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Abstract— We present a novel formulation of Hilbert map-
ping in which we construct a global occupancy map by
incrementally fusing local overlapping Hilbert maps. Rather
than maintain a single supervised learning model for the entire
map, a new model is trained with each of a robot’s range scans,
and queried at all points within the robot’s perceptual field.
We treat the probabilistic output of the classifier as a sensor,
employing sensor fusion to merge local maps. This formulation
allows Hilbert mapping to be used incrementally in real-world
mapping scenarios with overlap between sensor observations.
The methodology is applied to three-dimensional map-building,
and evaluated using real and simulated 3D range data.

I. INTRODUCTION

The ability to create rich, correlated occupancy maps in
real-time during robot exploration would aid localization and
enable path-planning and navigation in environments where
sensor data can be noisy and sparse. Traditional approaches
to generating occupancy maps are limited by the assumption
that the occupancy probability of each cell in a map is an
independent random variable until it is observed [1], [2].
Intuitively, this assumption does not hold true, since real en-
vironments have some inherent structure. Structural elements
in a map can be inferred based on a sparse representation
of that map using supervised learning. Gaussian process
occupancy mapping [3] provides one method, using Gaussian
process regression [4], to learn the structure of a map from
a sparse training set of laser range-finder or sonar data, then
infer the occupancy probability of cells which have not been
directly intersected by the sensor.

Applications of Gaussian process regression are con-
strained by its computational complexity, which is O(n3) in
training and O(n2m) in test, where n is the number of train-
ing points and m is the number of test points. Nonetheless, it
is desirable to have accurate inference capabilities, especially
when the observations from sensor data are sparse. In an
effort to provide a method which can perform comparable
inference to Gaussian process occupancy mapping but is
highly scalable to large datasets, Hilbert maps were recently
developed by Ramos and Ott [5]. Hilbert maps have been
shown to be as accurate as Gaussian process occupancy
maps, but offer several advantages at scale. First, they
implement a formulation of the logistic regression classifier
which can be trained by stochastic gradient descent. The
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computational complexity of training a linear stochastic
gradient descent model is O(knp̄) where k is the number
of non-zero attributes and p̄ is the number of iterations or
“epochs.” This offers the benefits that training is linear in the
size of the training data, as opposed to cubic in the case of
Gaussian process regression, and it also suggests that we may
speed up computation by introducing sparsity into the model
weights. Since linear models are not capable on their own
of representing nonlinear spatial relationships, a radial basis
function (RBF) kernel is used in conjunction with a linear
classifier to learn non-linear decision boundaries. The RBF
kernel requires computation of pairwise distances among all
training samples, but there exist several approximations of
the RBF kernel which make kernel transformation much
faster, with a limited tradeoff in accuracy.

While Hilbert maps have these advantages over Gaussian
process occupancy mapping, the logistic regression model
used in Hilbert maps does not provide the covariance in-
formation necessary to implement fusion using a Bayesian
Committee Machine (BCM) [6], in contrast to Gaussian
process regression, where the BCM has aided online in-
cremental map fusion [7]. The original Hilbert mapping
formulation requires that we maintain and update a single
global classifier, however it is desirable to perform scalable,
incremental updates to a map as new data is gathered in real-
time. Our proposed formulation of Hilbert maps allows for
the use of multiple estimators by enabling local map fusion
between overlapping scans, and its results also comprise the
first application of Hilbert maps in 3D.

In Section II we review in some detail the machine
learning techniques relevant to our implementation of Hilbert
maps, including logistic regression, nonlinear kernel ap-
proximation, and stochastic gradient descent training. In
Section III we present a novel interpretation of estimator
outputs, where each estimator is treated as a sensor that
outputs occupancy probabilities. With this interpretation we
apply sensor fusion to merge local maps. This technique,
to our knowledge, is the first to allow the combination of
predictions from multiple local estimators in the abscence of
covariance information (i.e., where methods like the BCM
cannot be applied). In Section IV we present computational
results where we quantitatively compare our method to both
OctoMap [8] and global Hilbert mapping on two simulated
datasets. We then demonstrate the inference capability of the
method over real data from the University of Freiburg [9].
With this method, we hope to bring supervised learning-aided
occupancy mapping into the realm of real-time autonomous
robotics, where it will hopefully benefit robots navigating



under sparse and noisy data.

II. HILBERT MAPS

Hilbert maps combine several advances in machine learn-
ing to provide results comparable to Gaussian process occu-
pancy mapping in a way that scales more suitably to the large
amount of data from incoming sensors that must be processed
during mapping. These advances include approximations
to nonlinear kernel functions to speed up computation of
kernel transformations and stochastic gradient descent for
both training and updating the aforementioned classifiers in
linear time.

A logistic regression [10] classifier is chosen, since its
outputs most naturally resemble continuous probabilities,
whereas alternative classifiers, like the Support Vector Ma-
chine (SVM) [11], provide only binary outputs. While there
exist methods [12] to generate artificial probabilistic outputs
from SVMs, it has been demonstrated by Ramos and Ott
[5] that such methods often provide results claiming high
degrees of confidence in regions with relatively few training
points.

A. Logistic Regression

We adopt a nonlinear formulation of a logistic regression
classifier in which the predicted probability of occupancy for
a point x∗ given a set of training points x and model weights
w is as follows:

p(y∗ = 1|x∗,w) =
1

1 + exp(wT k(x∗, x))
(1)

where k(·) denotes the kernel function mapping input 3-
dimensional coordinates to a high-dimensional feature space.
Probability of non-occupancy for a cell p(y∗ = −1|x∗,w) is
equivalent to 1− p(y∗ = −1|x∗,w), since we maintain that
the state of a particular cell is binary.

The major benefit of this logistic regression formulation
over Gaussian process regression is that this method can
be trained very quickly using Stochastic Gradient Descent
(SGD) and evaluation is O(n) where n is the size of the test
data. As a result, computation of the kernel transformation
becomes the most costly part of classification.

B. Nonlinear Kernel Approximation

In order to represent the non-linear spatial dependency
of occupancy in 3-dimensional space, we use the radial
basis function (RBF) kernel. The kernel transformation is
computed as:

k(x, x′) = exp(−γ‖x− x′‖2) (2)

where the parameter γ is tuned in cross-validation. The
RBF kernel maps each sample in the training data x to a
feature vector containing the pairwise distances between that
sample and every other training sample. During prediction,
the distance between each query point and every training
point must be computed to generate a corresponding test
feature vector. This pairwise distance computation becomes
computationally expensive as we scale the data. This presents
difficulty in applying these techniques to large datasets,

Fig. 1: A representative 2D case of incremental overlapping
Hilbert maps applied to a simulated environment. Logistic
regression classifiers were trained on range sensor data from
each scan and evaluated at every cell (5 cm resolution) in the
map at each step. Scans 1, 7, 14, and 20 of 20 are shown. A
magenta circle marks the robot’s current location and black
circles represent the robot’s previous locations. Red markers
denote hit points, blue markers denote free points, and green
markers denote points assumed free where the simulated
laser reached its maximum range without encountering any
obstacles. In this example, the occupancy probability of
unobserved regions decreases over the course of traversal,
which reflects the updated belief after observation that new
cells are more likely to be unoccupied than occupied.

especially if we seek to perform real-time inference during
map traversal.

For this reason, we opt to approximate the full RBF kernel.
Specifically, we use the Nyström method [13] to approximate
the RBF kernel with the projection of the original kernel onto
a set of m inducing points x̂1...m, where we may choose the
value of m. In this method, we seek to find a function φNyström



that satisfies the following:

k(x, x′) ≈ φNyström(x)φNyström(x′). (3)

The resulting feature transformation of x is as follows:

φNystöm(x) = D−1/2V T (k(x, x̂1), . . . , k(x, x̂m)) (4)

where D is a diagonal matrix containing the decreasing non-
negative eigenvalues of the kernel computed between all m
inducing points and V is the set of its respective eigenvectors.
The Nyström method was selected due to the promising
results demonstrated in [5]. Kernel computation remains the
most expensive step in the classification process, though this
approximation offers a significant increase in speed.

C. Stochastic Gradient Descent

The general optimization problem we seek to solve in
SGD is to find the weights w and bias b which minimize
the regularized training error

E(w, b) =
1

n

n∑
i=1

L(yi, f(xi)) + α‖w‖1 (5)

where L(yi, f(xi)) is the loss function of our choosing, α
is a regularization parameter, and ‖w‖1 is the L1-norm of
the weights. For linear logistic regression, the loss function,
after substitution of the hypothesis function from Equation
1 for f(xi) is as follows:

L(yi, f(xi)) = log(exp(−yi(xTi w + b)) + 1). (6)

To use this loss function for non-linear decision boundaries
we replace x with the feature vectors from the kernel
computation k(x, x′). We choose to regularize the L1-norm,
since we are also interested in allowing feature selection
to take place during learning. Ideally, features which have
no significant bearing on the occupancy of a region will
be eliminated, and the sparsity of the resulting weights will
speed up evaluation of the model during testing.

III. PROBABILISTIC LOCAL MAP FUSION
Previously there have been several general approaches to

constructing a global map from local maps. One approach
is to develop a single classifier trained on accumulated data
from across the map and predict values in postprocessing of
the entire map. This is characteristic of the original methods
of Gaussian process occupancy mapping. While this allows
the classifier to choose informative features from the entire
map, the resulting correlated occupancy map cannot be used
during local planning or exploration.

Kim and Kim [14] have demonstrated overlapping map
fusion for local Gaussian processes with the Bayesian Com-
mittee Machine (BCM) [6]. Such a method is useful in the
case of Gaussian processes, where the outputs of the estima-
tor have both predicted mean and variance information. This
variance information provides insight into the uncertainty of
the estimator, which can be used to make informed decisions
when updating a grid cell with more than one prediction.
The logistic regression estimator we use, however, does not
provide variance information for its predictions.

In [5] a method has been presented to incrementally
update a single global estimator given new training data.
As in Gaussian process occupancy mapping, this allows
a map to be produced at arbitrary resolution which very
effectively captures the spatial correlation among all cells.
We seek, however, to apply the methods from Hilbert maps
in a way that allows us to use the inference capability of
estimators to incrementally update maps in real-time. This
will allow the maps to support fast decision-making in the
course of exploring unknown environments, as with Gaussian
processes in [7].

Rather than maintaining a single classifier which we train
online as the robot traverses the map, we opt instead to train
a new logistic regression classifier at every new scan. This
allows for real-time inference during exploration. In order
for this method to be effective, we must handle overlapping
estimator predictions. There are several consequences of this
method, one of which is the loss of the multi-resolution
property of Hilbert maps. In our method, a resolution must
be chosen a priori in order to update the map cells. Using
one incrementally updated classifier, a complete map of
arbitrary resolution could be constructed a posteriori. How-
ever, without querying the classifiers during the exploration
process, decisions regarding path-planning and navigation
must be made using only the sparse sensor data. Despite
this limitation, our proposed method is compatible with
parameterizations that improve robustness. By applying the
Reproducing Kernel Hilbert Spaces (RKHS) demonstrated in
[5] to our incremental formulation, it is possible to maintain
the robustness of Hilbert maps to noisy data, extending the
applicability of the method.

A. Map Update Algorithm

To solve the problem of merging overlapping local Hilbert
maps to produce a global map, we make the assumption that
the map is static. Formally, the Markov assumption, or static
world assumption, states

p(yt|m, y1:t−1) = p(yt|m) (7)

given the map m. That is, we assume the current observation
yt and previous observations y1:t−1 are independent, and
the only state for which the ground truth may vary during
exploration is the pose of the robot.

Under this assumption, we consider the problem of updat-
ing the occupancy probability to be analogous to integrating
the outputs of several sensors which intersect the same cell
in the case of occupancy grid mapping [15] or OctoMapping
[8]. We generalize the sensor fusion update rule for all
overlapping estimator predictions by treating each estimator
as a sensor in itself, where the output of the sensor for each
cell is the predicted occupancy probability for the cell. We
formalize this notion with the relationship

p(mi|ŷt) = ŷt = p(y∗ = 1|x∗,wt) (8)

where x∗ is the centroid of the query cell and wt are the
learned weights for the logistic regression model trained on
data from the scan at time t.



(a) The ground truth map (b) The raw sensor data (c) The result of OctoMap

(d) The result of global Hilbert maps
(m = 100)

(e) The result of global Hilbert maps
(m = 1000)

(f) The result after incrementally applying
overlapping Hilbert maps

Fig. 2: The results of 3D Hilbert mapping applied to a simulated environment. Training data is provided by the raw sensor
data in (b) and the model is evaluated for all cells within the perceptual field of the robot at each scan. Note that the global
Hilbert map with m = 100 in (d) fails to effectively capture the sharp changes in occupancy probability in this “structured”
environment, while the equivalent classifier is much more effective when updated at each new scan. We apply the update
rule from Algorithm 1 to fuse overlapping local Hilbert maps and form the global map seen in (f).

Algorithm 1 updateMap(X ,Y)

1: K ← fitApproxRBF (X ,X );
2: model← train(K,Y);
3: M← all cells ∈Map within bounding box of X ;
4: X∗ ← mi ∈M if mi in robot’s perceptual field;
5: query ← K.tranformApproxRBF (X∗);
6: Ŷ ← model.predict(query);
7: for ŷi ∈ Ŷ do
8: pi ← [1 + (1− pi)/pi ∗ (1− ŷi)/ŷi]−1;
9: end for

With this interpretation of the classifier output, applying
the update rule gives the updated occupancy probability for
grid cell mi given the current prediction ŷt from the output
of the logistic regression classifier as

p(mi|ŷt) =[
1 +

1− p(mi|ŷ1:t−1)

p(mi|ŷ1:t−1)

1− p(mi|ŷt)

p(mi|ŷt)
p(mi)

1− p(mi)

]−1
. (9)

The updated occupancy probability p(mi|ŷt) depends
only on the current prediction, the previous prediction
p(mi|ŷ1:t−1), and the prior occupancy probability p(mi). In
practice the prior occupancy probability is assumed 0.5.

The sensor fusion update rule as it applies to combining
estimator predictions has the property that more informative
predictions have more influence on the updated occupancy
probability. That is, an estimated occupancy probability close
to 0.5 offers little change to the final occupancy probability,
since the estimate provides very little new information.

Method AUC Precision Recall
OctoMap 0.92 0.320 0.097
Global Hilbert Map (m = 100) 0.91 0.792 0.108
Global Hilbert Map (m = 1000) 0.97 0.661 0.877
Overlapping Hilbert Maps 0.97 0.709 0.868

TABLE I: Numerical receiver operating characteristic (ROC)
curve comparison of the methods tested on the “structured”
map shown in Figure 2. Precision and recall scores were
computed using a threshold occupancy probability of 0.7.

Additionally, outputs that conflict (i.e. a low occupancy
probability followed by a high occupancy probability) cause
the update to tend toward 0.5, so that the lack of consensus
among “sensors” is reflected in the updated probability.
Since there is some degree of redundancy in the data from
consecutive scans, the result of this update rule is that the
various classifiers trained on data from different scans may
serve to improve on each others’ predictions.

The complete map update algorithm is presented in Algo-
rithm 1, including the kernel computation step, the training
and querying of a logistic regression classifier, and the
application of the update rule to overlapping estimator pre-
dictions. The function fitApproxRBF (X ,X ) computes the
Nyström approximation to the RBF kernel using the provided
training data. The function transformApproxRBF (X∗)
transforms the coordinates of each cell in the set of test
points X∗ to a feature vector using the previously fit RBF
kernel approximation. All pi ∈ P denote the occupancy
probabilities for the corresponding cells mi ∈ M. Map
is the set of all cells of a previously selected resolution



Fig. 3: Resulting receiver operating characteristic (ROC)
curves for the “structured” environment depicted in Figure
2, comparing incremental overlapping Hilbert maps with the
same classifier trained on data across the entire map and
evaluated once for each cell in the global map. Standard
OctoMaps are also compared.

in the global map, each initialized to the prior occupancy
probability 0.5. An illustrative 2D example of the incremental
construction of an occupancy map using Algorithm 1 is
shown in Figure 1.

IV. COMPUTATIONAL RESULTS

The proposed algorithm was evaluated in two simulated
environments and one real environment. The first of the two
simulations provides a “structured” environment, representa-
tive of an indoor setting. The second simulation provides an
“unstructured” environment, emulating navigation of a forest.
We quantitatively compare the accuracy and computation
time of our method, fusing several local overlapping Hilbert
maps (each with 100 Nyström components), with a formula-
tion of Hilbert mapping, which we call global Hilbert maps,
that trains and queries a single predictor after map traversal
(evaluated with 100 and 1000 Nyström components). We also
compare our method with OctoMaps. In simulation, each
method was directly compared against ground truth. The
beams from the simulated laser range finder were sampled at
regular intervals, providing training data for the unnocupied
region, as in Figure 1. We then provide the visual output of
inference for real laser data from the University of Freiburg.
Finally, we demonstrate the applicability of this method
to noisy sensor data using the RKHS method. We use
γ = 3.0 for the RBF kernel except where otherwise noted.
The tests for both the simulated data and real data were
built using the Robot Operating System (ROS) [16]. The
Gazebo Simulator [17] was used to develop the quantitative
tests in the simulated environment. The logistic regression
classifier and kernel approximation functions were provided
by the scikit-learn [18] Python machine learning library. All
computation was performed on an HP EliteBook 8570w
with a 2.40 GHz Intel i7 CPU. Our goals in this section
are three-fold: to show that fusing local overlapping Hilbert
maps provides results comparable to the equivalent global

Hilbert map, to demonstrate that Hilbert mapping can be
applied in realistic 3D mapping scenarios and achieve near
real-time performance, and to compare the performance of
these methods with standard OctoMaps [8]. The results will
demonstrate that compared to OctoMaps, both global and
incremental overlapping Hilbert maps produce more accurate
maps when compared to ground truth, and they provide
useful predictions under sparse coverage of the environment.

A. Structured Simulation

The “structured” environment represents a 10.0 m ×
7.0 m× 2.0 m indoor setting, containing mostly rectangular
obstacles. Some artifacts of the RBF kernel approximation
can be found in the results of Hilbert mapping. For example,
regions which in the ground truth map contained sharp
corners are rounded in the corresponding Hilbert map. Both
of the simulated environments were mapped using a laser
range-finder with a 120° field of view. In each map, twelve
scans were processed, comprised of four unique positions
that were each scanned from three different heading angles.
In Figure 2, we present the visual results after applying
OctoMapping, global Hilbert mapping with 100 and 1000
Nyström components, and incremental overlapping Hilbert
maps, as well as the ground truth map and raw sensor data.
The sharp boundary edge is due to the use of bounding
boxes around the training data for each scan to obtain the
points that were used to query the classifier. Figure 3 shows
the receiver operating characteristic (ROC) curves for the
different methods on the structured map. The comparison of
the area under the ROC curve (AUC) is provided in Table
I, along with the precision and recall for each method with
an occupancy probability threshold of 0.7, which shows that
OctoMap tends to misclassify occupied voxels as unoccupied
voxels, while the other methods more accurately predict the
occupied voxels.

We found that using only 100 Nyström components for
global Hilbert mapping was not enough to effectively capture
the sharp changes in occupancy probability found on this
map. However, the equivalent classifier (100 components)
quite effectively captured the structure of the map by com-
parison when evaluated for each scan and updated using
our incremental map fusion method. When we increased
the number of Nyström components to 1000 we found that
we could produce a slightly more accurate global map than
incremental overlapping Hilbert maps, but with significant
additional computation time required, shown in Table III.

B. Unstructured Simulation

Our “unstructured” simulation replicates the case of navi-
gating a forest region, dimensioned 10.0 m×7.0 m×2.0 m,
containing several rounded obstacles with smaller perimeters.
Additionally, many sections of the environment are obscured
during traversal, leading to more sparsity in the training
set. The surrounding walls, while adding some structure
to support the mapping task, demonstrate the capability of
these techniques to handle sensor data from a heterogeneous
environment. The ROC curves from the methods evaluated



(a) The ground truth map (b) The raw sensor data (c) The result of OctoMap

(d) The result of global Hilbert maps
(m = 100)

(e) The result of global Hilbert maps
(m = 1000)

(f) The result after incrementally applying
overlapping Hilbert maps

Fig. 4: The results of 3D Hilbert mapping applied to a simulated “unstructured” environment. Training data is provided by
the raw sensor data in (b). A standard OctoMap applied to the sensor data is shown in (c). Global Hilbert mapping with m
= 1000 requires several minutes to compute, but generates a much more accurate, complete map. In (f) we show the results
of incremental overlapping Hilbert maps, updated using the local map fusion algorithm presented in Algorithm 1.

on the map are shown in Figure 5. In the case of 100
Nyström components, the area under the ROC curve for
fused overlapping Hilbert maps and a single global Hilbert
map were comparable. If the number of components used
was increased, the AUC for the global Hilbert maps method,
shown in Table II, increased as well. Precision and recall
scores are also provided in Table II, where again we observe
the low recall score of OctoMap compared to the other
methods. As in the case of the “structured” simulation,
significant additional computation time was needed for the
global Hilbert map to achieve a marginal benefit over the
incremental mapping method. Increasing the number of
Nyström components for incremental overlapping Hilbert
maps did not significantly influence results, and if the pre-
determined number of Nyström components was greater than
the number of training samples, standard evaluation of the
full RBF kernel is preferred. It is intuitive that a larger
number of components would better approximate a larger
training set, as in the case of a global Hilbert map, but
the number of training points per scan is relatively small
compared to the data from the entire map, and thus less
benefit comes from increasing the number of components for
the incremental Hilbert mapping method. If the data from a
scan is sparse, the number of incoming samples is often few
enough that full evaluation of the RBF kernel is possible.

C. Real Data

We performed inference for qualitative evaluation on data
from the University of Freiburg corridor OctoMap dataset1.

1http://ais.informatik.uni-freiburg.de/projects/
datasets/octomap/

Fig. 5: ROC curves for the “unstructured” environment
depicted in Figure 4, comparing incremental overlapping
Hilbert maps with the same classifier trained on data across
the entire map and evaluated once for each cell in the global
map. Standard OctoMaps are also compared.

The entire map measures 43.8 m × 18.2 m × 3.3 m. 360°
pan-tilt laser scans were sparsified to generate training sets
comprised of approximately 6% of the original data. Figure
6 shows a view from outside the corridor produced by
incremental overlapping Hilbert maps (m = 100, γ = 10.0
for the kernel approximation), compared to the sparsified raw
data from the range sensor. Incremental overlapping Hilbert
maps produce a denser, more complete map than the map
produced by the sensor data alone. In Figure 7, we show the
maps from a perspective within the corridor. In both Figures
6 and 7 we observe that while this method is capable of

http://ais.informatik.uni-freiburg.de/projects/datasets/octomap/
http://ais.informatik.uni-freiburg.de/projects/datasets/octomap/


Dataset Scans Points/Scan Test Points/Scan Method Time/Scan (s) Time (s)

Structured Simulation 12 3500 29892

Overlapping Hilbert Maps 1.89 22.68
Global Hilbert Map (m = 100) N/A 8.70

Global Hilbert Map (m = 1000) N/A 331.64
OctoMap 0.02 0.2

Unstructured Simulation 12 3500 29892

Overlapping Hilbert Maps 1.83 21.96
Global Hilbert Map (m = 100) N/A 8.52

Global Hilbert Map (m = 1000) N/A 332.82
OctoMap 0.01 0.14

Freiburg Corridor FR-079 66 4943 371170

Overlapping Hilbert Maps 14.6 963.6
Global Hilbert Map (m = 100) N/A 1656.95

Global Hilbert Map (m = 1000) N/A 11914.96
OctoMap 0.1 6.7

TABLE III: Computation times for mapping the three environments examined.

Method AUC Precision Recall
OctoMap 0.89 0.418 0.042
Global Hilbert Map (m = 100) 0.94 0.999 0.248
Global Hilbert Map (m = 1000) 0.98 0.990 0.629
Overlapping Hilbert Maps 0.95 0.797 0.832

TABLE II: A numerical comparison of the methods tested
on the “unstructured” map depicted in Figure 4. Precision
and recall metrics are computed for an occupancy threshold
value of 0.7.

reasonable inference in a real environment, 100 components
is not enough to capture the sharp changes in occupancy
probability that occur throughout this environment. Similarly,
when a single classifier is used, the number of components
needed to accurately approximate a region also scales with
the size of the region and its structural complexity, so there
is a tradeoff between the quality of the approximation and
computational practicality in these cases. To some degree, the
incremental mapping method helps to balance this tradeoff,
but the issue is nonetheless present when dealing with
individual scans and more work here is needed.

Since these scans are much larger than the 120° sector
scans used in simulation, updating the map takes much
longer, as shown in Table III. It should be noted, however,
that the time required to process each scan is dominated by
the time taken to update the map after training. The mean
time required only for training a new estimator using the
laser range finder data was 0.5 seconds, with the rest of the
time for each scan being used to query the predictor for large
numbers of grid cells and updating all of the queried voxels.

D. Noise in Sensor Data

We now consider the case of sensor noise due to positional
or sensor measurement uncertainty. In this demonstration, we
perturb the data with Gaussian noise, N (0.0, 0.2) in the x-
and y-direction and N (0.0, 0.02) in the z-direction. Figure 8
compares the output after traversing the “structured” map and
fusing overlapping Hilbert maps with Nyström features to
the output when the RKHS method is used. Using the RKHS
method appears to provide a map closer to the maps produced
without added noise, and shows that fusion of overlapping
Hilbert maps is able to retain the robustness to noise provided
by the original formulation of Hilbert maps.

Fig. 6: The real 3D range sensor data from the Freiburg
corridor map (top) compared to the result after performing
incremental overlapping Hilbert maps (bottom) viewed from
outside the corridor. A threshold occupancy probability of
0.7 was used. Each map is colored by height.

Fig. 7: View from inside the Freiburg corridor; raw data
compared to the occupancy map produced using incremental
overlapping Hilbert maps.

V. CONCLUSIONS AND FUTURE WORK

Hilbert maps are a recent innovation in robotic mapping,
and there are many possible directions for future research
with this technique. We hope this research moves toward
real-time inference over occupancy maps. One concern with
Hilbert maps as opposed to Gaussian process occupancy



Fig. 8: Incrementally mapping the “structured” environment from Figure 2 when the range sensor is corrupted by noise.
The first image (left) shows the raw sensor data. The second (center) shows the map produced using the Nyström method,
as before. The rightmost image shows the same map produced using overlapping Hilbert maps with RKHS.

mapping is that Hilbert maps require parameter tuning,
specifically of γ for the RBF kernel approximation and the
regularization parameter α from the SGD formulation, to
achieve robust performance. In principle, parameters can be
tuned beforehand on similar maps. If a reserved set of sensor
data from a scan is used as a cross-validation set, it is possi-
ble to perform grid search to estimate reasonable parameters
automatically. Grid search is parallelizable, allowing many
parameter configurations to be evaluated simultaneously. A
major performance consideration for these methods is storing
and querying large numbers of grid cells at fine resolution.
It may be effective to apply multi-resolution techniques like
OctoMap to significantly reduce the memory needed in the
map update step. Updating map cells can also be done in
parallel and with GPU programming, which can potentially
offer a significant speed up over sequentially updating cells.

While we apply the proposed incremental map fusion
method specifically to Hilbert maps, it can also be applied to
the output of Gaussian process regression for fusion without
the use of a BCM. Whether this technique would improve
upon the results of Gaussian process occupancy mapping has
yet to be determined. Another potentially promising area for
future work in this local map fusion technique would be to
limit the query area by filtering outliers from the training
data. Further, a rigorous evaluation of kernel approxima-
tion techniques, particularly the sparse kernel approxima-
tion provided in [5], applied to 3D mapping using Hilbert
maps would be interesting. Finally, it may be worthwhile
to investigate the possibility of aggregating data prior to
training and classification, i.e. submap fusion. For example,
we train and test on 120° sector scans in our simulations,
but it may be possible to increase the accuracy of estimators
by aggregating data from several scans, then performing
inference and fusion using the information from the larger
submap. The resulting map could still be built quickly in
steps, but the map construction would be less incremental,
whereas one of our primary goals in this evaluation was to
perform inference that assimilates each new individual scan.
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