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Abstract— We consider an autonomous exploration problem
in which a mobile robot is guided by an information-based
controller through an a priori unknown environment, choosing
to collect its next measurement at the location estimated
to be most informative within its current field of view. We
propose a novel approach to predict mutual information (MI)
using Bayesian optimization. Over several iterations, candidate
sensing actions are suggested by Bayesian optimization and
added to a committee that repeatedly trains a Gaussian process
(GP). The GP estimates MI throughout the robot’s action
space, serving as the basis for an acquisition function used
to select the next candidate. The best sensing action in the
committee is executed by the robot. This approach is compared
over several environments with two batch methods, one which
chooses the most informative action from a set of pseudo-
random samples whose MI is explicitly evaluated, and one that
applies GP regression to this sample set. Our computational
results demonstrate that the proposed method provides not only
computational efficiency and rapid map entropy reduction, but
also robustness in comparison with competing approaches.

I. INTRODUCTION
We consider a mobile robot that has no prior knowl-

edge of the contents of its environment and must make
sequential decisions about where to travel next, comprising
an autonomous exploration problem [1]. Specifically, we
formulate an information-theoretic exploration problem in
which the long-term goal is to reduce entropy throughout
the robot’s environment map, and the short-term goal is
to perform the sensing action in each iteration that will
maximize mutual information (MI), along the lines of [2].
We assume the robot is equipped with a range sensor and
uses an occupancy grid [3] to represent and reason about the
environment. Our solution to this problem is motivated by
the recent work of [4] and [5], in which the former gave
a rigorous proof that by maximizing mutual information,
a robot will be driven to unexplored space, and the latter
showed that supervised learning could be used to predict
informative actions without evaluating the expected mutual
information exhaustively for every possible action. It has also
been shown in [6] over several test cases that maximizing
information gain over short trajectories will produce efficient
global exploration in practice. However, the approach of [5]
can suffer when its prediction of information gain is provided
insufficient support from its training data, which can be true
in complex environments with narrow corridors.

In this work, we propose actively selecting the candi-
date actions whose MI will be explicitly evaluated, using
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Fig. 1: An illustration of the proposed decision-making
process. At each iteration, an existing set of sampled actions
in the robot’s current field of view (pixels shown in solid
colors), whose anticipated MI has been explicitly evaluated
by ray-casting, is used to select a new sensing action (purple
circle at bottom left). The robot’s current location is at the
large red square, and the colors of the other solid pixels
indicate their anticipated MI (with higher MI in red). Explicit
MI evaluations for every candidate sensing action in this
action space are shown in Figure 2c for comparison.

Bayesian optimization [7], which is an efficient approach
when a cost function is expensive to evaluate [8], [9]. The use
of such techniques in robot gait optimization [10], environ-
mental monitoring [11], [12], and rough-terrain navigation
[13] have shown the method to be effective in a variety of
robotics applications. Specifically, we will estimate a robot’s
MI objective function using the posterior mean function of
a Gaussian process (GP) [14]. An example of the proposed
approach actively selecting a candidate for MI evaluation
is illustrated in Figure 1. At each iteration of Bayesian
optimization, a candidate sensing action is suggested and
evaluated, then added to the pool of sensing actions used
to approximate the MI objective function. The GP that
estimates MI also forms the basis for the acquisition function
used to select the next candidate sensing action. The most
informative action in the pool will be executed.

A. Related Work

Among the earliest information-theoretic exploration
strategies are those proposed by Whaite and Ferrie [15]
and Elfes [2]. The former work proposes exploring an a
priori unknown environment with the goal of minimizing
entropy, and the latter work specifically proposes exploring
to maximize the MI between sensor observations and an
occupancy grid map. More recent works in information-
theoretic exploration have considered the trade-off between
maximizing MI and managing the localization uncertainty
in a robot’s simultaneous localization and mapping (SLAM)
process [16], [17], in addition to the selection of trajectories



that maximize map accuracy [18]. Efforts to reduce the
computational cost of evaluating MI over many possible
future measurements have considered small, carefully se-
lected sets of candidate trajectories, using a skeletonization
of the known occupancy map [19] and the evaluation of
information gain over a finite number of motion primitives
[20], [21], 3D viewpoints [22], or exclusively along the
frontiers between known and unknown map regions [23],
[24], which is effective in 2D environments.

Bayesian optimization has been applied to robotics prob-
lems in domains spanning from policy learning to perception.
It has been used to monitor high-concentration areas of
unknown spatially and temporally varying scalar fields [11],
[12], minimize the vibrations experienced while navigating
rough-terrain environments [13], optimize the speed and
smoothness of a bipedal gait [10], and learn policies that
reduce localization uncertainty in the presence of unknown
landmarks [25]. However, to the best of our knowledge,
Bayesian optimization has not been applied to the problem of
action selection for the exploration of unknown environments
modeled by occupancy maps, the goal of which is rapid and
complete discovery of the contents of the environment.

B. Paper Organization

We propose and evaluate a methodology to choose sensing
actions for exploration using several iterations of Bayesian
optimization, with the aim of selecting near-optimal sensing
actions consistently throughout the process of exploring an
a priori unknown environment. A formal definition of the
problem is given in Section 2, including brief introductions to
Gaussian process (GP) regression and Bayesian optimization.
The proposed algorithm is given in Section 3, and the
time complexity of the algorithm is analyzed in Section
4. Computational results are presented in Section 5, with
conclusions in Section 6.

II. PROBLEM DEFINITION

A. Information Gain

We define the space of mobile robot sensing actions to be
the configuration space C ⊆ Rd , a subset of d-dimensional
Euclidean space (assumed 2D in the computational examples
to follow). We assume the robot’s range sensor provides a
360-degree field of view, and that its occupancy grid map,
whose cells are independent, is discretized finely enough
to represent the configuration space, in addition to serving
as the robot’s model of the environment. In the absence
of obstacles, the robot is assumed capable of travel from
any grid cell in the map to any other cell. A fundamental
presumption in this formulation is that the robot’s action
space is a subset of the spatial configuration space; this, along
with our other assumptions, are similar to those made in [4].
The implications of extending the proposed method to robot
configuration spaces with more complex topologies will be
discussed in Section 6.

We define Shannon’s entropy [26] over an occupancy grid
map m as follows:

H(m) =−∑
i

∑
j

p(mi, j) log p(mi, j) (1)

where index i refers to the individual grid cells of the map
and index j refers to the possible outcomes of the Bernoulli
random variable that represents each grid cell, which is either
free or occupied. Cells whose contents have never been
observed are characterized as p(mi, j) = 0.5, contributing one
unit of entropy per cell. Cells whose contents are perfectly
known contribute no entropy to the summation.

We use mutual information I(m,xi) to evaluate the ex-
pected information gain with respect to a specific configura-
tion xi, defined as follows:

I(m,xi) = H(m)−H(m|xi) (2)

where H(m) is the current entropy of the map, and H(m|xi)
is the expected entropy of the map given a new sensor
observation at configuration xi. Our goal is to choose the
optimal configuration x∗ whose sensing action maximizes
the expected information gain.

x∗ = argmax
xi∈Caction

I(m,xi) (3)

In (3), Caction represents the subset of the configuration
space from which the robot’s next sensing action will be
selected, typically within a short distance of the robot’s
current location.

B. Bayesian Optimization

The candidate sensing action suggested by Bayesian op-
timization is computed using an acquisition function, which
can take on high values where GP regression predicts high
values of the MI objective function, and also in unexplored
areas where uncertainty is high. An acquisition function may
focus solely on improving the value of the current solution,
or it can also adopt the framework of a multi-armed bandit
problem, in which a tradeoff is managed among exploration
and exploitation of our model of the objective function. We
will adopt such an approach, using the acquisition function
of the Gaussian process upper confidence bound (GP-UCB)
algorithm [27], which is given in Equation 4:

xt = argmax
x∈Caction

µ(x)+βσ(x) (4)

where β is the tradeoff parameter between exploration and
exploitation. µ(x) and σ(x) are the predicted mean and
variance derived from Gaussian process regression. It has
also been proven in [27] that cumulative regret can be
bounded using an optimal choice of the β parameter.

An example of how the acquisition function is used and
updated is shown in Figure 2. An initial acquisition function
based on 8 pseudo-random samples is shown in Figure 2a,
and Figure 2b shows the function after one iteration of
Bayesian optimization. Figure 2c shows the “ground truth”
prediction of MI, which is exhaustively evaluated over all
the possible actions in Caction using ray-casting over the



(a) Acquisition function based on 8 original
evaluated sensing actions (in blue below).

(b) Acquisition function after adding the
first sample suggested by BayOpt.

(c) Ground Truth: MI evaluated at all grid
cells in Caction.

(d) The first action selected by BayOpt,
shown in purple.

(e) The second action selected by
BayOpt, shown alongside the first.

(f) The most informative action from [5]
(green), vs. the proposed method (purple)).

Fig. 2: Using Bayesian optimization (BayOpt) to select a highly informative sensing action.

occupancy map. Figures 2d and 2e show the sensing actions
suggested by Bayesian optimization in consecutive iterations,
using the functions illustrated in the figures above. In Figure
2f, the best sensing action obtained from this approach is
shown alongside the best action from the approach of [5],
which applies a GP regression to 10 pseudo-random samples,
and chooses the action predicted to offer the highest MI.

C. Gaussion Process Regression

We assume a set of training data x represents the candidate
sensing configurations xi for which I(m,xi) has been com-
puted. The values of I(m,xi) for all xi ∈ Caction comprise the
set of training outputs y. GP regression [28] estimates the
output values and corresponding covariance associated with
a set of test configurations x∗, according to Equations (4)
and (5). The test configurations x∗ will be finely discretized,
with the same resolution as the occupancy grid map.

ȳ∗ = k(x∗,x)[k(x,x)+σn
2I]
−1y (5)

cov(y∗) = k(x∗,x∗)− k(x∗,x)[k(x,x)+σn
2I]
−1

k(x,x∗) (6)

In the above equations, ȳ∗ are the estimated values
I(m,xi∗) for the test data x∗, cov(y∗) is the covariance
associated with these outputs, σ2

n is a vector of Gaussian
noise variances associated with the observed outputs y, and
k(x,x’) is the kernel function, which gives a covariance
matrix relating all pairs of inputs. We adopt a Matérn kernel
function for this application, given by (7).

k(x,x′) =
21−ν

Γ(ν)

(√
2ν |x−x′|

`

)ν

Kν

(√
2ν |x−x′|

`

)
(7)

In (7), ν is a parameter used to vary the smoothness of
the covariance, ` is a characteristic length, Γ is the gamma
function, and Kν is a modified Bessel function. In contrast
with the squared exponential kernel function, which is more
commonly used in Gaussian process regression [28], the
Matérn kernel can be tuned to capture sharp variations in
the estimated outputs. This has met with success in Gaussian

process occupancy mapping, in which sharp and sudden
transitions in occupancy probability due to obstacles are
successfully modeled [23], [29]. Similarly, we anticipate
sharp variations in mutual information due to the presence
of obstacles, which will obstruct the visibility of some areas
and permit the observation of others.

III. ALGORITHM DESCRIPTION

Algorithm 1 AutonomousExploration(xinit ,minit ,
In f oT hreshold,Nsamples,Niterations)

1: xk← xinit ; mk← minit ; ActionHistory← xinit ;
2: while ActionHistory 6= /0 do
3: ActionSet← /0;
4: MISet← /0;
5: for xi ∈ Caction(xk,Nsamples) do
6: MI← ObservationPrediction(xi,mk)
7: MISet←MISet ∪MI;
8: ActionSet← ActionSet ∪ xi;
9: end for

10: for Niterations do
11: xopt ← BayesianOptimization(ActionSet,MISet);
12: MI← ObservationPrediction(xopt ,mk)
13: MISet←MISet ∪MI;
14: ActionSet← ActionSet ∪ xopt ;
15: end for
16: if max(ActionSet)> In f oT hreshold then
17: xk+1← BestAction(ActionSet);
18: ActionHistory← ActionHistory∪ xk+1;
19: else
20: xk+1← ActionHistory(PreviousAction);
21: ActionHistory← ActionHistory\ xk;
22: end if
23: mk+1←MapU pdate(xk+1);
24: end while

The exploration process proceeds according to Algorithm
1. In every iteration, an action set Caction is formulated within



the sensor field of view at the robot’s current location, and
a designated number of sampled actions within the set is
evaluated per Equation 2, drawn from a Sobol sequence
to ensure a low-discrepancy set of samples [30]. After the
evaluation of mutual information over the selected actions, a
candidate action suggested by Equation 4 will be evaluated
and added to the set of approved candidate actions ActionSet.
This updated set of actions will be used for choosing the next
sample, and so on. After the designated number of iterations
of Bayesian optimization, the most informative action will
be selected from ActionSet whose mutual information has
been explicitly computed. If at least one action is identified
whose information gain surpasses the designated threshold
(which typically has value slightly greater than zero), the
robot performs the maximally informative sensing action.
However, if none of the actions evaluated surpasses the
threshold, the robot takes a step backwards and considers
the actions at a previous location along the route traveled,
where there may have been informative candidate actions
that were not yet performed. The algorithm terminates when
the previously taken action set ActionHistory is empty.
While the emphasis of this work is the efficient operation
of a mutual information controller that selects informative
sensing actions one-by-one, we note that more sophisticated
global planning is possible to avoid becoming stuck in the
“dead ends” that have already been explored [19], [21].

IV. ALGORITHM COMPLEXITY
The computational complexity of Algorithm 1 at every

step of its while-loop is given in (8):

O(NsamplesNbeamsNcells) +

O(Niterations(N3
samples +N2

samplesNactions)) (8)

where Nsamples is the number of designated configurations
whose mutual information is explicitly evaluated, Nactions
is the total number of actions comprising Caction that are
estimated using Gaussian process regression, Nbeams is the
number of beams emitted by the robot’s range sensor, and
Ncells is the worst-case number of occupancy grid cells
that a beam may intersect. Niterations is the number of
GP regressions performed, equivalent to the number of
iterations in which Bayesian optimization is applied. The
term NsamplesNbeamsNcells represents the cost of explicitly
evaluating mutual information in all cells intersected by the
robot’s sensor, for all designated actions Nsamples. The term
N3

samples +N2
samplesNactions represents the cost of performing

the subsequent Gaussian process regression, which requires
the inversion of a matrix that is square in Nsamples, and
its subsequent multiplication with cross-covariance terms
that scale with Nactions, the total number of sensing actions
recovered from the “test data” of the Gaussian process
regression. In practice, we have worked with 10≤Nsamples ≤
20, Nactions ∼ 300, Niterations ∼ 5, Nbeams = 360 (note that
Nbeams can often be much larger, e.g. 307200 for a Kinect
sensor), and Ncells∼ 25, and we have found that in this range,
the complexity of the procedure is dominated by the first
term of (8), with the cost of the Gaussian process regression

relatively minor in comparison to the cost of the mutual
information computation. Hence, a much larger number of
sensing actions can be evaluated approximately for a small
additional cost on top of the initial evaluation of information
gain over the original set of samples. Specific examples will
be highlighted in the following section.

V. COMPUTATIONAL RESULTS
A. Experimental Setup

In our simulation of robot exploration, we assume a mobile
robot is equipped with a laser scanner with a 360° field of
view and 1° resolution. We assume the scanner is noiseless,
and that a grid cell of the occupancy map is determined with
certainty to be either free or occupied if it is intersected by
any of the sensor’s beams. The range of the laser scanner
is assumed to be 1 meter, each grid cell is 0.01 meter in
dimension, and all sensing actions considered are within 0.5
meters of the robot’s current location, ensuring that the next
sensing action lies within the current field of view to the
extent that its outcome can be reasonably predicted by an
MI evaluation over the existing map. We also assume the
robot is able to localize accurately, which is often feasible
with the aid of laser scan-matching [6], [33]. GP regression
computations were performed with the aid of the Gaussian
processes for machine learning (GPML) MATLAB library
[32]. The hyperparameters selected for the Matérn kernel,
tuned to optimize marginal likelihood using a small set of
representative training data, were held constant across all
maps studied, as was the acquisition function parameter β

of Equation (4), which was tuned optimally following the
procedure recommended in [27].

We explored the performance of our algorithm using three
different maps: 1) a synthetic “maze” map representing an
indoor environment (shown in Figure 3a); 2) the “Seattle
map” from the Radish repository [31] (shown in Figure
3b), where any gaps in the building perimeter have been
closed manually. and 3) a synthetic “unstructured” map
representing a forest-like environment (shown in Figure 3c).
The exploration process was simulated using MATLAB.

We initialized the robot randomly within each map and
simulated 100 instances of exploration for each of the
following cases: a) choosing the best action among 10 or
20 Sobol samples, termed the quasi Monte Carlo (QMC)
approach below, b) using 10 or 20 Sobol samples as the basis
for Gaussian process regression, and choosing the best action
from the approximately continuous action space (as in [5]),
and c) using 8 or 16 Sobol samples to bootstrap Bayesian
optimization, and choosing the best action after 2 or 4
subsequent iterations of Bayesian optimization, respectively.
The robot will terminate its exploration process after taking
a designated number of steps (50-250 steps depending on the
specific map), unless it terminates automatically beforehand
according to Algorithm 1. This designated number of steps
is introduced to allow the exploration process to terminate
in instances when a robot becomes stuck in a local region
of the map without eliminating all of the map’s entropy.
The computation required for each trial was distributed



(a) Synthetic maze map. (b) Adapted from [31] “Seattle map”. (c) Synthetic unstructured map.

Fig. 3: The three different environments used in our computational experiments are visualized as completed occupancy grids.
A representative execution trace of the robot exploration process using Bayesian optimization is illustrated in each map,
where nodes represent the sensing actions used to construct the map, and edges represent the paths traveled between them.
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(a) Results from the maze map.
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(b) Results from the Seattle map.
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(c) Results from the unstructured map.

Fig. 4: The results of 100 simulated robot exploration trials, for each of six parameterizations, using the maps of Figure 3.
The mean entropy reduction is given over the number of sensing actions performed by the robot for all test cases considered.

across four cores of an Intel i5 3.0 GHz processor using
the MATLAB Parallel Computing Toolbox, on a computer
equipped with 4GB RAM running Windows 7.

B. Results of Simulated Robot Exploration

Figure 4 gives results showing the performance of the
six problem parameterizations over the maps of Figure 3.
In the maze map, Bayesian optimization-based exploration
drives down entropy to the maximum extent allowable at a
faster rate than both the “batch” GP approach and the QMC
approach for each number of sampled actions examined.
Additionally, when relying on only 10 sampled actions to
predict MI, Bayesian optimization achieves nearly the same
performance as evaluating 20 actions from a predetermined
QMC sample set (the “Sample 20” case in Fig. 4).

In the Seattle map, batch GP regression has difficulty
when applied to only 10 sampled actions, in which case
the final map entropy does not reduce to the same level
as the other two approaches. However, for both 10 and
20 sampled actions, Bayesian optimization reduces entropy
to the maximal extent encountered, at rates comparable to
all competing methods. Two representative examples of the
batch GP approach encoutering difficulty over this map are
shown in Figure 5. In these cases, Bayesian optimization, in

contrast, produces good suggestions of informative actions
that will lead to further exploration. In the first example
(Fig. 5a to 5d), batch GP regression predicts that the robot’s
current location will yield the largest information gain of any
local sensing action (Fig. 5a), causing the robot to stay in the
current map region and remain “stuck” until the algorithm
terminates. In the second example (Fig. 5e to 5h), the robot’s
first step is shown as the red square in Figure 5f and the
batch GP regression decision (Fig. 5e) is represented by
the solid green circle. After the robot moves to the second
location shown in Figure 5h, GP regression suggests a return
to the previous position per the inference result shown in
Figure 5g, thus causing the robot to loop between the two
sensing actions until the algorithm terminates. In both of
these examples, one iteration of Bayesian optimization (Fig.
5c and 5i) applied to the existing samples will suggest
decisions similar to the MI “ground truth” (Fig. 5j).

Finally, in the unstructured map, all parameterizations
using GP regression and Bayesian optimization perform
better across the board, even when less computational effort
is invested in establishing a training data set. In this case,
GP regression and Bayesian optimization occasionally select
actions from a different homotopy class than the com-
peting QMC method, resulting in fundamentally different



(a) Batch GP inference indicates
the robot’s current location is the
most informative view point.

(b) Recommended action from
(a) (red square) relative to the
sample set used.

(c) Bayesian optimization sug-
gests a more informative action,
leading out of the room.

(d) Recommended action from
(c) (red circle) relative to the
sample set used.

(e) Batch GP inference produces
a poor estimate of the MI (truth
shown in (j)).

(f) Recommended action from
(e) (in green), relative to the sam-
ple set used.

(g) Batch GP inference after tak-
ing the action from (f).

(h) Recommended action from
(g), returns to prior location.

(i) Bayesian optimization sug-
gests a more informative action
that ultimately leads to the left.

(j) Ground truth of the MI eval-
uated using ray-casting over the
known portion of the map.

Fig. 5: Representative cases when batch Gaussian Process
regression makes poor-quality predictions and causes the
robot to become stuck in place, from the Seattle map.

Time Cons.
Per Step (Secs) 10 GP 10 BayOpt 10 QMC 20 GP 20 BayOpt 20 QMC

µ 4.13 3.71 4.41 7.44 8.51 8.79
σ 0.04 0.15 0.08 0.15 0.87 0.12

Steps Taken
Per Trial 10 GP 10 BayOpt 10 QMC 20 GP 20 BayOpt 20 QMC

µ 75 72 89 63 61 71
σ 4.87 2.83 5.65 5.11 1.43 5.58

TABLE I: The results shown here are the average of 100
trials over the maze map shown in Figure 3. For the six test
cases examined (in which “QMC” refers to the quasi Monte
Carlo approach, derived from Sobol samples; “GP” refers
to the batch GP regression approach and “BayOpt” refers
to Bayesian optimization approach), at top we give a com-
parison of the mean and standard deviation of computation
time required per sensing action, and at bottom we show a
comparison of the mean and standard deviation of the total
number of steps taken by the robot in the course of driving
its entropy to the minimum designated value.

paths among the different parameterizations. The use of
GP regression or Bayesian optimization to select moves
from the continuous space of sensing actions accumulates
a more significant advantage, such that regression over 10
samples performs better than explicitly evaluating the MI at
20 samples. Hence, more informative outcomes are selected
with substantially less computational effort. Representative
trajectories of the robot when using Bayesian optimization
are given in Figure 3, for each map. These trajectories
represent full exploration of their respective environments,
reaching the lower limit of map entropy sufficient for termi-
nation of Algorithm 1.

Finally, Table 1 gives the computation time required, and
the number of steps taken by the robot in the exploration
process, for all examples implemented over the maze map
of Figure 3a. The computational cost of Bayesian optimiza-
tion and GP regression are slightly better than the QMC
approach, because the former two will drive the robot to more
open areas containing fewer obstructions, which reduces the
computational cost of the first term in (8). At 20 sampled
actions, the Bayesian optimization approach begins to incur
a heavier computational cost than the batch GP approach,
due the additional number of GP regressions required.

VI. CONCLUSIONS

We have proposed a novel approach to predict mutual
information using Bayesian optimization, for the purpose
of exploring a priori unknown environments and producing
a comprehensive occupancy map. In the examples con-
sidered, Bayesian optimization facilitates the selection of
competitive informative sensing actions compared to batch
GP regression, always reducing map entropy to an equiv-
alent extent and at an equivalent rate, if not superior. The
benefits of actively selecting additional sensing actions to
include in an MI prediction are most evident in complex
environments with narrow corridors, where significant gains
can be made with marginal additional computational effort.



However, if the number of active samples selected with
Bayesian optimization were to increase substantially, the
number of explicit MI evaluations Nsamples would grow, and
the procedure’s computational complexity may no longer be
real-time viable. An appropriate tradeoff must be established
between the marginal improvements in information gain with
additional Bayesian optimization samples, and the bandwidth
of the robot’s decision-making process.

A key area for future work is the adaptation of this
approach to ground robots with 3D range-sensing capability,
and a reduced angular field of view such that a robot’s
angular orientation defines a unique sensing action. It is
anticipated that the proposed Bayesian optimization approach
will offer improved scalability of mutual information con-
trollers to higher-dimensional action spaces, extracting the
maximal benefit from every candidate sensing action for
which MI is evaluated, and leveraging the power of Gaussian
processes to interpolate among a sparse set of sampled ac-
tions. However, the suitability of the Matérn kernel function
for capturing mutual information over the SE2 configuration
space must first be validated, to ensure the results obtained
in the Euclidean action spaces explored in this work are
extensible to action spaces of different topologies.

ACKNOWLEDGMENTS

The authors would like to thank Kiril Manchevski from
the Mechanical Engineering Department of Stevens Institute
of Technology for help with computational resources. This
research has been supported in part by the National Science
Foundation, grant number IIS-1551391.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, “Exploration,” In Probabilistic
Robotics, pp. 569-605, MIT Press, 2005.

[2] A. Elfes, “Robot Navigation: Integrating Perception, Environmental
Constraints and Task Execution within a Probabilistic Framework,”
Proceedings of the International Workshop on Reasoning with Uncer-
tainty in Robotics, pp. 93-129, 1995.

[3] A. Elfes, “Using Occupancy Grids for Mobile Robot Perception and
Navigation,” Computer, vol. 22(6), pp. 46-57, 1989.

[4] B.J. Julian, S. Karaman, and D. Rus. “On Mutual Information-Based
Control of Range Sensing Robots for Mapping Applications,” The
International Journal of Robotics Research, vol. 33(10), pp. 1375-
1392, 2014.

[5] S. Bai, J. Wang, K. Doherty, and B. Englot, “Inference-Enabled
Information-Theoretic Exploration of Continuous Action Spaces,” Pro-
ceedings of the 17th International Symposium on Robotics Research,
2015.

[6] B. Charrow, S. Liu, V. Kumar, and N. Michael, “Information-theoretic
Mapping Using Cauchy-Schwarz Quadratic Mutual Information.” Pro-
ceedings of the IEEE International Conference on Robotics and
Automation, pp. 4791-4798, 2015.

[7] Z. Ghahramani, “Probabilistic Machine Learning and Artificial Intel-
ligence,” Nature, vol. 521(7553), pp. 452-459, 2015.

[8] D.R. Jones, M. Schonlau, and W.J. Welch “Efficient Global Op-
timization of Expensive Black-Box Functions.” Journal of Global
Optimization vol. 13, pp. 455-492, 1998.

[9] M.J. Sasena, “Flexibility and Efficiency Enhancements for Constrained
Global Design Optimization with Kriging Approximations,” PhD
Thesis, University of Michigan, 2002.

[10] D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans, “Automatic
Gait Optimization with Gaussian Process Regression.” Proceedings of
the International Joint Conference on Artificial Intelligence, pp. 944-
949, 2007.

[11] R. Marchant and F. Ramos, “Bayesian Optimization for Intelligent En-
vironmental Monitoring,” Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2242-2249, 2012.

[12] R. Marchant and F. Ramos, “Bayesian Optimisation for Informative
Continuous Path Planning,” Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 6136-6143, 2014.

[13] J.R. Souza, R. Marchant, L. Ott, D.F. Wolf, and F. Ramos, “Bayesian
Optimisation for Active Perception and Smooth Navigation,” Pro-
ceedings of the IEEE International Conference on Robotics and
Automation, pp. 4081-4087, 2014.

[14] E. Brochu, V.M. Cora, and N. De Freitas, “A Tutorial on Bayesian
Optimization of Expensive Cost Functions, with Application to Active
User Modeling and Hierarchical Reinforcement Learning,” Technical
Report TR-2009-23, Department of Computer Science, University of
British Columbia, 2009.

[15] P. Whaite and F.P. Ferrie, “Autonomous Exploration: Driven by
Uncertainty,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19(3), pp. 193-205, 1997.

[16] F. Bourgault, A.A. Makarenko, S.B. Williams, B. Grocholsky, and H.F.
Durrant-Whyte, “Information Based Adaptive Robotic Exploration,”
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 540-545, 2002.

[17] C. Stachniss, G. Grisetti, and W. Burgard, “Information Gain-Based
Exploration Using Rao-Blackwellized Particle Filters,” Proceedings of
Robotics: Science and Systems, 2005.

[18] T. Kollar and N. Roy, “Trajectory Optimization using Reinforcement
Learning for Map Exploration,” The International Journal of Robotics
Research, vol. 27(2), pp. 175-196, 2008.

[19] T. Kollar and N. Roy, “Efficient Optimization of Information-Theoretic
Exploration in SLAM,” Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 1369-1375, 2008.

[20] K. Yang, S.K. Gan, and S. Sukkarieh, “A Gaussian Process-Based RRT
Planner for the Exploration of Unknown and Cluttered Environment
with a UAV,” Advanced Robotics, vol. 27(6), pp. 431-443, 2013.

[21] B. Charrow, G. Kahn, S. Patil, S. Liu, K. Goldberg, P. Abbeel,
N. Michael, and V. Kumar, “Information-Theoretic Planning with
Trajectory Optimization for Dense 3D Mapping,” Proceedings of
Robotics: Science and Systems, 2015.

[22] K.M. Wurm, D. Hennes, D. Holz, R.B. Rusu, C. Stachniss, K.
Konolige, and W. Burgard, “Hierarchies of Octrees for Efficient 3D
Mapping,” Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 4249-4255, 2011.

[23] M.G. Jadidi, J.V. Miro, R. Valencia, and J. Andrade-Cetto, “Explo-
ration on Continuous Gaussian Process Frontier Maps,” Proceedings
of the IEEE International Conference on Robotics and Automation,
pp. 6077-6082, 2014.

[24] M.G. Jadidi, J. V. Miro, and G. Dissanayake, “Mutual Information-
based Exploration on Continuous Occupancy Maps,” Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 6086-6092, 2015.

[25] R. Martinez-Cantin, N. de Freitas, A. Doucet, and J.A. Castellanos,
“Active Policy Learning for Robot Planning and Exploration Under
Uncertainty,” Proceedings of Robotics: Science and Systems, 2007.

[26] C.E. Shannon and W. Weaver, The Mathematical Theory of Commu-
nication, University of Illinois Press, 1949.

[27] N. Srinivas, A. Krause, S.M. Kakade, and M. Seeger, “Gaussian Pro-
cess Optimization in the Bandit Setting: No Regret and Experimental
Design,” Proceedings of the 27th International Conference on Machine
Learning, 2010.

[28] C.E. Rasmussen and C.K.I. Williams, Gaussian Processes for Machine
Learning, The MIT Press, 2006.

[29] S. Kim and J. Kim, “Continuous Occupancy Maps using Overlapping
Local Gaussian Processes,” Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4709-4714, 2013.

[30] I.M. Sobol, “On the Distribution of Points in a Cube and the Approxi-
mate Evaluation of Integrals,” USSR Computational Mathematics and
Mathematical Physics, vol. 7(4), pp. 86-112, 1967.

[31] A. Howard and N. Roy, “The Robotics Data Set Repository (Radish),”
2003 [Online]. Available: http://radish.sourceforge.net/

[32] C.E. Rasmussen and H. Nickisch, “Gaussian Processes for Machine
Learning (GPML) Toolbox,” The Journal of Machine Learning Re-
search, vol. 11, pp. 3011-3015, 2010.

[33] J. Zhang and S. Singh, “Low-drift and Real-time Lidar Odometry and
Mapping,” Autonomous Robots, 10.1007, 2016.


