
CPE 487: Digital System Design
Spring 2018

Lecture 5
Dataflow Modeling

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Concurrent Signal Assignment

2

• Simple CSA’s execute whenever an event occurs on
a signal on the RHS of the assignment statement

• Useful for describing gate level combinational logic
– (when output is a function of current input values only)

• Not suited for modeling at higher levels of abstraction

• Do not capture sequential logic behavior
– (when output is a function of current & previous input values)

z <= (a and (not b)) xor (c or (a and (not d))) after 3 ns;

target-signal <= waveform-elements;

4-way 8-bit Multiplexer

3

• Using single bit assignment statements, this would
require 54 assignment statements!

• Even using 8-bit vectors (std_logic_vector) would
require 12 statements

• Simplify using conditional expressions

8

8

8

8

IN0

IN1

IN2

IN3

8 Z

2
sel

MUX

en

Conditional Signal Assignment Statement

4

• Conditional signal assignment statement selects
different values for the target signal based on the
various specified conditions – it is like an if-then-else
statement.

target-signal <= [waveform-elements when condition else]
[waveform-elements when condition else]
…

[waveform-elements when condition else]
[waveform-elements];

• Will be executed whenever an event occurs on a
signal used in any of the waveform expressions, or in
any of the conditions.

• Only the first clause found to be true is executed
– Order of these clauses matters!

4-way 8-bit Multiplexer

5

8

8

8

8

IN0

IN1

IN2

IN3

8 Z

2

sel

MUX

en

library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is
port (IN0, IN1, IN2, IN3: in std_logic_vector (7 downto 0);
sel: in std_logic_vector (1 downto 0);
en: in std_logic;
Z: out std_logic_vector (7 downto 0));

end entity mux4;

architecture behavioral of mux4 is
begin

Z <= “00000000” after 5 ns when en=‘0’ else
IN0 after 5 ns when sel=“00” else
IN1 after 5 ns when sel=“01” else
IN2 after 5 ns when sel=“10” else
IN3 after 5 ns when sel=“11” else
“XXXXXXXX” after 5 ns;

end architecture behavioral;

1-bit Latch

6

din
Q

gate

din gate Q
0 1 0

1 1 1

0 0 no change

1 0 no change

din

gate
Q

• Sequential circuit

• Gate level structure describes a possible
implementation but does not explicitly capture behavior

1-bit Latch using Conditional Assignment

7

din
Q

gate

• There are combinations of inputs which will not trigger
execution  memory of previous state

library IEEE;
use IEEE.std_logic_1164.all;

entity latch is
port (din, gate: in std_logic;
Q: out std_logic);

end entity latch;

architecture lat_1 of latch is
begin

Q <= din after 3 ns when gate=‘1’;
end architecture lat_l;

Selected Signal Assignment Statement

8

• Alternative form of conditional assignment
• Selects different values for a target signal based on the

value of a select expression.
– more like a case statement.

with expression select
target-signal <= waveform-elements when choices,

waveform-elements when choices,
…

[waveform-elements when others];
• Executed when event occurs on any signal in the select

expression or on any signal used in any waveform
expression.

• Choices must be mutually exclusive
– all choices are evaluated – order does not matter

Select Signal Assignment: Byte Selector

9

32din 8

byte_out

2

badd

byte
select

library IEEE;
use IEEE.std_logic_1164.all;

entity bytesel is
port (din: in std_logic_vector (31 downto 0);
badd: in std_logic_vector (1 downto 0);
byte_out: out std_logic_vector (7 downto 0));

end entity bytesel;

• Select a specified byte from 32-bit word:

architecture dataflow of bytesel is
begin

with badd select
byte_out <= din(7 downto 0) after 3 ns when “00”,

din(15 downto 8) after 3 ns when “01”,
din(23 downto 16) after 3 ns when “10”,
din(31 downto 24) after 3 ns when “11”,
“XXXXXXXX” after 3 ns when others;

end architecture dataflow;

Sidebar: Concatenation Operator

10

• & operator can be used to concatenate a j-bit word and
a k-bit word to produce a (j+k) bit word.

• For example:

if a= “0010” and b=“1010” and of type std_logic_vector(3 downto 0):

a & b = “00101010”
a & b & a = “001010100010”
a(3 downto 2) & “01” =
b(3) & a(1 downto 0) =

Example: 4-bit Logical Shifter

11

4din
2

4-bit
shifter

• Use Conditional Signal Assignment to describe a
circuit that logically shifts a 4-bit word 0-3 bits to the
right or left. Include tri-state output.

4 sh_out

nbits LS =1 for left shift
0 for right shift

oen

Inertial Delay

• By default, gate delays are considered inertial
– due to intrinsic speed limitation of device

• What happens if a gate sees a very short pulse at its
input?

• Inertial delay will filter out pulses shorter than the
specified gate delay
– Default rejection window = gate delay

out1 <= input or ‘0’ after 8 ns.

out2 <= input or ‘0’ after 2 ns.

12

Inertial Delay with Rejection Window

• We can override default rejection window:

z <= reject 3ns inertial (x xor y) after 5ns;

• This gate has a delay of 5ns, but will only reject input
pulses shorter than 3 ns.

• Inertial delay will also reject output pulses shorter
than the reject window.

• For example, using xor gate (above) with following
inputs:

x <= ‘0’, ‘1’ after 10ns, ‘0’ after 20ns;
y <= ‘0’, ‘1’ after 12ns, ‘0’ after 18ns;

generates no output on z
13

Transport Delay

• Signals also experience delays through wires
– Wires can change state very quickly (fast rise & fall time)
– If wire is long, transport delay can be much greater than the

wire rise/fall time.
– Even a very long wire, may transmit very short pulses (with

an appropriate delay
• Transport delay does not filter out short pulses:

sum <= transport (x xor y) after 10ns;
8ns 9ns

x

y

z
18ns 19ns

14

Inertial + Transport Delay

• Allows us to independently model gate (inertial) and
wire (transport) delays

15

Dataflow Delays

• Dataflow describes process of events flowing from
one device to another

b <= not a after 2 ns;
c <= not b after 2 ns;
d <= not c after 2 ns;

a b c d

0 2 4 6 8 10 12 14 16 18 20

a

b
c

d

16

Zero Delays

• What happens when delays are zero?

e.g.: b <= not a after 0 ns; or b <= not a;
c <= not b;
d <= not c;

• Are these events really happening in zero time?
• What impact does this have on concurrency?

a b c d

0 2 4 6 8 10 12 14 16 18 20

a

b
c

d

17

Delta Delays

• When no delay is specified, simulator adds small
(delta) delay  when scheduling the output event

• is smaller than any physical delay
– infinitesimally small but non-zero

• This maintains correct data flow and ensures events
processed in correct order
– without introducing physical delay

a b c d

0 2 4 6

a

b
c

d

2 2+ 2+2

a

b
c

d

2+3

Delta
events

18

Signal Delays - Summary

• VHDL signals do not change instantaneously.
• A scheduled change for a VHDL signal never occurs

at the present time but is always delayed until some
future time.
– this is the basis of concurrency

– execution of one CSA cannot affect the execution of another
CSA at the present time

• The future time at which the change is to take affect
can be explicitly stated. If no time is specified for a
signal change, the default future time is the present
time plus an infinitesimally small time called delta
time.

19

Example: Ring Oscillator

• What will happen if the output of the inverter chain is
fed back to the input?

b <= not d after 2 ns;
c <= not b after 2 ns;
d <= not c after 2 ns;

• What will happen if no delay is specified?

b c d

20

Multiple Drivers

• Each concurrent signal assignment statement
creates a driver for the signal being assigned

• Can there be more that one driver for a signal?
– depends on the type of the signal

z <= a and b after 10 ns;
z <= not c after 5 ns;

• With standard (unresolved) types (e.g. bit, std_ulogic,
integer), this is illegal and will cause either a compiler
or a run-time error

• With resolved types (e.g. std_logic, std_logic_vector)
a resolution function is invoked to determine correct
result (more on this later).

21

Std_logic Resolution Table

22

U X 0 1 Z W L H -

U U U U U U U U U U

X U X X X X X X X X

0 U X 0 X 0 0 0 0 X

1 U X X 1 1 1 1 1 X

Z U X 0 1 Z W L H X

W U X 0 1 W W W W X

L U X 0 1 L W L W X

H U X 0 1 H W W H X

- U X X X X X X X X

uninitialized

unknown

forcing ‘0’

forcing ‘1’

high impedance

weak unknown

weak ‘0’

weak ‘1’

don’t care

Multiple Driver Examples

23

a b c

zout

“wired NOR”

signal zout has 4 drivers
(3 open-drain buffers plus a resistor)

buffers output ‘0’ or ‘Z’
resistor outputs ‘H’

a b c

busout

ena enb enc

tri-state bus

each buffer outputs ‘0’, ‘1 or ‘Z’
(only one driver active at a time)

Concurrent Assertion Statement

• During simulation and debugging it is useful to be able to
check and report on signal values, e.g:
– Illegal combination of inputs
– setup or hold time violations
– unexpected condition

• Assert statement provides mechanism for testing state of
system and reporting results on simulator console

assert boolean-expression
[report string-expression]
[severity expression];

• If the value of the boolean-expression is false, the report
message is printed along with the severity level
– executed when event occurs on any signal in boolean-expression

24

Severity Levels

• Implementation dependent
• Common values:

– NOTE
– WARNING
– ERROR
– FAILURE (this level will abort Xilinx Isim simulator)

for example:
assert (a=b) or (a=c)
[report “a is not equal to b or c”]
[severity WARNING];

25

Example: RS Latch

entity rsff is
port(rb, sb: in std_logic;

Q:out std_logic);
end entity rsff;

architecture rsa1 of rsff is
begin

assert rb=‘1’
report “reset initiated”
severity NOTE;

assert (rb=‘1’) or (sb=‘1’)
report “rb and sb both zero”
severity ERROR;

Q <= ‘1’ when sb=‘0’ else
‘0’ when rb=‘0’;

end architecture rsa1;
26

sb

rb

Q

rb sb Q
0 1 0

1 0 1

1 1 no change

0 0 illegal

RS Latch: Simulation Output

27

