
CPE 487: Digital System Design
Spring 2018

Lecture 6
Behavioral Modeling: Processes

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Higher Levels of Abstraction

• Conditional CSA’s allow us to move from the
gate level to the register transfer level
(registers, multiplexers, adders etc.)

• Impractical for higher levels of abstraction
where we want to focus on high level function
rather than structural implementation.

• For example:
– 16-bit microprocessor ??

• or maybe something simpler like a
– 9-stage, 16 bit FIR filter ??

2

FIR Filter

3

reg0

X
a1

Σ

reg1

reg2

reg3

reg4

reg5

reg6

reg7

X
a2

X
a3

X
a4

X
a5

X
a6

X
a7

X
a8

X
a0

din

dout

clk

16

16

Process Construct

• Sequentially executed block of code
– much like conventional programming languages
– executes in zero time

• Supports variables as well as signals
• Powerful control flow constructs
• More control over when assignments are

executed

4

Process Example

5

entity NANDXOR is
port (

A, B : in std_logic;
C : in std_logic;
D : out std_logic);

end NANDXOR;
architecture RTL of NANDXOR is

signal T : std_logic;
begin

p0 : T <= A nand B after 2 ns;
p1 : process (T, C)
begin

D <= T xor C after 3 ns;
end process p1;

end RTL;

A
B

C D

T

Sensitivity List

6

• (T,C) is the process sensitivity list of process p1
• A process is executed whenever an event occurs on any

signal in the sensitivity list
• Statements in the process are executed sequentially
• Process is then suspended until an event occurs on one

of signals in process sensitivity list

p1 : process (T, C)

Active Suspended

Running

Scheduler
selects process

Signal
event

Update signal value
on event queue

Concurrent Signal Assignment or Process?

7

• These two representations are equivalent!
• CSA’s are implemented as processes
• A CSA is a short-hand method of defining a process that

schedules events on only one output signal
• Each process can be thought of as a concurrent

assignment that can:
– do complex sequential processing to calculate a result
– schedule events on more than one signal

p1 : process (T, C)
begin

D <= T xor C after 3 ns;
end process p1;

p1 : D <= T xor C after 3ns;or

Process Programming – If then Else

8

• An if statement selects a sequence of statements for
execution based on the value of a condition (Boolean
value).

if boolean-expression then
sequential-statements

{elsif boolean-expression then
sequential-statements}

[else
sequential-statement]

end if;

• Only first clause (boolean expression) found to be true is
executed – order of these clauses matters

• Note that elsif is one word but end if is two words

Example 8-bit comparator

9

entity cmp_8 is
port (

a,b: in std_logic_vector (7 downto 0);
en: in std_logic;
eq: out std_logic);

end cmp_8;
architecture behavior of cmp_8 is
begin

cmp_proc : process (a,b,en)
begin

if en=‘0’ then
eq <= ‘0’ after 4 ns;

elsif a=b then
eq <= ‘1’ after 7 ns;

else
eq <= ‘0’ after 7 ns;

end if;
end process cmp_proc;

end behavior;

=?
8a

8b

eq

en

D Flip-Flop

10

S R clk D Q Q

0 1 X X 1 0

1 0 X X 0 1

1 1 ↑ 1 1 0

1 1 ↑ 0 0 1

0 0 X X ? ?

• Rising edge triggered sequential circuit
• D flip-flop captures value of D when clk goes from ‘0’ to ‘1’
• S and R are asynchronous over-riding set and reset
• In order to model, we need to know on which input an

event has occurred

D Q

clk Q

S

R

Sidebar: Attributes

11

• Attributes return information about a signal, e.g.:
Attribute Function
signal_name’event returns the Boolean value True if an event on the signal occurred at current

time, otherwise returns value False
signal_name’active returns the Boolean value True there has been a transaction (assignment)

on the signal at the current time, otherwise returns the value False
signal_name’last_event returns the time elapsed since the last event on the signal
signal_name’last_active returns the time elapsed since the last transaction on the signal
signal_name’last_value returns the value of the signal before the last event occurred on the signal
signal_name’delayed(T) returns a signal that is the delayed version (by time T) of the original one.

[T is optional, default ∆]
signal_name’stable(T) returns the Boolean value True if no event has occurred on the signal

during the interval T, otherwise returns False. [T is optional, default ∆]

signal_name’quiet(T) returns the Boolean value True if no transaction has occurred on the signal
during the interval T, otherwise returns False. [T is optional, default ∆]

Sidebar: Attribute Examples

12

dx <= ‘0’ after 0ns, ‘1’ after 5ns, ‘0’ after 10ns, ‘0’ after 15ns, ‘1’ after 20ns,
‘0’ after 30ns;

dx’event has the value TRUE at t=10ns
dx’event has the value FALSE at t=15ns
dx’active has the value TRUE at t=15ns
dx’last_event has the value 5ns at t=15ns
dx’last_value has the value ‘1’ at t=15ns
dx’delayed(8ns) has the value ‘1’ at t=15ns
dx’stable(8ns) has the value FALSE at t=15ns
dx’stable(2ns) has the value TRUE at t=15ns
dx’delayed(8ns)’event has the value TRUE only at times

13, 18, 28, and 38ns.

0 5 10 15 20 25 30 35 40 (ns)

signal dx

Example: D Flip-Flop

13

entity Dff is
port (
clk,D,Rb,Sb: in std_logic;
Q,Qb: out std_logic);

end entity Dff;

D Q

clk Q

S

R

architecture DA1 of Dff is
begin

ff_proc: process (clk,Rb,Sb)
begin

if Rb=‘0’ then
Q<=‘0’ after 5ns;
Qb<=‘1’ after 5ns;

elsif Sb=‘0’ then
Q<=‘1’ after 5ns;
Qb<=‘0’ after 5ns;

elsif clk’event and clk=‘1’ then
Q<=D after 7 ns;
Qb<= not D after 7 ns;

end if;
end process ff_proc;

end architecture DA1;

Process Programming: Case Statement

14

• A case statement selects one of several branches for
execution based on the value of expression

case expression is
when choices => sequential-statements
when choices => sequential-statements
-- can have any number of branches
[when others => sequential-statements]

end case;

• The set of choices must be mutually exclusive and cover all
possible values of the expression.
– Because choices must be mutually exclusive, order of clauses does not

matter

Example: 4-way 8-bit multiplexer

15

entity mux4 is
port (IN0, IN1, IN2, IN3: in std_logic_vector (7 downto 0);
sel: in std_logic_vector (1 downto 0);
en: in std_logic;
Z: out std_logic_vector (7 downto 0));

end entity mux4;

architecture using_case of mux4 is
begin

P1: process (IN0,IN1,IN2,IN3,sel,en)
begin

if en=‘0’ then
Z<= x“00” after 5ns;

else
case sel is
when “00” => Z<= IN0 after 5ns;
when “01 ”=> Z<= IN1 after 5ns;
when “10” => Z<= IN2 after 5ns;
when “11” => Z<= IN3 after 5ns;
when others => Z<=“XXXXXXXX” after 5ns;
end case;

end if;
end process;

end architecture using_case;

8

8

8

8

IN0

IN1

IN2

IN3

8 Z

2

sel

MUX

en

Sidebar: Bit String Literals

16

• Special forms of string literals that are used to represent binary, octal,
or hexadecimal numeric data values. The numerical value is given in
double quotes (") and the representation is specified by a character
preceding the quoted value.

• The underscore character can be used for convenience and clarity - it
does not change the represented value. For example:

– Binary data: B"0110_1101_1111_0010”
– Octal data: O“16_67_62".
– Hexadecimal data: X“6DF2"
– Binary data: “0010110111110010”

• Note that binary is assumed when no base specified, but
underscore cannot be used in this case.

Null Statement

17

• The null statement is used to explicitly say “do nothing”

Null;

• Particularly useful in case statement when no action is required
in response to one of the choices. For example:

case sel is
when “00” => Z<= IN0 after 5ns;
when “01 ”=> Z<= IN1 after 5ns;
when “10” => Z<= IN2 after 5ns;
when “11” => Null;
end case;

Process Programming: Loop Statement

18

• The loop statement is used to iterate through a set of
sequential statements.

[loop-label :] iteration-scheme loop
sequential-statements

end loop [loop-label];

Three types of iteration scheme:
1. for identifier in range
2. while boolean-expression
3. No iteration scheme specified

Example: 8-stage,16-bit register pipeline

19

entity pipe8 is
port (din:in std_logic_vector(15 downto 0);
clk:in std_logic;
dout:out std_logic_vector(15 downto 0));

end entity pipe8;

din

reg0

reg1

reg2

reg3

reg4

reg5

reg6

reg716 dout

architecture pipe_be of pipe8 is
type sig8x16 is array (0 to 7) of std_logic_vector(15 downto 0);
signal regfile: sig8x16;
begin

rproc: process (clk) is
begin

if clk=‘1’ then
regfile(0)<=din after 5ns;
for i in 1 to 7 loop

regfile(i)<=regfile(i-1) after 5ns;
end loop;

end if;
end process;
dout<=regfile(7);

end architecture pipe_be;

clk

Loop Statement: For Iteration

20

[loop-label :] for index in range loop
sequential-statements

end loop [loop-label];

• index is implicitly declared in the loop statement
• index is local to the loop and read-only

• Loop statement is most powerful when used with variables
(next lecture)

Multiple Processes: Single-bit ALU

21

Model a single-bit ALU that has four functions: ZERO, AND,
OR and ADD selected by a two-bit input opcode. Use two
processes: one to describe the basic operations and one to
describe the multiplexer.

A
B

cin

Z

FA

MUX

cout opcode

‘0’ 00

01

10

11

Process P1

Process P2

Example: Register File

22

Model a register file with sixteen registers, where each register is 32 bits.
Implement the register file with two processes: one process reads the register
file, while another writes the register file.

The register file has 32-bit din and dout ports and a 4-bit address port. The
read operation should be asynchronous. The write operation should be
synchronous, occurring on the rising edge of a write signal.

An enable signal allows expansion of the register file to a larger address range.
When the enable signal is 0, dout is tri-state (high impedance) and write
operations are inhibited.

reg file
16 x 32

din 32 32 dout

write

4addr en

	CPE 487: Digital System Design�Spring 2018
	Higher Levels of Abstraction
	FIR Filter
	Process Construct
	Process Example
	Sensitivity List
	Concurrent Signal Assignment or Process?
	Process Programming – If then Else
	Example 8-bit comparator
	D Flip-Flop
	Sidebar: Attributes
	Sidebar: Attribute Examples
	Example: D Flip-Flop
	Process Programming: Case Statement
	Example: 4-way 8-bit multiplexer
	Sidebar: Bit String Literals
	Null Statement
	Process Programming: Loop Statement
	Example: 8-stage,16-bit register pipeline
	 Loop Statement: For Iteration
	Multiple Processes: Single-bit ALU
	Example: Register File

