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Abstract— We consider the problem of building accurate and
descriptive 3D occupancy maps of an environment from sparse
and noisy range sensor data. We seek to accomplish this task
by constructing a predictive model online and inferring the
occupancy probability of regions we have not directly observed.
We propose a novel algorithm leveraging recent advances in
data structures for mapping, sparse kernels, and Bayesian
nonparametric inference. The resulting inference model has
several desirable properties in comparison to existing methods,
including speed of computation, the ability to be recursively
updated without approximation, and consistency between batch
and online inference. The method also reverts to the use
of a specified prior state when insufficient relevant training
data exist to predict the occupancy probability of a query
point, a property which is attractive for motion planning and
exploration applications with mobile robots.

I. INTRODUCTION

When a range-sensing mobile robot’s perceptual informa-
tion is sparse and noise-corrupted, planning and decision-
making may prove challenging unless the contents of the sur-
rounding environment can be intelligently inferred. Standard
occupancy grid mapping makes the conservative assumption
that the states of all discrete cells in an occupancy map
are independent, and an individual cell’s occupancy depends
only on sensor rays that pass directly through it [2], [9].
As a result, the method is ideally suited to situations in
which a robot’s sensor data is dense. A sparse, discontinuous
occupancy map could potentially be restrictive during robot
navigation. For example, gaps between occupied grid cells
may be interpreted by a path planner as unoccupied map
regions, but considering correlation between grid cells would
reveal that the perceived gap is likely to be occupied. This
problem has also been noted in the context of exploration
using aerial vehicles with limited perceptual capabilities [19].

At present, several methods exist which infer the occu-
pancy of unobserved map regions to mitigate the effects
of sparsity and noise, and produce dense and predictive
occupancy maps. In particular, Gaussian process (GP) occu-
pancy mapping [12] has shown promising results due to its
predictive capability. GP occupancy mapping demonstrated
the use of Gaussian processes [16], a nonparametric Bayesian
learning method, for probabilistic inference in unobserved
regions of maps. The ability to express correlation between
neighboring cells of an occupancy grid map makes GPs
an attractive solution, however the O(N3) time complexity
of GP regression in training (for N training points) and
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O(N2M) time complexity in testing (for M query points),
has limited the ability of this method to scale to large datasets
with real-time computation.

Fusion of several GPs in mapping with Bayesian Com-
mittee Machines (BCMs) [21] has been found to be useful
for approximating GP occupancy maps [6]. Using a divide
and conquer approach, a combination of nested BCMs, the
extended block feature of “GPmap” [5], and test-data octrees
has enabled real-time computation of GP occupancy maps
[24]. The BCM, however, is known to be an approximate
update to Gaussian process regression [21]. Successive ap-
plication of approximate updates may lead to unreliable
prediction in long-term mapping scenarios, and can lead to
poor inference in unobserved areas of the map.

For this reason, we instead opt for a simpler model
which is capable of exact recursive updates. Motivated by
its recent success in applications spanning safe high-speed
navigation [17] to state uncertainty estimation [13], we have
chosen to apply the nonparametric Bayesian generalized
kernel inference method in [23] in the context of mapping.
Using this method, we are able to predict the occupancy
probabilities and their corresponding variances for cells of
the map not directly observed by a sensor. In contrast with
previous work ([5], [24]), this method explicitly reverts to a
selected prior when there is insufficient training data to draw
conclusions about the occupancy state of a query cell.

Models in machine learning should perform well when
queried with data that is similar to training data, but may of-
fer poor or unpredictable performance for query points which
are particularly dissimilar to training data. We desire a model
which will recognize when there is insufficient training data
near the query point to make an accurate prediction. Rather
than attempt to make increasingly inaccurate predictions as
query points become far from training data, we would like
the model to smoothly transition to some prior with high
variance, which may consist of a prediction representing
an unknown state. This recognition is desirable in a variety
of scenarios, but it is particularly is attractive for avoiding
situations where we may aggressively predict the contents
of unoccupied space, then plan a high-speed trajectory into
areas which should instead be treated cautiously as unknown.

In summary, we provide an application of nonparametric
Bayesian kernel inference to the mapping problem in order to
relieve the independent cell assumption in occupancy grids,
and combine this inference method with recent developments
in sparse kernels and data structures for learning-aided
mapping to achieve real-time viability, while retaining com-
parable inference accuracy to existing methods. In Section II,
we present related work, outlining several tradeoffs between



existing map inference methods. In Section III, we present
our application of a recent nonparametric Bayesian local
kernel inference model to the occupancy mapping problem
and discuss the properties of the model and the implications
of those properties with respect to the mapping application.
Section IV contains quantitative and qualitative evaluation of
our method against other relevant methods.

II. RELATED WORK

Several variants of GP occupancy mapping have been
proposed to achieve reliable, computationally efficient infer-
ence in unobserved regions of occupancy maps. GPmap [5]
partitions a map into “blocks” and “extended blocks”, used
in concert with sparse kernels to achieve offline inference
with an overall complexity of O(N

3

K2 + N2M
K2 ), where K

is the number of blocks. This method was extended in [6]
for online approximate updates using the BCM. By further
segmenting grid blocks and making extensive use of BCM
updates, the complexity of GP regression for occupancy
mapping has been further reduced to O( N3

K2E2 + N2M
K2E ) (E

represents additional training-data partitions) [24], with effi-
ciency suitable for 3D real-time applications. This method,
however, relies heavily on repeated approximate updates.

Other approaches have been proposed, including Hilbert
mapping [15], which uses a logistic regression classifier in
conjunction with approximate kernels to achieve comparable
performance to standard GP occupancy mapping in less time.
Since the logistic regression classifier can be trained with
stochastic gradient descent, when combined with approxi-
mate kernel functions, training can be done in time linear in
the size of the training data. In practice, however, for range
data representing expansive environments, especially in 3D,
the ability to achieve computational gains without significant
loss of accuracy diminishes greatly. We have previously
demonstrated a version of Hilbert maps which incrementally
constructs a 3D map online [1], somewhat mitigating the
difficulty in approximating kernel computation for large
3D environments, but this method provides only occupancy
probability predictions without associated variances, which
may provide deeper information about prediction uncertainty.
This method also uses repeated approximate updates which
may not be reliable for long-term mapping scenarios.

Our use of the generalized kernel inference model from
[23] is motivated by its success in several other applications
from safe high-speed navigation [17] to estimation of state
uncertainty [13]. These applications emphasize the ability to
apply prior information to the model as well as the model’s
predictable performance in scenarios where query data are
dissimilar to training data. We are primarily interested in
the model as a conservative estimator of occupancy which
reverts to the prior occupancy probability for query points
that lie sufficiently far from any training data.

III. BAYESIAN GENERALIZED KERNEL OCCUPANCY
MAPS

In order to simplify the problem of maintaining a predic-
tive distribution of occupancy states over potentially vast 3D

maps, we make several assumptions. The proposed algorithm
is intended for the case of static maps. In its current form, the
algorithm presented is unable to support maps in which states
other than that of the robot are allowed to vary. Furthermore,
we assume that there is some distance l such that for all
blocks, the occupancy state of a block is independent of
the states of every block of distance l or further. This
assumption is consistent with our choice of the sparse
kernel presented in III-B. These assumptions allow modest
improvements to computation time over existing methods,
but more importantly allow us to perform exact inference
and updates. One important consequence of these choices
is that the model is unlikely to exhibit strong predictive
performance when the data is prohibitively sparse. Instead,
the proposed algorithm offers a more conservative approach
to inference-based mapping in which, in absence of sufficient
training data, we revert to some prior knowledge, rather than
attempting to make predictions based on limited information.

A. Bayesian Nonparametric Inference

As in the standard formulation of occupancy grid mapping,
a map cell m is occupied with probability p(m = 1|x∗) and
free with probability p(m = 0|x∗) = 1 − p(m = 1|x∗)
where x∗ is the coordinate corresponding to the center of
the grid cell. That is, occupancy is Bernoulli distributed,
with parameter θ = p(m = 1|x∗). We seek to estimate the
parameter θ of the cell centered at a query point x∗. To
do so, we use the nonparametric Bayesian inference model
for exponential families in [23]. With θ ∼ Beta(α, β), the
predicted mean and variance of θ are as follows:

E[θ] =
α

α+ β
(1)

Var[θ] =
αβ

(α+ β)2(α+ β + 1)
, (2)

where α and β are hyperparameters. At each time step we
obtain a range scan containing 3D points and their corre-
sponding labels, i.e. occupancy probabilities constituting the
training set (xi, yi) ∈ Dt. Locations that the sensor hits
are assigned occupancy probabilities of 1.0, and free-space
points are interpolated along the sensor ray and assigned
occupancy probabilities of 0.0. Given this training data, we
apply exact recursive updates to the hyperparameters

αt = αt−1 + ȳt (3)
βt = βt−1 + k̄t − ȳt, (4)

in which k̄t and ȳt are the results of the following kernel
computations:

ȳt =

N∑
i=1

k(xi, x∗)yi (5)

k̄t =

N∑
i=1

k(xi, x∗). (6)

We can also solve for the log-odds represention of E[θ],
desirable for its numerical stability for probabilities near 0



and 1 [20], without directly computing E[θ]:

lt = log
αt
βt
. (7)

The recursive updates in Equations 3 and 4 rely only on
the previous values of α and β and kernel computations
based on the current scan. The additive nature of these
updates suggests that we can generate equivalent maps offline
in batch or incrementally while traversing the map. The
quantities α0 and β0 represent prior pseudo-counts of the
positive (occupied) and negative (free) classes respectively.
We use α0 and β0 to apply a small uninformative prior over
the possible values of θ, so that as the results of the kernel
computation become very small, we gradually revert to the
prior occupancy probability and variance. Due to the very
small uninformative prior, when there is sufficient training
data (i.e. ȳ >> α0 and k̄ >> α0 + β0), E[θ] approximates
the Nadaraya-Watson estimator m̂(x∗) [10], [25]:

m̂(x∗) =

∑N
i=1 k(xi, x∗)yi∑N
i=1 k(xi, x∗)

. (8)

An extension of this method could leverage prior knowledge
about the environment or sensor by making α0 and β0
functions of the query point x∗, as in [17].

We also take advantage of variance predictions in a similar
fashion to previous work [24]. We use the following model
of state for cells in the environment:

state =


free, if p < pfree, σ

2 < σ2
th

occupied, if p > pocc, σ
2 < σ2

th

unknown, otherwise
(9)

in which p corresponds to the occupancy probability, which
in our case is the mean of the predictive distribution E[θ],
pfree is a threshold on the occupancy probability of cells
deemed “free,” and pocc is a threshold on the occupancy
probability of cells deemed “occupied”. The variance σ2,
computed as Var[θ], is thresholded by σ2

th to filter out
predictions with high variance as “unknown.”

B. Sparse Kernel

Our choice of kernel will have important implications for
the exactness of the update in Equations 3 and 4. We opt to
use the sparse kernel presented in [8],

k(x, x′) ={
σ0
[ 2+cos(2π d

l )

3 (1− d
l ) + 1

2π sin(2π dl )
]

if d < l

0 if d ≥ l
(10)

where σ0 > 0 is a constant parameter of the kernel, l > 0 is
the scale, and d is the distance between x and x′. By opting
for a sparse kernel, we can efficiently and exactly compute ȳ
and k̄ in O(logN) time using a k-d tree. Simply by querying
a k-d tree containing the training points for a scan with radius
l about each query point x∗, we obtain all training points with
nonzero contribution to the kernel computation in Eq. 10.

The overall computational complexity of the inference
method isO(M logN), where M is the number of test points

Fig. 1: A 2D illustration of the use of test-data octrees.
The top-left image depicts standard occupancy grid mapping.
In the top-right we show the setup for prediction of the
occupancy probability of all cells in block 3. The extended
block consists of all blocks within distance l, in this case the
length of two grid cells, of block 3 that contain sensor data or
sampled free-space points. For each block, the data from the
corresponding extended block is aggregated and inference is
performed, generating the image at bottom-left. Finally, at
bottom-right, neighboring cells within a block with the same
occupancy state are pruned. Image obtained from [24].

and N is the number of training points. For other kernels,
such as the radial basis function (RBF) kernel or Matérn
kernel, only approximate updates can be obtained without
using all of the training data. Though we use this sparse
kernel, any kernel with finite support is viable, such as a
polynomial approximation to the RBF kernel or the product
of the sparse kernel and the Matérn kernel used in [5].

C. Test Data Octrees

We adopt the test-data octrees proposed in [24] with slight
adaptations to the use of the “extended block”. The method
proposed suggests training several separate GP regressions
for a group of query points. With the kernel inference method
used, we need not explicitly train at all. When a ray is cast,
we sample free-space points linearly along the ray at a fixed
resolution, then aggregate all “free” and “hit” point data from
the extended block (i.e. all blocks within distance l of a
center block) to update the predictions at the query points
in the center block. Figure 1 shows a 2D illustration of the
algorithm, as well as a depiction of standard occupancy grid
mapping for comparison. By considering all blocks within
distance l of the query block to comprise the extended
block, we are able to quickly retrieve all points with nonzero
contribution to the occupancy probability of the cells in the
query block, which maintains the exactness of the inference.

Test-data octrees enable dynamic allocation as a robot ex-
plores, avoiding the need for large, finely-discretized grids to
be initialized. Test-data octrees are pruned to lower resolution



Dataset Dimensions (m) Scans Points/Scan Sampled Method Avg. Time (s)Points/Scan Time/Scan (s)

Structured Simulation 10.0× 7.0× 2.0 12 3500 1506
BGKOctoMap 0.021 0.25

GPOctoMap-NBCM-P 0.091 1.1
OctoMap 0.027 0.32

Unstructured Simulation 10.0× 7.0× 2.0 12 3500 1506
BGKOctoMap 0.019 0.23

GPOctoMap-NBCM-P 0.075 0.90
OctoMap 0.018 0.22

Freiburg Corridor FR-079 43.8× 18.2× 3.3 66 89445 7601
BGKOctoMap 0.15 9.6

GPOctoMap-NBCM-P 0.28 18.4
OctoMap 0.15 10.1

TABLE I: Computation times for the three maps used in testing.

Fig. 2: Pruning test data octrees in a map inferred using
Bayesian generalized kernel inference. The octrees have
depth three; pruned blocks are especially prevalent along the
bottom wall, where high-resolution cells have been merged
into lower-resolution cells. Figure 3 shows maps of the same
environment without pruning. The map is colored by height.

when all of the children of a particular node achieve the same
state [24]. In such a situation, all of the children are removed,
and the parent remains. This allows us to refine the number
of query points needed for areas of space that are likely
to be highly correlated, further decreasing the time needed
for computation. Pruning also has the benefit of reducing the
map’s memory consumption. We show the effects of pruning
in 3D on a map generated from simulated data in Figure 2.

IV. COMPUTATIONAL RESULTS

We evaluated the inference method on two synthetic
datasets representing “structured” and “unstructured” envi-
ronments, as well as the corridor dataset from the University
of Freiburg [22]. The mapping algorithm is our own C++
implementation1, and we compare our method quantitatively
to GPOctoMap with test-data octrees [24]. We also compare
our method to OctoMap [3], which provides an efficient
multi-resolution occupancy grid. We use the Robot Operating
System (ROS) [14] as well as the Point Cloud Library
(PCL) [18] in our tests. The synthetic examples were made
using the Gazebo simulator [7]. We apply the parameters
α0 = β0 = 0.001 to enforce a weak uninformative prior
on grid cells, and the remaining parameters σ0 = 10.0 and
l = 0.3 were hand-tuned on one synthetic dataset and applied

1The code for this paper is implemented in LA3DM, a C++ library
for learning-aided 3D mapping, available at https://github.com/
RobustFieldAutonomyLab/la3dm.

consistently throughout. Generally the desired locality of
inference will depend on the resolution of the range sensor
being used. Free space samples are taken linearly along each
ray at 0.5m resolution. All computations were performed on
an HP EliteBook 8570w with a 2.40 GHz Intel i7 CPU.

In this section, we refer to the GPOctoMap implementa-
tion with nested BCM updates as GPOctoMap-NBCM and
GPOctoMap-NBCM-P when we apply pruning [24], while
we refer to our method as Bayesian generalized kernel
OctoMap or BGKOctoMap. We show that our approach
offers comparable performance to GPOctoMap-NBCM-P
when there is sufficient data. A comparison of computation
time is given in Table I. Generally the proposed method
achieves map inference in time comparable to OctoMap,
which suggests applicability to real-time tasks. In maps with
sparser coverage, such as the “unstructured” map, our more
conservative method exhibits decreased predictive perfor-
mance, since more of the query points are far from training
data. We additionally provide an experimental demonstration
of a robot performing station-keeping in the simulated “struc-
tured” environment while scanning one region repetitively.
We show that our method is reliable over many scans of
the same area, whereas GPOctoMap predictions gradually
become overly aggressive, over-predicting occupancy.

A. Simulated Data

The simulated environments each span 10.0 × 7.0 ×
2.0 meters. The structured simulation used is significantly
more open than the unstructured simulation, allowing for
more complete sensor coverage. Qualitatively, we observe
in Figure 3 that BGKOctoMap fills in several walls where
OctoMap does not, drawing useful conclusions about regions
such as the far corner. In Figure 4 we again show that
BGKOctoMap closes many of the gaps in the OctoMap.
The receiver operating characteristic (ROC) curves for the
structured map in Figure 5 show comparable performance
between BGKOctoMap and GPOctoMap when even though
data is sparse, overall coverage of the map is good. On
the other hand, the ROC curve for the “unstructured” map
in Figure 6 shows that the limited sensor coverage affects
the performance of our method, while GPOctoMap-NBCM-
P performs well in both cases. The ROC curves plot the
true positive rate versus the false positive rate. Here we use
the predicted occupancy probabilities and compare to ground
truth occupancy probabilities of 1.0 for an occupied cell



and 0.0 for an unoccupied cell, so that the comparison of
inference accuracy is independent of our choice of thresh-
olds for the state model in Equation 9. Along the curve,
the probability threshold we use to choose the positive or
negative class varies from 1.0 to 0.0. This can be seen as a
plot of predictive performance as we change the occupancy
probability threhsold. The area under the curve (AUC) is also
provided in each case for comparison of inference accuracy.

In the case of the “unstructured” map, BGKOctoMap often
reverts to a prior occupancy probability of 0.5 with high
variance in regions where data is sparse. In some ways this
is a desirable attribute of the model, since it captures the
uncertainty inherent in prediction with limited data. On the
other hand, GPOctoMap is capable of producing accurate
predictions even when training data is far from query points.
In both cases, GPOctoMap and OctoMap achieve better
coverage of the floor than BGKOctoMap. This is an artifact
of the 2.5D nature of the simulated environment coupled with
our naiı̈ve representation of free space used for inference.
Interpolation of many free-space samples along the sensor
ray increases support for the free-space class in the more
open regions of the environment, causing many areas of the
floor to be misclassified as free or unknown, not passing the
occupancy and variance thresholds in Equation 9.

B. Real Data

The Freiburg corridor pointcloud dataset [22] has dimen-
sions 43.8 × 18.2 × 3.3 m. It represents a more expansive
environment than the simulated data, and accordingly, the
data requires more computation time. Since the point cloud
is dense and we are primarily concerned with the appli-
cation of our algorithms to sparse data, we down-sample
the 89445 points per scan on average to a resolution of
0.1m, amounting to 7601 points per scan, which provides an
artificially sparsified dataset. In this case, with substantially
more data spanning a large environment, BGKOctoMap
continues to perform comparably to OctoMap in computation
time required. The map produced by BGKOctoMap from the
Freiburg corridor pointclouds is shown in Figure 7.

C. Comparison of Long-Term Behavior

Here we demonstrate the stable long-term performance of
the proposed mapping algorithm, one of its most desirable
and useful features. We provide a station keeping scenario in
which a robot repeatedly scans a single location. Using the
structured environment simulation, we repeatedly input the
same point cloud to both BGKOctoMap and GPOctoMap-
NBCM. The effects of this demonstration are provided in
Figure 8, where we show the output of each method after
1, 15, 30, and 60 scans. We observe that while our method
does experience some slight changes due to the contributions
from the new data (particularly in areas where α0 + β0 ≈ k̄
after one scan), the change is mild in comparison to that
of GPOctoMap. Repeated application of the BCM update
approximations cause GPOctoMap to gradually predict that
the walls and floor of the map are thicker, even though we
update it with the same point cloud.

The BCM update for Gaussian process regression does not
perform well in this scenario because of the approximation:

p(Di|Di−1, fq) ≈ p(Di|fq) (11)

where Di is comprised of a single set of training points
and corresponding outputs. In our case this is a single range
scan with “occupied” hit points and “free” points interpolated
along the sensor ray. The vector fq consists of the unknown
response variables corresponding to a set of query inputs.
The assumption made in the BCM update is that the two
datasets used to train seperate GP regression models are
conditionally independent given the response variables to the
query input. The assumption is violated in this experiment;
our repeated observations create a situation that generates
highly correlated observations. The consequences of this
are relevant, since it is often a priority in simultaneous
localization and mapping (SLAM) scenarios to seek out such
correlated observations for loop closures. With the BCM
update, those observations would produce errors in the map.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a novel inference-based occupancy
mapping algorithm, BGKOctoMap, that leverages Bayesian
kernel inference, sparse kernels, and test-data octrees. We
have demonstrated that the method provides accurate pre-
dictions in areas where there is sufficient training data, and
smoothly transitions to a prior occupancy probability with
high variance when there is not. The method also shows
promise for applications where multiple scans of the same
areas are captured, since it integrates new data more reliably
than existing inference-based mapping methods, and updates
can be performed exactly. For the same reason, this method
is also useful in situations where we may want to update a
single map exactly over multiple sessions.

We have implicitly assumed certainty of pose knowledge
in these experiments. This assumption can be relaxed some-
what by incorporating the use of the “expected kernel”
used by Jadidi et al. [4] and formulated independently
using reproducing kernel Hilbert spaces by Ramos and Ott
[15]. Extension of this method with the “expected kernel”
would enable the use of this inference technique in mapping
scenarios where there is known pose uncertainty.

We do not make full use of all of the capabilities of
the nonparametric Bayesian inference model used. It is
possible with this method to incorporate more informed
prior knowledge in a principled way by making α and β
functions of the query point, as in [17]. Here we simply use
a small uninformative prior to maintain an “unknown” state
(p = 0.5) in areas with very little training data. The use of
the sparse Matérn kernel in [5] may also benefit this method,
since exact inference could still be performed, but the ability
of the Matérn kernel to capture sharp changes in occupancy
probability could improve predictive performance.

Finally, an important issue we wish to explore in greater
detail is that of free-space sampling. In this work we sample
linearly along sensor rays at a fixed resolution. Clearly, this
can have significant effects on the nonparametric inference



(a) The Gazebo model (b) Raw sensor data (c) OctoMap (d) GPOctoMap (e) Our method, BGKOc-
toMap

Fig. 3: Structured environment simulation, with (a) simulated environment in Gazebo, (b) simulated raw sensor data, (c) a
standard OctoMap, (d) map produced by prior method GPOctoMap, and (e) the result of the proposed method, BGKOctoMap.

(a) The Gazebo model (b) Raw sensor data (c) OctoMap (d) GPOctoMap
(e) Our method, BGKOc-
toMap

Fig. 4: Unstructured environment simulation, with (a) simulated environment in Gazebo, (b) simulated raw sensor data, (c) a
standard OctoMap, (d) map produced by prior method GPOctoMap, and (e) the result of the proposed method, BGKOctoMap.
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Fig. 5: Receiver operating characteristic curves for the 3
evaluated methods on the Structured Environment map.

model we use, since we can skew the model toward low
occupancy probabilities by sampling free-space points very
densely along a range beam. Other works have spanned a
wide spectrum of parameterization choices, from represent-
ing a sensor ray with the single free point on the beam closest
to the test point of interest [12] to employing free-space
output values weighed by the entire continuous length of
a range beam [11]. Further study of the impact of free-space
sampling methodologies on the performance and accuracy of
BGKOctoMap is a priority of future work.
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