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Abstract—Decentralized formation control for multiple au-
tonomous underwater vehicles (AUVs) with input saturation is
discussed in this paper. In the assumed group communication,
each AUV can only obtain information from its adjacent neigh-
bors in the specified communication topology, and only a subset
of the AUVs can access the desired trajectory. A robust integral of
the sign of the error (RISE) feedback based distributed controller
with an anti-windup compensator is proposed so that all group
members ultimately synchronize and achieve the desired forma-
tion. Based on Lyapunov theory, it is proven that the formation
error of each AUV converges to zero. Finally, a simulation
example demonstrates the effectiveness of the algorithm.

Index Terms—formation control, RISE feedback, anti-windup

I. INTRODUCTION

Autonomous underwater vehicles (AUVs) play an important
role in ocean exploration. For complex missions, it may be
necessary to employ multiple AUVs to improve the efficiency
and the robustness of the system. Numerous approaches for
controlling multi-agent systems (MAS) have been proposed
and mainly focus on two topics: cooperative regulation control
and cooperative tracking control. For cooperative regulation
control, the main task is to design a control law that allows the
system to reach an agreement or consensus equilibrium satis-
fying certain desired properties [1], [2], [3]. As for cooperative
tracking control, it is the consensus of a group of agents with
an active or virtual leader, whose motion is independent of
all the other agents. The leader’s information is only available
to a portion of the agents of the MAS and thus the followers
track the trajectory that the leader generates [4], [5], [6].

Formation control, which is one of the topics addressed in
cooperative tracking control, generally aims to drive multiple
vehicles to prescribed constraints on their states. Making
various assumptions regarding the sensing capabilities and
the interaction topology of the agents, a variety of formation
control problems have been studied in the literature. Formation
control problems for UAV swarm systems to achieve time-
varying formations were studied in [7], which employed
consensus approaches in its solution. By using attractive
forces toward a circle, a control strategy for regular polygon
formations of mobile robots was proposed based on their
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virtual structure in [8]. A formation control method based on
inter-agent displacements for single-integrator modeled agents
in the plane was demonstrated in [9]. The key feature of
that proposed control strategy is that it utilizes only distance
and relative-angle measurements. A novel fault tolerant leader-
follower formation control scheme for a group of underactu-
ated autonomous surface vessels with partially known control
input gain functions is proposed in [10].

The problem of multiple AUV formation control is well-
known and challenging, not only because the multiple AUVs
may have highly complex nonlinear dynamics and coupling,
but also because of the uncertain, dynamical, and adversarial
underwater environments in which they may operate. A variety
of methods have addressed multiple AUV formation control
problems [11], [12], [13], [14]. In spite of the rich literature
in this field, there still exist several critical issues that have
not been adequately addressed. In particular, virtually all of
the multi-AUV formation control algorithms from the above-
mentioned references are developed under a strong assumption
that all individual AUV agents in the group have identical
(homogenous) system dynamics and precise mathematical
models for the AUVs are available for distributed control
design. This assumption may be unrealistic in practical AUV
formation control applications.

In this paper, decentralized formation control for multiple
AUVs with input saturation is discussed. The main features of
this paper are as follows.

1) The robust integral of sign of the error (RISE) feed-
back control algorithm [15], [16], [17] is employed
to accomodate unknown dynamics of the vehicles and
the disturbances of the external environment. Compared
with a traditional PID method, RISE feedback is more
robust, as the integral of the signum function has been
added to compensate for model uncertainty and un-
known dynamics of the system and make the input
continuous.

2) An anti-windup compensator is proposed to aid the
controller in mitigating input saturation. The RISE al-
gorithm is viewed as a high gain strategy, and so our
system is confronted with the risk of demanding large
control inputs which can reach outside the range of
actuation values. So a saturated controller is added to
the input, and its influence on the system will be taken
into account.

3) Each AUV can only achieve its adjacent neighbours’



information (according to the specified communication
topology) and only a subset of the AUVs can access the
desired trajectory. A virtual leader is introduced to the
fixed directed topology.

The rest of the paper is organized as follows. In Section II,
some preliminaries are given briefly. In Section III, the RISE
feedback decentralized formation control law is proposed in
terms of input saturation. A simulation is used to demonstrate
the effectiveness of the control scheme in Section IV.

II. PROBLEM FORMULATION

In this paper, a weighted directed graph is used to model
information exchange among the agents. In addition, we
introduce a virtual agent, represented by v0, and it can obtain
the desired trajectory explicitly. Then for the N agent network
system, its graph G contains a node set V = {v0, v1, . . . , vN},
and a weighted adjacency matrix A∗ = [a∗ij ] ∈ R(N+1)×(N+1),
where a∗ij > 0 indicates that agent i can receive the infor-
mation from agent j, otherwise aij = 0. Define a diagonal
matrix ∆(G) ∈ R(N+1)×(N+1) with elements δii =

∑
k aik,

and the normalized Laplacian of G as L = I − A, where the
elements in the normalized adjacency matrix A are defined
as aij = a∗ij/δii, δii 6= 0, and aij = a∗ij , δii = 0. By
adding a virtual agent in the system, we call the graph
G the extended communication graph. For each agent let
Ni = {vj ∈ V|aij > 0} denote the neighbor set of vi.

Assumption 1: The extended communication graph G has a
spanning tree with the virtual agent as the root, and this virtual
agent follows the desired trajectory strictly.
From [18] we know the Laplacian matrix of the weighted
directed graph is a positive definite matrix. This property will
be used for the following stability analysis.

Let us consider a system composed of N AUVs (numbered
1, 2, ..., N ). The kinematic model and dynamic model of the
ith AUV are as follows:

η̇i = J(ηi)νi

Miν̇i + Ci(νi)νi +D(νi)νi + gi(ηi) + di = τi(t),
(1)

where ηi = [ηT1i, η
T
2i]
T , νi = [νT1i, ν

T
2i]
T . η1i = [xi, yi, zi]

T is
the position vector and η2i = [φi, θi, ψi]

T is the orientation
vector defined in the earth-fixed frame. ν1i = [ui, vi, wi]

T

is the linear velocity and ν2i = [pi, qi, ri]
T is the angular

velocity defined in the body-fixed frame, Mi, Ci, Di ∈ R6∗6

and gi ∈ R6 are the inertial matrix, Coriolis matrix, damping
matrix and restoring forces and moment vector, and di ∈ R6

is the external disturbance. J(ηi) ∈ R6∗6 is the rotational
transformation matrix. We transform the body-fixed dynamic
model of (1) into earth-fixed coordinates, and then we obtain:

M∗i (ηi)η̈i +C∗i (η̇i, ηi)η̇i +D∗i (η̇i, ηi)η̇i + g∗i (ηi) + d∗i = τni,
(2)

where the terms of Equation (2) are defined as follows:

M∗(η)i = J−T (η)MiJ
−1(η)

C∗i (η̇, η = J−T (η)[Ci(η̇)−MiJ
−1(η)J̇(η)]J−1(η)

D∗i (η̇, η) = J−T (η)Di(η̇)J−1(η)

g∗i (η) = J−T (η)gi(η)

d∗i = J−T (η)di

τ∗i = J−T (η)τi.

(3)

We give several assumptions about the dynamics of (1):
1) The inertial matrices M∗i (η) are symmetric and positive.

Thus, the following is satisfied:

m1||y||2 ≤ yTM∗i (η)y ≤ m̄(η)||y||2, (4)

where m1 ∈ R6 are known positive constants, m̄(η) ∈ R
are known positive functions and y ∈ R6 are bounded
vectors.

2) If η(t) and η̇ ∈ L∞, then C(η, η̇) and D(η, η̇) are
bounded.

3) The disturbance di(t), ḋi(t) and d̈i(t) are all existing
and bounded.

For successful decentralised formation control of multiple
AUVs, the tracking error and the relative error of each neigh-
bouring AUV must converge to a compact set. Two kinds of
errors are defined as follows:

1) The tracking error between the ith AUV and the desired
trajectory is:

ei = ηid − ηi, i = 1, 2, . . . , N. (5)

2) The relative position error of the ith AUV and its
neighbour jth AUV is:

eij = (ηi − ηj)
= (ηid − ηjd)− (ηi − ηj)
= ei − ej , i, j = 1, 2, . . . , N.

(6)

The problem we discuss in this thesis can now be formu-
lated. For the synchronization tracking control of a multiple
AUV system, a distributed control algorithm should be de-
signed to reach the following goals:

lim
t→∞

[ηi(t)− ηid(t)] = 0, i = 1, 2, . . . , N

lim
t→∞

[ei(t)− ej(t)] = 0, i = 1, 2, . . . , N,
(7)

under the condition that only a subset of the AUVs can access
the desired trajectory and each AUV can only sense its own
and its neighbours’ state information.

III. CONTROL LAW DESIGN

We next introduce the synchronization error:

si =

n∑
j∈Ni

(ei − ej), i = 1, 2, . . . , N, (8)



and the auxiliary error:

εi = ṡi + λ1isi

ςi = ε̇i + λ2iεi,
(9)

where εi ∈ R6 and ςi ∈ R6, and λ1i, λ2i are positive constants.
We assume that the η̈i cannot be measured, so the system
cannot obtain the value of ςi directly.

With (9) multiplying M∗i (η), we have

M∗i ςi = M∗i (λ1iṡi + λ2iεi) +M∗i s̈i, (10)

and then we express Equation (10) in matrix form:

M∗ς = M∗(λ1ṡ+ λ2ε) +M∗L⊗ IN ë, (11)

where:

M∗ = diag[M∗(η1),M∗(η2), . . . ,M∗(ηN )]

ς = [ςT1 , ς
T
2 , . . . , ς

T
N ]T

α1 = diag[α11, α12, . . . , α1N ]

s = [sT1 , s
T
2 , . . . , s

T
N ]

α2 = diag[α21, α22, . . . , α2N ]

ε = [εT1 , ε
T
2 , . . . , ε

T
N ]T

ë = [ëT1 , ë
T
2 , . . . , ë

T
N ]T ,

(12)

L is the Laplacian matrix of the system toplogy, and IN are
N ×N identity matrices. It can be concluded from (2) that

η̈ = M∗−1(η̈)[τn−C∗(η̇, η)η̇−D∗(η̇, η)η̇−g∗(η)−τ∗d ], (13)

where:

η = [ηT1 , η
T
2 , . . . , η

T
N ]T

M∗−1 = diag{M∗−1(η1),M∗−1(η2), . . . ,M∗−1(ηN )}
C∗ = diag{C∗(η̇1, η1), C∗(η̇2, η2), . . . , C∗(η̇N , ηN )}
D∗ = diag{D∗(η̇1, η1), D∗(η̇2, η2), . . . , D∗(η̇N , ηN )}

g∗ = [g∗
T

(η1), g∗
T

(η2), . . . , g∗
T

(ηN )]T

τ∗d = [τ∗
T

d1 , τ
∗T
d2 , . . . , τ

∗T
dN ]T

τn = [τTn1, τ
T
n2, . . . , τ

T
nN ]T .

(14)

Combining Equations (9) and (13) into (10), we have

M∗ς = M∗(λ1ṡ+ λ2ε)

−M∗L⊗ INM∗−1τ∗

+M∗L⊗ IN [η̈d

+M∗−1(C∗η̇ +D∗η̇ + g∗ + d∗)].

Next, we let:

P = M∗[α1ṡ+ α2ε+ L⊗ IN (η̈d

−M∗−1(C∗η̇ +D∗η̇ + g∗))]− Fd,
(15)

where:

Fd = M∗(ηd)η̈d + C∗η̇d

+D∗η̇d + g∗(ηd) +M∗[L⊗ IN ]M∗−1τ∗d .

Then, Equation (15) can be simplified into:

M∗ς = P + Fd −M∗L⊗ INM∗−1τ∗. (16)

Incorporating (15), we then have:

M∗ς̇ = −1

2
Ṁ∗ς − ε+ Σd

+ Σ−M∗L⊗ INM∗−1τ̇∗,
(17)

where:

Σd = Ḟd

Σ = −1

2
Ṁ∗ς + ε+ Ṗ .

(18)

It is known from the property of the model that Σ is bounded.
Defining the vector Z = [sT , εT , ςT ]T , we may then state the
following:

Σ ≤ Π(||Z||)||Z||, (19)

where Π(||Z||) is an increasing function about ||Z||, and we
still obtain the same result that:

||Σd|| ≤ Ξ1, ||Σ̇d|| ≤ Ξ2. (20)

Proposing the following control law:

τ∗i (t) = (Ki + I3)εi(t)

+

∫ t

0

[(Ki + I)α1iεi(σ) + Λisgn(εi(σ))]dσ,
(21)

where Ki and Λi are diagonal positive gain matrices,
sgn(εi(σ)) = [sgn(εi1(σ)), sgn(εi2(σ)), sgn(εi3(σ))]T .

As the controller (21) is considered to be a high gain
strategy, the computed input values potentially exceed our
AUVs’ actuation limits. So we introduce the saturation of
the input to decrease that risk. In addition, an anti-windup
compensator is exploited to reduce the effects of saturation.

The input saturation is described as follows:

τ∗i = sat(τir), (22)

where τir is the actual control input, which is the output of
the saturated actuation, denoted as

τ∗i = sat(τir) =


τm, τ∗i > τm

τir, −τm ≤ τ∗i ≤ τm
−τm, τ∗i < −τm

(23)

where τm is the known bound of the actuator saturation.
In order to reduce the effects of saturation, an anti-windup
compensator is introduced into the control law. The approach
for the complete system is illustrated in Fig.1.

The anti-windup compensator is designed as follows:

ẇi =

{
−β1iwi −

|β2is
T
i 4τi|+ 1

24τ
T
i 4τi

wT
i wi

wi +4τi, ‖w‖ ≥ ι
0, ‖w‖ < ι

(24)
where 4τi = τir− τ∗i , wi is the state of the auxiliary system,
β1i, β2i ∈ R6∗6 > 0 are the designed parameters, and ι is a
small positive constant.



Fig. 1: Structure of the proposed control system.

Considering the actuator saturation, the control law is pro-
posed as:

τi = (Ki + 1)εi(t)

+

∫ t

0

[(Ki + 1)α1iεi(σ)− (Ki + 1)wi

+ Λisgn(εi(σ))]dσ.

(25)

Theorem 1: We consider a group of AUVs. Their com-
munication graph contains a spanning tree and the virtual
AUV is the root. Each AUV can only obtain its neighbours’
information and a subset of the AUVs can access the desired
trajectory. We assume the proposed control law (25) is imple-
mented. When the time t→∞, the formation error si(t)→ 0,
εi(t)→ 0, for i = 1, 2, ..., N .

Proof: Transform (21) into a matrix set, and we may express
it as:

τ̇ = (Ki+I)⊗IN ς+Λi⊗IN sgn(ε)−(Ki+I)⊗INw, (26)

where sgn(ε) = [sgn(ε1)T , sgn(ε2)T , . . . , . . . , sgn(εN )T ]T .
Consider the following Lyapunov candidate function,

V =
1

2
sT s+

1

2
εT ε+

1

2
ςTM∗ς +

1

2
wTw + ∆, (27)

where:

∆ = Ξ1 −
∫ t

t0

Ψ(τ)dτ, (28)

and the following inequality holds for Ψ:∫ t

t0

Ψ(τ)dτ ≤ Ξ1. (29)

From the definition of V it is clear that the function V is
positive and bounded. From (27), we may derive the following:

V̇ = sT ṡ+ εT ε̇+ ςT (M∗ς̇ +
1

2
Ṁ∗) + ∆̇

= sT (ε− α1s) + εT (ς − α2ε)

+ ςT {−ε+ Σd + Σ−M∗L⊗ INM∗−1∗
[(Ki + I)⊗ IN ς + Λi ⊗ IN sgn(ε)− (Ki + I)⊗ INw]}
+ wT ẇ + ∆̇. (30)

From the property of the Laplacian matrix, we know that H =
L⊗ IN is Hurwitz, and so is the matrix K = (Ki + I)⊗ IN .
Let the minimum eigenvalues of H and K be λmin(H) > 0,
and λmin(K) > 1. Then we have:

V̇ ≤ −[λmin(α1)− 1

2
]||s||2 − [λmin(α2)− 1

2
]||ε||2

+ ςT {Σd + Σ− λmin(H)[(Ki + I)⊗ IN ς
+ Λi ⊗ IN sgn(ε)− (Ki + I)⊗ INw]}+ ∆̇

− (β1w
Tw + |β2s

T4τ |+ 1

2
4τT4τ + wT4τ).

(31)

We combine (19) and (28) to obtain:

Ψ = ςT [Σd − λmin(H)Λi ⊗ IN sgn(ε)] , (32)

and then finally we may state:

V̇ ≤ −ρ||Z||2 − 1

2
λmin(H)λmin(K)||ς||2 + ||ς||Π(||Z||)||Z||

− [‖β1‖ −
1

2
− 1

2
λmin(H)λmin(K)]‖w‖

≤ −[ρ− Π2(||Z||)
2λmin(H)λmin(K)

]||Z||2

− [‖β1‖ −
1

2
− 1

2
λmin(H)λmin(K)]‖w‖, (33)

where ρ = min{λmin(α1) − 1
2 , λmin(α2) − 1

2}. It can be
demonstrated that when ρ − Π2(||Z||)

2λmin(H)λmin(K) > 0, and
‖β1‖ − 1

2 −
1
2λmin(H)λmin(K) > 0, we then have V̇ < 0.

From the stability properties of Lyapunov functions, it can be
concluded that when t→∞, ||Z|| → 0, and at the same time,
ς → 0, and ε → 0. From the definition of error and for the
ith AUV, ςi → 0, εi → 0, then si → 0, ηid − ηi → 0, and
(ηid − ηjd)− (ηi − ηj)→ 0, for i = 1, 2, . . . , N .

IV. SIMULATION

In this section, simulated results of formation control will be
demonstrated by applying RISE feedback methods in conjunc-
tion with anti-windup compensation to a multi-AUV system.
We assume that there are three AUVs in the topology, which
are identical. Their communication graph is as illustrated in
Fig. 2. The 0th node is the virtual leader and it generates the



Fig. 2: Simulated multi-AUV communication toplogy.

Fig. 3: The tracking error of each AUV.

desired trajectory for the system. In this example, only the 1st
node can achieve the information.

Only the kinematics and the dynamics of the vehicles in
the horizontal plane are considered in the simulation. The
hydrodynamic parameters M , C and D of each agent are M =
diag{25.8, 33.8, 2.76}, D = diag{−12,−17,−0.5}, and C =
{0, 0,−33.8v; 0, 0, 25.8u; 33.8v,−25.8u, 0}. The initial state
for each agent is assumed to be η1 = [−10, 10,−π3 ]T ,
ν1 = [0.1, 0, 0]T , η2 = [−10,−10,−2π]T , ν2 = [0.1, 0, 0]T ,
and η3 = [10, 10, π]T , ν3 = [0.1, 0, 0]T . The desired tracking
path is xd = t, yd = 2 cos(0.1t). The limits of the actuation
enforced in the simulation are ±15N.

Simulation results are exhibited in Figs. 3 to 6. We find
that good formation geometry performance is achieved and
the tracking errors of all the AUVs converge to a small
neighbourhood of zero, despite the face that some of the agents
cannot access the desired trajectory directly and there exists
input saturation.

V. CONCLUSION

In this paper, we have studied the problem of decentralized
formation control with input saturation for multiple AUVs.
Under the condition that the Laplacian matrix of the ex-
tended communication graph contains a spanning tree with
the virtual agent as the root, a RISE feedback and anti-windup
compensator-based formation control law has been designed
for each agent. It has been shown that the tracking error of
each agent converges to zero. Simulation results have shown
the potential effectiveness of the proposed method.

Fig. 4: The tracking velocity of each AUV.

Fig. 5: The control input of each AUV.
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