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Concurrent Signal Assignment 
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• Simple CSA’s execute whenever an event occurs on 
a signal on the RHS of the assignment statement

• Useful for describing gate level combinational logic
– (when output is a function of current input values only)

• Not suited for modeling at higher levels of abstraction

• Do not capture sequential logic behavior
– (when output is a function of current & previous input values)

z <= (a and (not b)) xor (c or (a and (not d))) after 3 ns;

target-signal  <= waveform-elements;



4-way 8-bit Multiplexer
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• Using single bit assignment statements, this would 
require 54 assignment statements!

• Even using 8-bit vectors (std_logic_vector) would 
require 12 statements

• Simplify using conditional expressions
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Conditional Signal Assignment Statement
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• Conditional signal assignment statement selects 
different values for the target signal based on the 
various specified conditions – it is like an if-then-else
statement.

target-signal  <= [waveform-elements when condition else]
[waveform-elements when condition else]
…

[waveform-elements when condition else]
[waveform-elements];

• Will be executed whenever an event occurs on a 
signal used in any of the waveform expressions, or in 
any of the conditions.

• Only the first clause found to be true is executed
– Order of these clauses matters!



4-way 8-bit Multiplexer
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library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is 
port ( IN0, IN1, IN2, IN3: in std_logic_vector (7 downto 0);
sel: in std_logic_vector (1 downto 0);
en: in std_logic;
Z: out std_logic_vector (7 downto 0));

end entity mux4;

architecture behavioral of mux4 is
begin

Z <= “00000000” after 5 ns when en=‘0’ else
IN0 after 5 ns when sel=“00” else
IN1 after 5 ns when sel=“01” else
IN2 after 5 ns when sel=“10” else
IN3 after 5 ns when sel=“11” else
“XXXXXXXX” after 5 ns;

end architecture behavioral;



1-bit Latch
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• Sequential circuit

• Gate level structure describes a possible 
implementation but does not explicitly capture behavior



1-bit Latch using Conditional Assignment
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• There are combinations of inputs which will not trigger 
execution  memory of previous state

library IEEE;
use IEEE.std_logic_1164.all;

entity latch is 
port (din, gate: in std_logic;
Q: out std_logic);

end entity latch;

architecture lat_1 of latch is
begin

Q <= din after 3 ns when gate=‘1’;
end architecture lat_l;



Selected Signal Assignment Statement
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• Alternative form of conditional assignment
• Selects different values for a target signal based on the 

value of a select expression. 
– more like a case statement.

with expression select
target-signal <= waveform-elements when choices,

waveform-elements when choices,
…

[waveform-elements when others];
• Executed when event occurs on any signal in the select 

expression or on any signal used in any waveform 
expression.

• Choices must be mutually exclusive
– all choices are evaluated – order does not matter



Select Signal Assignment: Byte Selector
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library IEEE;
use IEEE.std_logic_1164.all;

entity bytesel is 
port ( din: in std_logic_vector (31 downto 0);
badd: in std_logic_vector (1 downto 0);
byte_out: out std_logic_vector (7 downto 0));

end entity bytesel;

• Select a specified byte from 32-bit word:

architecture dataflow of bytesel is
begin

with badd select
byte_out <= din(7 downto 0) after 3 ns when “00”,

din(15 downto 8) after 3 ns when “01”,
din(23 downto 16) after 3 ns when “10”,
din(31 downto 24) after 3 ns when “11”,
“XXXXXXXX” after 3 ns when others;

end architecture dataflow;



Sidebar: Concatenation Operator
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• & operator can be used to concatenate a j-bit word and 
a k-bit word to produce a (j+k) bit word.

• For example:

if a= “0010” and b=“1010” and of type std_logic_vector(3 downto 0):

a & b = “00101010”
a & b & a = “001010100010”
a(3 downto 2) & “01” =
b(3) & a(1 downto 0) =



Example: 4-bit Logical Shifter
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• Use Conditional Signal Assignment to describe a 
circuit that logically shifts a 4-bit word 0-3 bits to the 
right or left. Include tri-state output.
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Inertial Delay

• By default, gate delays are considered inertial
– due to intrinsic speed limitation of device

• What happens if a gate sees a very short pulse at its 
input?

• Inertial delay will filter out pulses shorter than the 
specified gate delay
– Default rejection window = gate delay

out1 <= input or ‘0’ after 8 ns.

out2 <= input or ‘0’ after 2 ns.
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Inertial Delay with Rejection Window

• We can override default rejection window:

z <= reject 3ns inertial (x xor y) after 5ns;

• This gate has a delay of 5ns, but will only reject input 
pulses shorter than 3 ns.

• Inertial delay will also reject output pulses shorter 
than the reject window.

• For example, using xor gate (above) with following 
inputs:

x <= ‘0’, ‘1’ after 10ns, ‘0’ after 20ns;
y <= ‘0’, ‘1’ after 12ns, ‘0’ after 18ns;

generates no output on z
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Transport  Delay

• Signals also experience delays through wires
– Wires can change state very quickly (fast rise & fall time)
– If wire is long, transport delay can be much greater than the 

wire rise/fall time.
– Even a very long wire, may transmit very short pulses (with 

an appropriate delay 
• Transport delay does not filter out short pulses:

sum <= transport (x xor y) after 10ns;
8ns 9ns

x

y

z
18ns 19ns
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Inertial + Transport Delay

• Allows us to independently model gate (inertial) and 
wire (transport) delays
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Dataflow Delays

• Dataflow describes process of events flowing from 
one device to another

b <= not a after 2 ns;
c <= not b after 2 ns;
d <= not c after 2 ns;

a b c d
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Zero Delays

• What happens when delays are zero?

e.g.:  b <= not a after 0 ns;   or   b <= not a; 
c <= not b;
d <= not c;

• Are these events really happening in zero time?
• What impact does this have on concurrency?
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Delta Delays

• When no delay is specified, simulator adds small 
(delta) delay  when scheduling the output event

• is smaller than any physical delay
– infinitesimally small but non-zero

• This maintains correct data flow and ensures events 
processed in correct order 
– without introducing physical delay
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Signal Delays - Summary

• VHDL signals do not change instantaneously. 
• A scheduled change for a VHDL signal never occurs 

at the present time but is always delayed until some 
future time. 
– this is the basis of concurrency

– execution of one CSA cannot affect the execution of another 
CSA at the present time

• The future time at which the change is to take affect 
can be explicitly stated. If no time is specified for a 
signal change, the default future time is the present 
time plus an infinitesimally small time called delta 
time. 
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Example: Ring Oscillator

• What will happen if the output of the inverter chain is 
fed back to the input?

b <= not d after 2 ns;
c <= not b after 2 ns;
d <= not c after 2 ns;

• What will happen if no delay is specified?

b c d
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Multiple Drivers

• Each concurrent signal assignment statement 
creates a driver for the signal being assigned

• Can there be more that one driver for a signal?
– depends on the type of the signal

z <= a and b after 10 ns;
z <= not c after 5 ns;

• With standard (unresolved) types (e.g. bit, std_ulogic, 
integer), this is illegal and will cause either a compiler 
or a run-time error

• With resolved types (e.g. std_logic, std_logic_vector) 
a resolution function is invoked to determine correct 
result (more on this later).
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Std_logic Resolution Table
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U X 0 1 Z W L H -

U U U U U U U U U U

X U X X X X X X X X

0 U X 0 X 0 0 0 0 X

1 U X X 1 1 1 1 1 X

Z U X 0 1 Z W L H X

W U X 0 1 W W W W X

L U X 0 1 L W L W X

H U X 0 1 H W W H X

- U X X X X X X X X

uninitialized

unknown

forcing ‘0’

forcing ‘1’

high impedance

weak unknown

weak ‘0’

weak ‘1’

don’t care



Multiple Driver Examples
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“wired NOR” 

signal zout has 4 drivers
(3 open-drain buffers plus a resistor)

buffers output ‘0’ or ‘Z’
resistor outputs ‘H’

a b c

busout

ena enb enc

tri-state bus

each buffer outputs ‘0’, ‘1 or ‘Z’
(only one driver active at a time)



Concurrent Assertion Statement

• During simulation and debugging it is useful to be able to 
check and report on signal values, e.g:
– Illegal combination of inputs
– setup or hold time violations
– unexpected condition

• Assert statement provides mechanism for testing state of 
system and reporting results on simulator console

assert boolean-expression
[report string-expression]
[severity expression];

• If the value of the boolean-expression is false, the report 
message is printed along with the severity level
– executed when event occurs on any signal in boolean-expression
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Severity Levels

• Implementation dependent
• Common values:

– NOTE
– WARNING
– ERROR
– FAILURE   (this level will abort Xilinx Isim simulator)

for example:
assert (a=b) or (a=c)
[report “a is not equal to b or c”]
[severity WARNING];
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Example: RS Latch

entity rsff is
port(rb, sb: in std_logic;

Q:out std_logic);
end entity rsff;

architecture rsa1 of rsff is
begin

assert rb=‘1’
report “reset initiated”
severity NOTE;

assert (rb=‘1’) or (sb=‘1’)
report “rb and sb both zero”
severity ERROR;

Q <= ‘1’ when sb=‘0’ else
‘0’ when rb=‘0’;

end architecture rsa1;
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RS Latch: Simulation Output
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