
CPE 487: Digital System Design
Spring 2018

Lecture 7
Behavioral Modeling: Variables

1

Bryan Ackland
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030

Variables

• In addition to signals, VHDL supports variables
– Variables in VHDL are similar to variables in

conventional programming languages
• Like signals, each variable has a type
• Like signals, variables have a present value
• Unlike signals, variables have no concept of future time

– easier to use when calculating algorithmic result
– “cheaper” to implement in simulator
– no events associated with variables

• Variables are defined within a process and are not
visible outside of the process

• Signals represent physical interconnect in circuits
• Variables are local values used to simplify process of

calculating a result 2

Example: Count number of “ones”

3

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.STD_LOGIC_arith.all;

entity count1s is
port (
din: in std_logic_vector (15 downto 0);
ones: out std_logic_vector(4 downto 0));

end count1s;

architecture A1 of count1s is
begin

p1: process (din)
variable count: integer;
begin

count:=0;
for i in 0 to 15 loop

if din(i)=‘1’ then
count:= count+1;

end if;
end loop;

ones<=conv_std_logic_vector(count,5)
after 5ns;

end process;
end A1;

count
number
of ‘1’ s
in word

16 5din ones

Variable Assignment Statement

Variable-object := expression;

• Expression may include both variables and
signals. The present value of a signal is used in
the computation

• Computation is performed in zero time (no delta
delay)
– Order of variable assignment statements is

important
• Can only occur within process

4

Variable Assignment Statement: Examples

architecture RTL of VASSIGN is
signal A, B, J : bit_vector(1 downto 0);
signal E, F, G : bit;

begin
p0 : process (A, J)
variable C, D, H, Y : bit_vector(1 downto 0);
variable W, Q : bit_vector(3 downto 0);
variable X : bit;

begin
C := "01";
X := E nand F;
Y := H or J;
W := C & D;
Q := (not A) & (A nor B);
W := (2 downto 1 => B, 3 => '1', others => '0');
Y := (others => '0');

end process;
end RTL; 5

Review Architecture & Process

architecture RTL of OVERALL is
-- signals and constants can be declared here
-- variables CANNOT be declared here
begin

-- concurrent signal assignment statements here
-- NO variable assignment statements
P1: process (SENSITIVITY_LIST)
-- variables and constants can be declared here
-- signals CANNOT be declared here
begin

-- sequential variable assignment statements here
-- sequential signal assignment statements here

end process P1;
end architecture RTL;

6

Wait Statement

• When process has sensitivity list, process is suspended
until there is an event on one of the sensitive signals

• Alternatively, process can be suspended with use of wait
statements:

wait for time expression;
wait for 25ns;

wait on signal;
wait on clk, reset;

wait until condition;
wait until index=0;

wait; -- means wait forever;

• When using wait statements, the process does not
suspend at the last statement in the process code, but
continues executing from the top of the process. 7

Example: D Flip-Flop

8

entity Dff 2 is
port (
clk,D: in std_logic;
Q,Qb: out std_logic);

end entity Dff2;

D Q

clk Q

architecture DB of Dff2 is
begin

ff2_pr: process
begin

wait until clk’event and clk=‘1’ ;
Q<=D after 7 ns;
Qb<= not D after 7 ns;

end process ff2_pr;
end architecture DB;

Wait Statement

• Possible to use multiple conditions, e.g:
wait on X,Y until Z=0 for 100ns;
means: wait for a maximum of 100ns for an event
on X or Y when Z=0

• tpr: process (a,b)
begin

…..
end process;

• A process must have (a sensitivity list) or (one or more
wait statements) but not both

• Regardless of whether a process uses a sensitivity list or
wait statements, all processes run at time=0 9

tpr: process
begin

…..
wait on a,b;

end process;

is the
same as

Generating Periodic Waveforms

• Process with wait statement
– Useful for test-bench inputs

• e.g: two-phase non-overlapping clock with reset:

10

architecture tpa of two_phase is
signal phi1, phi2, reset;
begin
reset_pr: reset<= ‘1’, ‘0’ after 10ns;
clk_pr: process

begin
phi1<=‘1’,’0’ after 10ns;
phi2<=‘0’,‘1’ after 12 ns; ‘0’ after 18ns;
wait for 20ns;

end process;
end architecture tpa;

Timing of Variable and Signal Assignments

• Variables are assigned at the same time that the
variable assignment is executed (zero-time)
– Order of sequential variable assignment statements is important!

• Signals are assigned when the process is
suspended
– Can specify inertial, transport or zero delay
– Zero delay signal assignment occurs at present time + ∆
– How about order of sequential signal assignment statements?

11

Active Suspended

Running
update

variables

Scheduler
selects process

Update signal
values on event

queue

Signal
event

Variable and Signal Timing Example
architecture A1 of sig_var is
signal s1, s2, x, za, zb: std_logic;
begin

x<=‘0’,’1’ after 10ns, ‘0’ after 20ns, ‘1’ after 50ns, ‘0’ after 60 ns;
pa: process (x)
begin

s1<=x;
s2<=s1;
za<=s2;

end pa;
pb: process(x)
variable v1,v2:std_logic;
begin

v1:=x;
v2:=v1;
zb<=v2;

end pb;
end A1;

12

v1

x
10 20 30 40 50 60 70 80 900

zb
v2

x

s1
s2

10 20 30 40 50 60 70 80 900

za

Wait for 0

• “Wait for 0” suspends process and then allows it to restart
after a delay of only ∆

• Allows signal assignment to take effect before next
statement is executed

architecture A1 of sig_var is
signal s1, s2, x, za, zb, zw: std_logic;
begin

x<=‘0’,’1’ after 10ns, ‘0’ after 20ns, ‘1’ after 50ns, ‘0’ after 60 ns;
pa: process
begin

wait on x;
s1<=x;
s2<=s1;
za<=s2;
wait for 0ns;
zw<=s2;

end pa;
end A1; 13

zw

x

s1
s2
za

10 20 30 40 50 60 70 80 900

Loop Statement: While Iteration

14

[loop-label :] while condition loop
sequential-statements

end loop [loop-label];

• condition is expression using previously declared signals
and/or variables

• These signals and variables can be modified within the loop

While Example: Rotate Right Shift

15

entity rrs is
port(din:in std_logic_vector(15 downto 0);

nshift:in integer;
dout:out std_logic_vector(15 downto 0));

end rrs;

architecture beh of rrs is
begin
sh_pr: process

variable nv:integer;
variable dvar: std_logic_vector(15 downto 0);
begin

wait on din, nshift;
nv:=nshift;
dvar:=din;
while nv>0 loop

dvar:=dvar(0)&dvar(15 downto 1);
nv:=nv-1;

end loop;
dout<=dvar after 5 ns;

end process;
end beh;

rotate
right

16 16din dout

nshift

Other Useful Sequential Control Instructions

16

• exit [loop label] [when condition];

– Exit from loop (like C-language break). Must be enclosed by a
loop statement with the same loop label. If the loop label is not
specified, the exit always applies to the innermost loop

• next [loop label] [when condition];
– Skip remaining statements in current iteration of the loop (like C-

language continue). If the loop label is not specified, the next
always applies to the innermost loop

Loop Examples: Factorial Calculation

17

factorial := 1;
FLP: for number in 2 to N loop

factorial := factorial *number;
end loop;
--
j := 2;
factorial := 1;
WLP : while j<=N loop

factorial := factorial *j;
j:= j +1;

end loop;

k := 1;
factorial :=1;
NLP : loop

factorial := factorial *k;
k:= k +1;
exit when k > N;

end loop;

These are
all

equivalent

Sequential Assert Statement

• Assert statement can also be used inside a process
• Assertion check will only be performed when

statement is sequentially executed.
• For example: checking minimum required setup and

hold times on D Flip-flop

D Q

clk
clk

D

setup
time

hold
time

18

Example: Setup & Hold Time
architecture behave of DFF is
constant SETUP : time := 3 ns;
constant HOLD : time := 2 ns;
begin

setup_check : process (clk)
begin

if (clk = '1') then
assert D‘stable(SETUP)
report "D setup error" severity WARNING;
Q <= D;

end if;
end process;
hold_check: process (D)
begin

if (clk = '1') then
assert (clk‘last_event > HOLD)
report "D hold error" severity WARNING;

end if;
end process;

end behave; 19

Multiple Assignment Inside a Process

• Outside of a process, assignment statements are
executed concurrently
– multiple assignments to same signal are either illegal or

invoke a resolution function

• Inside a process, assignment statements execute
sequentially
– An initial assignment can be overwritten by a subsequent

assignment (much like a regular programming language)

20

Signal Drivers

• A single driver is created for every signal that is
assigned a value in a process
– The driver holds its current value and all its future values
– All transactions on a driver are ordered in increasing time

signal integer data;
p1: process
begin

data<= 3 after 5ns, 21 after 10ns, 14 after 17ns;

21

curr@now(T) 3@T+5ns 21@T+10ns 14@T+17nsdata

Multiple Assignment: Transport Delays

• Within a process, multiple assignments update driver
according to the order in which they are executed.

• Transport delay rules:
1. All transactions that occur at or after the delay time of the

first new transaction are deleted.
2. All the new transactions are added at the end of the driver

data<= transport 11 after 10ns;
…
…

data<= transport 20 after 22ns;
…
…

data<= transport 35 after 18ns;

22

curr@now(T) 11@T+10nsdata

curr@now(T) 11@T+10ns 20@T+22nsdata

curr@now(T) 11@T+10ns 35@T+18nsdata

Multiple Assignment: Inertial Delays

• Inertial delay rules:
1. All transactions that occur at or after the delay time of the first new

transaction are deleted.
2. Add all the new transactions to the driver
3. Delete old transactions that occur within pulse rejection limit of first

new transaction if value is different to value of first new transaction

data<= 11 after 10ns;
…
…

data<= reject 15ns inertial 22 after 20ns;
…
…

data<= 33 after 15ns;

23

curr@now(T) 11@T+10nsdata

curr@now(T) 22@T+20nsdata

curr@now(T) 33@T+15nsdata

Sidebar: Signed & Unsigned Vectors

• We frequently use multi-bit digital words to represent integer
values on which we would like to perform arithmetic and
relational operations

• The std_logic_vector type is simply an array of bits with no
implied digital value
– Only logical operators (nand, xor, not etc.) are defined in the

IEEE.std_logic_1164 library
– No arithmetic (+, - etc.) or relational (>, <= etc.) because these would

require understanding of meaning of vector
– Does it represent signed, unsigned, signed-magnitude, floating etc. ?

24

Operations on Unsigned, Signed Numbers

• USE ieee.numeric_std.all
and
signals of the type UNSIGNED, SIGNED
and conversion functions:

std_logic_vector(), unsigned(), signed()
OR
• USE ieee.std_logic_unsigned.all

and
signals of the type STD_LOGIC_VECTOR
– all STD_LOGIC_VECTOR objects will be treated as unsigned
– approach used in Yalamanchili

• There is also an ieee.std_logic_signed.all
– all STD_LOGIC_VECTOR objects will be treated as signed
– do not use both! 25

Unsigned Arithmetic Example

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

signal v1, v2, v3:
std_logic_vector (7 downto 0);

signal carry: std_logic;
signal u1, u2: unsigned (7 downto 0);
signal u3: unsigned (8 downto 0);

u1 <= unsigned (v1);
u2 <= unsigned (v2);
u3 <= (‘0’&u1) + u2;
v3 <= std_logic_vector(u3(7 downto 0));
carry <= u3(8); 26

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

signal v1, v2, v3:
std_logic_vector (7 downto 0);

signal vtemp:
std_logic_vector (8 downto 0);

signal carry: std_logic;

vtemp <= (‘0’&v1) + v2;
v3 <= vtemp(7 downto 0));
carry <= vtemp(8);

Suppose we want to add two 8-bit unsigned std_logic_vectors v1 and
v2 to produce an 8-bit unsigned result v3 plus a carry-out

Example: 16-bit unsigned multiplier

• Construct a “shift and add” behavioral model of a 16x16 bit
unsigned multiplier using a process and variables

27

16x16
mult

16 32multiplicand product

multiplier

16

Exercise: Waveform Evaluation

• Sketch the waveforms A, B, C, D, X and Y

28

entity waves is
end waves;

architecture Behavioral of waves is
signal A, B, C, D, X, Y: bit;
begin
p1: process is

begin
A <= '0', '1' after 10 ns, '0' after 20 ns;
wait for 25 ns;

end process;
B <= '0', '1' after 15 ns, '0' after 40 ns;

p2: process (A,B) is
begin

C <= transport A xor B after 10 ns;
D <= A xor B after 10 ns;
X <= not C;
Y <= not X;

end process;
end Behavioral;

Exercise: (Cont.)

29

	CPE 487: Digital System Design�Spring 2018
	Variables
	Example: Count number of “ones”
	Variable Assignment Statement
	Variable Assignment Statement: Examples
	Review Architecture & Process
	Wait Statement
	Example: D Flip-Flop
	Wait Statement
	Generating Periodic Waveforms
	Timing of Variable and Signal Assignments
	Variable and Signal Timing Example
	Wait for 0
	 Loop Statement: While Iteration
	 While Example: Rotate Right Shift
	 Other Useful Sequential Control Instructions
	Loop Examples: Factorial Calculation
	Sequential Assert Statement
	Example: Setup & Hold Time
	Multiple Assignment Inside a Process
	Signal Drivers
	Multiple Assignment: Transport Delays
	Multiple Assignment: Inertial Delays
	Sidebar: Signed & Unsigned Vectors
	Operations on Unsigned, Signed Numbers
	Unsigned Arithmetic Example
	Example: 16-bit unsigned multiplier
	Exercise: Waveform Evaluation
	Exercise: (Cont.)

