the system interface

• Each port declaration has the form:

• Each port must have a mode and a type
• Can optionally be assigned an initial value
• Mode is one of:

– in signal is an input: read-only port within the architecture
– out signal is an output: write-only port within the architecture
– inout signal can be an input or an output: bidirectional port
– buffer signal is an output whose value can be read inside the entity’s

architecture

sig_name1, sig_name2, …,sig_name_n : mode type [:= init_value];

Port Examples

6

entity example is
port (a,b: in std_logic:=‘0’;
c: in integer:= 15;
x,y: out std_logic;
z: out std_logic_vector (7 downto 0);
q: buffer integer);

end entity example;

architecture exarc1 of example is
signal s1, s2: std_logic; signal k: integer;
begin

s1 <= a and b; -- read in ports
y <= s1 nor a; -- assign out port
q <= c + 3; -- assign buffer port
k <= q – 1; -- read buffer port
s2 <= a xor y; -- ERROR – cannot read out port
b <= s2 and s1; -- ERROR – cannot assign in port
z <= c or a; -- ERROR – type mismatch

end architecture exarc1;

Comments

7

• A comment line in VHDL is represented by two adjacent
hyphens “--”.

• A comment extends from “--” to the end of the line.
• Can appear anywhere within a description;

Examples:
-- The following entity is a 32-bit ALU
-- Designer: Fred Bloggs 10/14/08

A <= B and C; -- A comment explaining this operation

-- X <= Y-15; -- Commenting out an operation

Architecture Template

8

• An architecture of an entity is one representation of
the internal behavior and/or structure of the entity

architecture arch_name of entity_name is
-- Declarations

-- components declarations
-- signal declarations
-- constant declarations
-- function declarations
-- procedure declarations
-- type declarations

begin
-- Architecture body:

--Statements that describe behavior and/or structure
end [architecture] arch_name;

Architecture Body

9

• The body of an architecture specifies behavior and/or
structure using any of the following modeling styles:

1. A set of concurrent assignment statements (to
represent dataflow)

2. A set of sequential assignment statements (to
represent behavior)

3. A set of interconnected components (to
represent structure

4. Any combination of the above three

Putting it All Together…

10

library IEEE;
use IEEE.std_logic_1164.all;

entity sb_alarm is
port (door, ign, sbelt:in std_logic;
warn: out std_logic);

end entity sb_alarm;

architecture gates of sb_alarm is
signal b1, b2: std_logic;
begin

b1<= (not door) and ign after 7 ns;
b2<=(not sbelt) and ign after 7 ns;
warn <= b1 or b2 after 9 ns;

end architecture gates;

DOOR

SBELT

IGN WARN

B1

B2

Concurrent Operation

• Conventional programming languages
operate on variables with no intrinsic concept
of time
– Execution order is determined by order of

programming statements (+ branch, subroutine
calls etc.)

– Only one operation is happening at a time
• Hardware is concurrent

– All components execute in parallel
– In digital circuits, output signals change in

response to changes in input signals
– When a signal changes, we say that an event

occurs on that signal 11

Events in Digital Circuits

12

5
10

A

B

P
Q

B

A

P

Q

0 5 10 15 20 25 30 35 40 45
time (ns)

event

P <= not A after 5 ns;
Q <= P and B after 10 ns;

Concurrent Signal Assignment Statements

• Signal assignment statements in the body of the
architecture are called concurrent signal
assignment statements (CSA’s), e.g.:

• This CSA will be executed whenever an event
occurs on b or c
– Suppose b changes at time 100ns.
– The value (b and c) will be calculated
– This new value will be assigned to a at (100ns + 10ns) = 110ns13

architecture abc of xyz is
…
begin

…
a <= b and c after 10 ns;
…

end architecture abc;

CSA Execution triggered by Events

is the same as:

• order of concurrent signal assignments is not important
– An event on c at 100ns may lead to an event on a at 110ns and

an event on x at 120ns
– An event on a at 110 ns may, in turn, lead to a second event on

x at 130 ns
– Note that a signal assignment only generates a new event if the

value of the signal changes
14

a <= b and c after 10 ns;
x <= a or c after 20 ns;

x <= a or c after 20 ns;
a <= b and c after 10 ns;

Event Driven Simulation Model

15

• VHDL is simulated using event driven simulation
• Simulator maintains variable current time
• Simulator also maintains event queue

– Time ordered list of all future events
– Each event consists of:

• name of signal
• change in value
• time at which the change takes place

• Operation of simulator:
1. Advance current time to earliest event on event queue
2. Adopt all events at current time (i.e. update signals)
3. Execute simulation models affected by these events
4. Schedule future events generated by these models
5. Repeat until queue is empty or time-limit reached

Event Driven Simulation of Simple Circuit

16

Simulation
time: 0 ns 5 ns 10 ns 15 ns

A
U→0

B
U→0

B
0→1

P
U→1

A
0→1

Q
U→1

25 ns

A
1→0

Q
1→0

P
1→0

Initialize

A:=U
B:=U
P:=U
Q:=U

P <= not A after 5 ns;
Q <= P and B after 10 ns;

Multiple Event Generation

17

• Can a signal assignment statement generate
multiple events? YES

• can be useful for generating input waveforms
• another example:

signal mode: bit;
mode<=‘0’,‘1’ after 10ns,‘0’ after 30ns,‘1’ after 40ns,‘0’ after 70ns;

0 10 20 30 40 50 60 70 80 (ns)

mode

s1 <= (x xor y) after 5ns, (x or y) after 10ns, (not x) after 15ns;

Example – 2-way multiplexer

18

Write a gate level VHDL model of a 1-bit 2-way multiplexer using
concurrent signal assignment statements. Assume the only gates you
have available to you are 2-input NAND gates and NOT gates. Use
std_logic type for each input and output. Assume all gate delays are
5ns.

in0 in1 sel Z
0 0 0 0

0 1 0 0

1 0 0 1

1 1 0 1

0 0 1 0

0 1 1 1

1 0 1 0

1 1 1 1

in0

in1

0

1

Z

sel

Constants

19

• Only data object we have considered so far is signal
• VHDL statements operate on 4 basic classes of objects

– Signals
– Constants
– Variables (later)
– Files (later)

• Constants are objects that are assigned a value once,
when declared, and do not change their value during
simulation.

• Constants are useful for creating more readable design
descriptions, and they make it easier to change the
design at a later time.

• Examples:
– constant delay: time := 10 ns;
– constant bus_width : integer := 8;

Example – full adder

20

Write a gate level VHDL model of a full adder using concurrent signal
assignment statements. Use std_logic type for each signal. Use
constant to define all gate delays as 2.5ns

a b

sum

cincout

a b cin sum cout
0 0 0 0 0

0 1 0 1 0

1 0 0 1 0

1 1 0 0 1

0 0 1 1 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

	CPE 487: Digital System Design�Spring 2018
	Entity Template
	VHDL Basic Identifiers
	Identifier Examples
	Ports
	Port Examples
	Comments
	Architecture Template
	Architecture Body
	Putting it All Together…
	Concurrent Operation
	Events in Digital Circuits
	Concurrent Signal Assignment Statements
	CSA Execution triggered by Events
	Event Driven Simulation Model
	Event Driven Simulation of Simple Circuit
	Multiple Event Generation
	Example – 2-way multiplexer
	Constants
	Example – full adder

