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Abstract— We propose a new sampling-based path planning
algorithm, the Min-Max Rapidly Exploring Random Tree (MM-
RRT*), for robot path planning under localization uncertainty.
The projected growth of error in a robot’s state estimate is
curbed by minimizing the maximum state estimate uncertainty
encountered on a path. The algorithm builds and maintains a
tree that is shared in state space and belief space, with a single
belief per robot state. Due to the fact that many states will
share the same maximum uncertainty, resulting from a shared
parent node, the algorithm uses secondary objective functions to
break ties among neighboring nodes with identical maximum
uncertainty. The algorithm offers a compelling alternative to
sampling-based algorithms with additive cost representations
of uncertainty, which will penalize high-precision navigation
routes that are longer in duration.

I. INTRODUCTION

Sampling-based algorithms have been leveraged in recent
years to solve, both heuristically and optimally, variants
of robot path planning that pose challenging constraints
and objectives alongside the standard requirement of col-
lision avoidance with minimum distance, time, or energy.
Sampling-based sensor coverage path planning has been
solved heuristically for large-scale 3D coverage problems [1]
and optimally for small-scale boundary coverage problems
[2]. The projection of samples onto constraint manifolds has
been used to find feasible solutions to complex manipulation
tasks [3]. Rejection sampling has been used to solve optimal
path planning problems with secondary cost criteria, such as
maintaining maximum clearance from neighboring obstacles
[4]. Maximally safe driving has been achieved using a cost
function that quantifies the violations of a collection of safety
rules [5]. Information-gathering tasks have been planned op-
timally under a limited energy or time budget via Sampling-
Based Robotic Information Gathering (RIG) [6]. Approaches
seeking feasible solutions have typically leveraged rapidly-
exploring random trees (RRTs) [7] or probabilistic roadmaps
(PRMs) [8], and approaches seeking optimal solutions have
leveraged the asymptotic optimality properties of RRT*,
rapidly-exploring random graphs (RRGs), or PRM* [9].

One of the most challenging variants of this type involves
planning under uncertainty, which may seek to find feasible
or asymptotically optimal plans in the presence of prob-
abilistic actions, measurements, and/or environment maps.
Sampling-based approaches to planning under uncertainty
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have typically assumed that belief spaces are Gaussian.
The objective function itself may address the uncertainty
associated with a localization process, as in the case of
the belief roadmap (BRM) [10] and robust belief roadmap
(RBRM) [11]. Standard minimum-distance or minimum-
energy objective functions may also be used in combination
with constraints related to localization uncertainty, as in the
case of the rapidly-exploring random belief tree (RRBT)
[12], bounded-uncertainty RRT* (BU-RRT*) [13], Box-RRT
[14], and an expanded adaptation of the PRM [15]. Chance-
constrained RRT* (CC-RRT*) has combined these concepts
into a sampling-based algorithm that enforces constraints
on a robot’s collision probability while also penalizing
collision risk in the objective [16]. Such problems can
also be formulated as stochastic optimal control problems,
solved by feedback motion planning, as with linear quadratic
Gaussian motion planning (LQG-MP) [17] and the Feedback
Controller-Based Information-State Roadmap (FIRM) [18],
or by approximating optimal policies for Markov decision
processes (MDPs) and partially observable Markov deci-
sion processes (POMDPs), as with the Stochastic Motion
Roadmap (SMR) [19], incremental-MDP (iMDP) [20], and
Adaptive Belief Tree (ABT) [21].

Despite these successes, path planning that addresses
localization uncertainty in the objective function remains
challenging and elusive in several ways. This approach is de-
sirable in applications where the user does not know how to
properly tune constraints governing uncertainty, and feasible
solutions that curb estimation error are needed quickly. Prior
work has sought to minimize the terminal, max, and sum of
uncertainty over a path, though to date this has been achieved
using feasible planning formulations only, or optimal for-
mulations that curb uncertainty using constraints. Goal-state
localization uncertainty has been minimized heuristically in
[10] and [11], and min-max uncertainty has been addressed
heuristically in the objective by [10] and in the constraints
by [15]. Cost functions expressing a sum of uncertainties
have been used to find locally optimal solutions in stochastic
optimal control contexts [17], [18]. Constraints on collision
probability have been enforced in [12], [13], and [16].
Related works that have achieved asymptotically optimal
solutions, which approach global optimality in the limit, have
done so by utilizing additive, cumulative representations of
safety [5], information gain [6], and collision risk [16].

These asymptotically optimal approaches demonstrate
compelling results for a variety of applications, but a cu-
mulative representation of risk, safety, or uncertainty will
inherently favor short paths over long ones. However, it may
be desirable to follow a longer path if it offers superior



management of uncertainty. A path of minimum mean uncer-
tainty would not have this problem, but it would challenge
our need for a cost metric (per the requirements on asymp-
totic optimality for sampling-based algorithms) that increases
monotonically over the duration of a path. Most practical
robot navigation problems will entail increases and decreases
in uncertainty at various times. As a compromise, we propose
taking a step in this direction by formulating a sampling-
based algorthm for min-max planning under uncertainty.

Curbing the maximum uncertainty encountered over the
duration of a path, as addressed previously in [10] and [15],
does not guarantee a path of minimum mean uncertainty,
but it no longer penalizes a highly safe path for its length.
This approach also offers the possibility of a metric that is
monotonically non-decreasing over the duration of a path.
We propose a min-max variant of the RRT* algorithm we
term the Min-Max Rapidly Exploring Random Tree, or
MM-RRT*. In addition to utilizing a min-max uncertainty
metric, which will be detailed in the sections to follow, the
algorithm builds and maintains a tree that is shared in state
space and belief space, with a singe belief per robot state.
The algorithm also uses secondary objective functions to
break ties among neighboring nodes with identical maximum
uncertainty. Section II will define the problem of interest,
and Section III will describe the proposed algorithm. Section
IV will present an analysis of the algorithm, in which we
describe its local optimality and reflect on the challenges of
establishing global optimality. Section V will show compu-
tational results that demonstrate the algorithm’s performance
against an approach that minimizes a cumulative representa-
tion of uncertainty.

II. PROBLEM DEFINITION

A. Path Planning

Let C be a robot’s configuration space. We will assume
that a configuration x ∈ C describes the pose of the robot.
Cobst ⊂ C denotes the subset of configurations in C that are in
collision with an obstacle, and Cfree ⊆ (C \ Cobst) denotes
the configurations that are free of collision. We will assume
that given an initial configuration xinit ∈ Cfree, the robot
must reach a goal region Xgoal ⊂ Cfree . Let a path be a
continuous function σ : [0, T ]→ C of finite length, traversed
in finite time T , for which we assume a series of control
inputs must be applied to the robot to achieve this path in C.
Let Σ be the set of all paths σ in a given configuration space.
A path is collision-free if σ ∈ Cfree for all arguments, and
a collision-free path is feasible if σ(0) = xinit and σ(T ) ∈
Xgoal. A cost function c : Σ→ R+ returns a strictly positive
cost for all non-trivial collision-free paths.

B. State Estimation and Uncertainty

We consider a robot whose state evolves as a nonlinear,
discrete-time dynamical system:

xk+1 = f(xk,wk) (1)
yk = hk(xk, vk) (2)

where xk =
[
ẋk xk

]
is the state of the system at time k,

and describes the position and velocity of the robot in each
degree of freedom. The robot’s measurement at time k is yk,
and is supplied by a suite of sensors whose availability will
vary as a function of the robot’s location in the environment.
At time k, the robot is influenced by independent zero-mean
Gaussian process noise wk, with covariance Qk, and sensor
noise vk, with covariance Rk.

The robot’s state may be estimated using an extended
Kalman filter (EKF) [22], which is propagated as follows:

P−1k+1 = (FkPkF
′
k + Qk)−1 + H′k+1R

−1
k+1Hk+1 (3)

x̂k+1 = Pk+1

(
(FkPkF

′
k + Qk)−1Fkx̂k+ (4)

H′k+1R
−1
k+1(yk+1 −Hk+1x̂k)

)
where x̂k is the state estimate, Pk is the robot’s estimation
error covariance at time k, and Fk and Hk represent the Jaco-
bians of f and hk about (x̂k, 0) and (f(x̂k), 0), respectively.
To penalize growth of the error covariance in the course of
path planning, estimation error is ideally represented as a
scalar cost metric. This has been achieved previously in the
context of sampling-based planning algorithms using tr(P),
the error covariance trace [10], and λ(P), the maximum
eigenvalue of P [11].

However, this latter work also proposes an upper bound
on λ(P), ` ≥ λ(P), which, unlike the above metrics, admits
optimal substructure when applied to the breadth-first search
of a graph in belief space. A recursive update for ` results
from the following inequality, which is derived from (3):

λ(Pk+1) ≤
λ(FkF

′
k)λ(Pk) + λ(Qk)

(λ(H′kR
−1
k Hk))(λ(FkF

′
k)λ(Pk) + λ(Qk)) + 1

(5)

where the operator λ( ) represents the minimum eigenvalue
of a positive definite matrix. Due to this inequality, the
upper bound ` ≥ λ(P) may be propagated according to the
following update rule, initialized using `0 = λ(P0) :

`k+1 =
λ(FkF

′
k)`k + λ(Qk)

(λ(H′kR
−1
k Hk))(λ(FkF′k)`k + λ(Qk)) + 1

. (6)

Using ` as an uncertainty metric offers a small improvement
in computational efficiency over other metrics, since the
propagation of uncertainty in (6) uses extreme eigenvalues
[23], rather than the repeated computation of P−1 required
in (3). We thus adopt ` as our scalar representation of
uncertainty, although the proposed MM-RRT* algorithm may
be used with any scalar uncertainty metric.

C. Robot Motion Assumptions

We assume a robot moves through Cfree along paths
obtained from a directed graph G(V,E), with vertices V
and edges E. Specifically, all graphs considered are trees. We
make several assumptions regarding the consistency, stability,
and synchrony of the estimation, motion, and measurement
processes, adapted from [15]:

1) The filter produces a consistent estimate, and the
corresponding error covariance is a measure of the
precision of the filter.



2) There exists a low-level controller that ensures the
robot follows the planned, nominal trajectory between
any two vertices of the graph.

3) The measurements from all sensors are synchronized.
The first assumption implies that our motion and measure-
ment models accurately represent the behavior of the robot.
The second assumption implies that the robot is capable
of recovering from process noise disturbances. The third
assumption implies that measurements from all sensors will
arrive in the order that their observations occur, such that
a planning algorithm may predict their arrival. Our goal is
to leverage our knowledge of the environment, motion and
sensor models to prevent the growth of uncertainty to an
extent that the above assumptions may be violated.

In general, a robot’s state and uncertainty comprise a be-
lief, (x, `). A vertex of an arbitrary graph may represent many
beliefs achieved over different motion and measurement
histories. In a tree, however, there is only one path from the
root xinit to each node, and if all paths are initialized from
the root with the same uncertainty `init = λ(Pinit), there
exists only one belief per node. Hereafter, when referring to
a configuration xk, we imply that xk has an associated error
covariance Pk, an eigenvalue bound `k, a dynamical state
xk, and state estimate x̂k that are uniquely identifed by xk
in concert with the initial uncertainty at the root of the tree.

D. Cost Function
To aid in defining our cost function, we first define

G(`0)|σ(T )
σ(0) , a function that represents the composition of

evaluations of (6) over a path from σ(0) to σ(T ), where
`0 represents the uncertainty at the start of the path. Every
discrete-time instant along the path represents a measurement
update of the EKF. Our proposed cost function, cmax(σ, `0),
then scores a path by evaluating G from the start of the
path, where the intial uncertainty is `0, to every measurement
update along the path, returning the maximum.

G(`0)|σ(T )
σ(0) := (`T ◦`T−1 ◦ ... ◦ `1)(`0) (7)

cmax(σ, `0) := max{G(`0)|σ(T )
σ(0) , G(`0)|σ(T−1)σ(0) , (8)

..., G(`0)|σ(2)σ(0), G(`0)|σ(1)σ(0)}

We will hereafter abbreviate cmax(σ, `0) using the notation
` |σ(T )
σ(0) to indicate the start and end states of the specific

path evaluated, from which the maximum uncertainty ` is
returned. The algorithm we propose below builds a tree that
minimizes ` from root node xinit, initialized with uncertainty
`init = λ(Pinit), to all destinations in Cfree.

In addition, we define a secondary cost and tertiary cost,
which are integral cost functions, as follows:

csecond(σ) :=

∫ σ(T )

σ(0)

Second(σ(s))ds (9)

cthird(σ) :=

∫ σ(T )

σ(0)

Third(σ(s))ds (10)

where Second(x) and Third(x) are generalized functions
of a single robot state. Each subsequent cost function in our

hierarchy will be used for breaking ties that occur in the
former. In the examples explored in our computational results
below, all workspaces are comprised of two types of spatial
regions: regions in which the robot’s pose is not directly
observable, in which the pose uncertainty grows under dead
reckoning, and regions in which the robot’s pose is directly
observable (via GPS, the measurement of environmental
features, or similar), where error growth is curbed. In these
examples, csecond(σ) returns the distance traveled by a path
σ in all regions that lack observability of the robot pose,
and cthird(σ) returns the distance traveled by a path in
all regions that offer such observability. We will alternately
express csecond(σ) using the notation SI(σ(0), σ(T )) and
cthird(σ) using the notation TI(σ(0), σ(T )) to indicate the
limits of each integral.

III. ALGORITHM DESCRIPTION

Algorithm 1: MM-RRT*
Input: V ← {xinit};E ← ∅;

1 for i = 1, ..., n do
2 xrand ← Rand(); xnearest ← Nearest(V, xrand);
3 xnew ← Steer(xnearest, xrand);
4 if ObsFree(xnearest, xnew) then
5 Xnear ← Near(V,E, xnew);V ← V ∪ {xnew};
6 Xmin ← {xnearest}; cmin ←MaxBnd(xnearest, xnew);

for xnear ∈ Xnear do
7 if ObsFree(xnear, xnew) then
8 if MaxBnd(xnear, xnew) < cmin then
9 Xmin ← {xnear};

10 cmin ←MaxBnd(xnear, xnew);
11 else if MaxBnd(xnear, xnew) = cmin then
12 Xmin ← Xmin ∪ {xnear};

13 xmin ← Tiebreak(Xmin, xnew);
14 E ← E ∪ {(xmin, xnew)};
15 for xnear ∈ Xnear \ {xmin} do
16 replace← false;
17 if ObsFree(xnew, xnear) then
18 cnear ← Cost(xnear);
19 cnew ←MaxBnd(xnew, xnear);
20 if cnew < cnear then replace← true; ;
21 else if cnew = cnear then
22 Xpair ← {xparent, xnew};
23 if xnew = Tiebreak(Xpair, xnear) then
24 replace← true;

25 if replace = true then
26 E ← (E \ {(xparent, xnear)}) ∪ {(xnew, xnear)};

Xchildren ← Children(xnear);
27 RecursivePropagate(xnear, Xchildren);

28 return G = (V,E)

MM-RRT* is outlined in Algorithm 1. The algorithm
proceeds similarly to RRT*, beginning each iteration by
drawing a random sample (line 3), steering toward the
random sample from the nearest neighboring node in the
existing tree (line 4), and subsequently searching for the



Algorithm 2: Tiebreak(Xtied, xchild)

1 csecond ← +∞; cthird ← +∞;
2 for xi ← Xtied do
3 if SI(xinit, xi) + SI(xi, xchild) < csecond then
4 csecond ← SI(xinit, xi) + SI(xi, xchild);
5 xmin ← xi;
6 else if SI(xinit, xi) + SI(xi, xchild) = csecond then
7 if TI(xinit, xi) + TI(xi, xchild) < cthird then
8 cthird ← TI(xinit, xi) + TI(xi, xchild);
9 xmin ← xi;

10 return xmin

best parent for the newly-generated candidate node by ex-
amining all neighbors within a ball radius that shrinks loga-
rithmically according to γ(log(card(V ))/card(V )), where
γ > 2(1 + 1/d)1/d(µ(Cfree)/µdball)1/d (lines 9-17). The
volume of the d-dimensional unit ball in Euclidean space
is indicated by µdball. The function MaxBnd(xnear, xnew)
is used to evaluate the maximum uncertainty encountered
while traveling to xnew from xinit on a path that includes
xnear. To evaluate MaxBnd(xnear, xnew), we need only
propagate (6) from xnear to xnew, and the maximum error
covariance eigenvalue bound encountered, ` |xnew

xnear
, is com-

pared to ` |xnear
xinit

, the stored maximum value associated with
parent node xnear. The larger of the two values is returned by
MaxBnd(xnear, xnew), and the resulting min-max after a
survey of Xnear is adopted as ` |xnew

xinit
, and stored as the cost

associated with xnew. Because belief propagation is occuring
on a tree, we will only have a single belief per node and
there is no need to distinguish between geometric states xi
and their associated beliefs.

The min-max objective function will frequently result in
ties among candidate nodes in Xnear. This occurs when
a maximum uncertainty value is derived from a common
ancestor node and shared among multiple descendants. MM-
RRT* implements tie-breaking using secondary and tertiary
objective functions to impose an ordering scheme among
nodes of identical maximum uncertainty. This is indicated by
the use of the Tiebreak() function in Algorithm 2. In the im-
plementation of MM-RRT* discussed in this paper, csecond,
the cumulative distance traveled in the regions where no
GPS measurements are available, and cthird, the cumulative
distance traveled in the regions where GPS measurements are
available, are used as the secondary and tertiary objectives.
Consequently, if two nodes, x1 and x2, are equally suitable
parents of xnew by the min-max objective, the node offering
the minimum csecond to xnew will be selected as the parent.
If x1 and x2 offer the same primary and secondary cost to
xnew, then the node offering the minimum cthird to xnew
will be selected as the parent.

After a suitable parent is identified for xnew, both RRT*
and MM-RRT* next attempt to improve the cost of the
other nodes in Xnear by considering the replacement of
their parents by xnew, known as rewiring (lines 18-34).
This is achieved by evaluating MaxBnd(xnew, xnear) and

comparing the result with the existing value of ` |xnear
xinit

. If
xnew offers a lower max uncertainty cost, it will replace the
parent of xnear. If xnew ties with the existing parent, then
the Tiebrk() function is once again used to break the tie and
choose a parent for xnear.

If the rewiring procedure succeeds in replacing the parent
of xnear, the costs of all descendants of xnear must be
updated. Unlike the standard RRT* algorithm, the min-max
costs are not additive from node to node and the bound
` must be propagated anew from xnear to all of its de-
scendants. This is performed by the RecursivePropagate()
function, which recursively propagates the bound from the
parent to all children until all branches of the tree that
descend from xnear have been updated. The impact of this
procedure on the algorithm’s asymptotic optimality and com-
putational complexity is discussed in the following section.

IV. PROPERTIES OF THE ALGORITHM
A. Monotonicity of the Min-Max Cost Metric

A

B

D E

(a) Initial Tree

A

B

C

D E

(b) Rewiring after C is Sampled

A

B

F

C

D E

(c) Rewiring after F is Sampled

A

B

F

C

D E

(d) Rewiring after D’ is Sampled

Fig. 1. This example shows an instance in which a child node’s (E) max
uncertainty will first increase, then subsequently decrease, after a series
of rewiring operations that are favorable for E’s parent node, D. At top,
path A-B-D-E will be rewired to A-C-D-E upon the sampling of node C,
and at bottom, path A-C-D-E will be rewired to A-C-F-B-D’-D-E upon the
sampling of nodes F, then D’. Blue regions contain GPS availability, with
an obstacle depicted in red.

Unlike the standard RRT* algorithm, in MM-RRT*, it is
possible for a rewiring operation, despite lowering the cost
at a parent node, to cause the cost at one or more child nodes
downstream from the parent to increase. A situation in which
this can arise is illustrated in Figure 1, where an obstacle is
depicted in red, regions of GPS availability are depicted in
blue, and in all other regions, the robot, tasked with planning
a path from A to E, must navigate using odometry. Upon the
sampling of node C, a rewiring operation is performed, in
which B, the original parent of node D, is replaced with C, a
new parent offering lower `, eliminating edge B-D. Despite
the fact that a lower max uncertainty exists at node C, it also
has a higher current uncertainty than node B. As a result,
further downstream along the path from A to E, the current
uncertainty at node C will eventually give rise to a new value
of max uncertainty, which causes both the current uncertainty
and max uncertainty at node E to increase. However, this
increase in max uncertainty at E is eventually undone. When
node F is added to the tree, it becomes the parent node of B
through rewiring. Subsequently, node D’ is added to the tree,
and this triggers the rewiring of D, eliminates edge C-D, and



reduces both the current uncertainty and the max uncertainty
at node E to the lowest levels yet.

We first address why this occurs, given that the min-max
cost function appears to satisfy the two most commonly
articulated properties for an admissible RRT* cost metric:
monotonicity, as the cost along a path is monotonic non-
decreasing, and boundedness, as the cost cannot instanta-
neously take on arbitrarily large values. However, a property
that the min-max metric lacks is monotonicity with respect to
the initial value of the cost metric at the beginning of a path.
Consider the path from D to E. Although, at top of Figure 1,
parent node C offers a lower min-max cost going into node
D than its previous parent B, it results in higher min-max
cost coming out at node E. This second type of monotonicity
is trivial in the case of most cost metrics, and as such, it has
not been articulated in prior analysis of RRT*. However, this
property does not hold for MM-RRT* in examples where a
path’s uncertainty undergoes a reset, such as by entering a
GPS zone like those of Figure 1. Rewiring a node’s parent
to improve the child node’s uncertainty does not necessarily
improve the uncertainty of all of that child’s descendants.

Despite this, as C is populated with more nodes over
the course of the MM-RRT* algorithm, these occasional
instances of “bad rewiring” will be mitigated through sub-
sequent rewiring of child nodes like E that are adversely
affected by earlier events, as illustrated at bottom of Figure 1
after the new nodes F and D’ are added to the graph. In our
computational results below, we provide empirical support
that the limiting behavior of the algorithm is for path costs
to converge asymptotically, toward optimal values. However,
we cannot claim that these asymptotes represent globally
optimal solutions. Unlike the standard RRT* algorithm, a
single instance of rewiring will not cause all affected nodes
to improve in cost simultaneously; there will be fluctuations
in cost with a net decrease that tends toward an asymptote.
In future work, we hope to analyze the global optimality of
tree-based algorithms that can undergo occasional setbacks
en route to optimal solutions.

B. Computational Complexity

We now comment on the computational complexity of
MM-RRT*. For a typical sampling-based path planning
algorithm that does not propagate beliefs over the graph,
the complexity of the Near() operation and the number of
calls made to ObsFree() are typically of greatest concern, as
these are expensive operations for large graphs that require
many geometric primitives to represent the surrounding ob-
stacles. In the case of RRT*, in a single iteration O(log(n))
is the worst-case complexity of finding nearest neighbors,
and O(log(n)) total calls are made to ObsFree(). The time
complexity of building a tree over n iterations is hence
considered to be O(n log(n)).

This complexity also holds for MM-RRT* with respect to
these two operations. However, in the case of MM-RRT*
we are also concerned about the number times Equation
(6) will be propagated across an edge of the graph. This
will happen O(n log(n)) times if we count only the belief
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Fig. 2. When only one secondary cost function Dist() is used to penalize
distance traveled, the resulting tree and a path connecting start and goal
nodes are shown in (a). When a secondary cost function SI() and a tertiary
cost function TI() are used together, the resulting tree and respective path
are shown in (b). This approach curbs the growth of uncertainty at D. The
blue region indicates GPS availability, with an obstacle in red. Edges of the
trees are plotted in color varying from green to red to indicate the current
value of the eigenvalue bound ` (with higher ` in red) along each path.

propagations that are used to evaluate candidate edges. These
are the “expensive” belief propagation operations, occurring
the first time an edge cost is computed. In addition, there are
another worst-case O(n2) propagations that will occur due
to the calls made to RecursivePropagate(), in which new
beliefs are propagated over pre-existing graph edges. These
propagations may occur at substantially lower cost, as the
min and max eigenvalue terms in (6) will have already been
evaluated over an edge. Consequently, MM-RRT* requires
O(n log(n)) non-trivial belief propagation operations over
new and candidate graph edges, which is the same worst-case
number of candidate edge evaluations required by RRT*.

C. On the Use of Hierarchical Cost Functions

Secondary and tertiary cost functions are used to curb
additional growth of uncertainty when paths appear other-
wise identical in primary cost. We can express the total
accumulated distance along a path as Dist(σ(0), σ(T )) =
SI(σ(0), σ(T ))+TI(σ(0), σ(T )) using these cost functions.
The benefit of this approach is illustrated in Figure 2, in
which there are four key tree nodes highlighted: A, the
start node, B, the first node arriving at the GPS region,
C, a node in the GPS zone which has the same y-axis
value as node D, and D, the goal node. At node B, the
path of interest enters the GPS region, and node B and its
descendents will each have substantially lower localization
uncertainty than the max uncertainty encountered a few steps
earlier. As a result, ties exist among the children of node B,
as they share the same primary cost. If only a secondary
cost function Dist() is applied here, the path to node D
will not travel through node C, as a direct route from B to
D will offer the shortest distance (shown in Figure 2(a)).
However, we care more about the value of ` over the path
than the path’s length. When a tertiary cost function TI()
is introduced, the path, from B to C and finally to D, offers
the shortest trajectory exposed to the regions that have no
GPS access (shown in Figure 2(b)). In other words, we have
SI(B,C) +SI(C,D) < SI(B,D) as SI(B,C) is equal to
zero. All nodes in the GPS zone of Figure 2 share the same
primary cost, as well as the same secondary cost from node



(a) Additive Approach

(b) MM-RRT*

Fig. 3. Trees generated by two competing approaches for planning under uncertainty using the same sequence of random samples. Obstacles are indicated
in red and GPS zones (at the upper boundary of the domain) are rendered in blue. Edges of the trees are plotted in color varying from green to red to
indicate the current value of the eigenvalue bound ` (with higher ` in red) along each path.
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(b) Maximum Bound Encountered, MM-RRT*
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(c) Path Duration, Additive Approach
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(d) Path Duration, MM-RRT*
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(e) Sum of Bound Over Path, Additive Approach
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(f) Sum of Bound Over Path, MM-RRT*
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(g) Mean Value of Terminal Bound
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(h) Eigenvalue Bound at all Nodes in the Tree

Fig. 4. (a) - (f) show the evolution of the maximum eigenvalue bound encountered, path duration and the sum of the bound as a function of the number
of nodes in the tree, over each of the 5 example paths from Figure 3, over 50 trials of our two competing approaches. (g) shows the mean terminal bound
of each example path for the two approaches, and (h) shows a histogram of the bound’s value at all nodes in the tree, averaged over 50 trials.

B. Therefore, ties exist between these nodes. TI() can be
used to break these ties, resulting in the selection of node C
as a parent node.

V. COMPUTATIONAL RESULTS
We now describe a computational study performed to

explore the effectiveness of planning under uncertainty using
MM-RRT*. Two-dimensional robot workspaces are utilized
to aid the visualization of the algorithm’s performance,
but it is also extensible to higher-dimensional systems. In

our first example, we assume that a robot is capable of
translation in two degrees of freedom, moves at constant
speed, and is restricted to motion within the domain depicted
in Figure 3. Throughout the domain the robot receives
odometry measurements in both translational degrees of
freedom. There are ten zones, illustrated in blue at the upper
boundary of the domain, where the robot can receive GPS
measurements. The robot’s position estimate will drift and
the error covariance terms associated with position will grow
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(c) Eigenvalue Bound at all Nodes in the Tree

Fig. 5. A path planning example derived from a real-world building
floorplan. Plots (a) and (b) show trees of 10,000 nodes each, generated by
our two competing approaches using the same sequence of random samples.
A histogram showing the value of the eigenvalue bound across all nodes in
the tree, averaged over 150 trials, is shown in (c) for each approach.

TABLE I
MM-RRT* VS. ADDITIVE APPROACH (AA) AVERAGED OVER 150

TRIALS (BOUND IS GIVEN IN UNITS OF DISTANCE, SQUARED)

Path To 1 To 2 To 3 To 4
Max Bound
Encountered

AA 52.837 69.947 67.907 50.386
MM-RRT* 37.177 50.916 51.064 34.739

Sum of
Bound

AA 2519 2926 2334 1288
MM-RRT* 2313 3275 2515 1354

Terminal
Bound

AA 52.837 69.947 67.907 50.386
MM-RRT* 37.124 43.805 29.905 23.777

RunTime AA 0.947s
MM-RRT* 1.042s

unless it obtains GPS measurements to curb error growth. All
path planning problems explored in this domain were rooted
at xinit = (0.01, 0.99). Trees were constructed using two
different strategies and the results are compared for paths to
five different goal regions. The goal regions are indicated by
the terminal locations of the paths depicted in Figure 3(a);
they are numbered from one to five. Each goal is a circular
region of radius 0.02 units.

As a baseline for comparison, the first strategy explored
was minimum-uncertainty path planning using an additive
cost metric: the sum of the values of `, summed at every
filter update along a path. This metric, which penalizes the
accumulation of uncertainty along a path, is intended to
offer a basis for comparison for the MM-RRT* algorithm.
A representative example of this approach is given in Figure
3(a). The second strategy explored is MM-RRT*, using ¯̀

as the uncertainty cost metric, depicted in Figure 3(b). Fifty
trials were performed of both the additive approach and MM-
RRT* using ` as the basis for expressing uncertainty. In each
trial, a tree of 50,000 nodes was constructed. Five quantities
were compared between the two competing methods: (1) the
maximum bound encountered over a path (Figure 4(a) and

4(b)), (2) path duration (Figure 4(c) and 4(d)), (3) the sum of
the bound over each path (Figure 4(e) and 4(f)), (4) the mean
value of each example path’s terminal bound (Figure 4(g)),
and (5) the value of the bound at all nodes in the tree (Figure
4(h)). All quantities shown in Figure 4 depict mean values
averaged over 50 trials of each method. All computational
experiments were performed using a single core of a laptop
computer’s Intel i7-4710MQ 2.5 GHz quad-core processor,
equipped with 16GB RAM and the 64-bit Ubuntu 14.04
operating system. The RRT(*) C library provided by the
authors of [9] was adapted to implement the algorithms
considered in this paper.

In Figure 4(a) and 4(b), the maximum value of ` en-
countered over each of the five highlighted paths is shown
as a function of the number of nodes comprising the tree,
averaged over 50 trials. The plot begins where a feasi-
ble path has been returned from all 50 trials. The mean
maximum bound obtained over these five example paths is
reduced by 21.21%, 36.26%, 35.98%, 39.51% and 35.6%
respectively by MM-RRT* in comparison to the additive
approach. Figure 4(b) demonstrates that MM-RRT*’s paths
exhibits asymptotic behavior, however, even when averaged
over 50 trials, it is clear that paths undergo small fluctuations
in cost as they approach their respective asymptotes. Path
duration is also shown as a function of the number of nodes
in Figures 4(c) and 4(d). Due to its priority on curbing
uncertainty, the lengths of the paths offered by MM-RRT*
are greater than those offered by the additive approach. The
mean terminal bound of each path is depicted in Figure 4(g).
MM-RRT* reduces the value of each path’s terminal bound
by 23.9%, 54.91%, 38.21%, 41.96% and 34.54% respectively
in comparison to the additive approach. Figure 4(h), using a
histogram, visualizes the values of the eigenvalue bound ¯̀for
all nodes in the final tree, averaged over 50 trials. The min-
max approach offers a narrower spread of uncertainty among
the nodes of its tree; 98.99% of the nodes of MM-RRT*
have an eigenvalue bound smaller than 1.2 units of distance,
squared. For the competing additive approach, only 70.31%
of the tree’s nodes fall within this threshold. The “fat tail”
in the histogram for the additive approach, which contains
29.69% of the tree’s nodes, demonstrates that penalizing the
sum of uncertainties will often favor short paths that do not
curb uncertainty to the same extent as a min-max approach.

Further comparisons are made in a more complex scenario
inspired by the layout of a real-world office environment. A
robot translates in a 78.1m by 63.3m domain from xinit =
(0.0, 0.0) shown in Figure 5. The same color spectrum used
in Figure 3 is applied here. There are five regions that have
GPS availabilty, labeled A through E. Four goal regions used
in the planning problem are numbered from 1 to 4. One
hundred fifty trials are performed in this scenario, and each
trial grows a tree comprised of 10,000 nodes. The same
quantities compared in Figure 4 are also compared in this
case, and the computational results of the two competing
planning methods, over 150 trials, are shown in Table I. The
paths of the additive approach only enter at most one GPS
zone, while the paths produced by MM-RRT* enter at least



(a) 1 sec. (b) 2 sec.

(c) 5 sec. (d) 10 sec.

Fig. 6. A real-time path planning example using an experimentally derived
map from our lab, and a simulated ground robot with a three degree-
of-freedom Dubins model. The robot can localize within a meter of the
obstacles, but must rely on odometry elsewhere. The evolving solution and
its tree is shown after 1, 2, 5, and 10 seconds of computation time.

two GPS zones each. 85.31% of the tree nodes of MM-RRT*
have an eigenvalue bound smaller than 35m2. In the case of
the additive approach, this number is only 51.33%.

A final comparison is presented in Figure 6, showing a
three degree-of-freedom Dubins vehicle planning over an
experimentally derived map of our lab at Stevens Institute,
where it is capable of localizing only within a 1m visibility
range of the surrounding obstacles. Elsewhere, it must rely
on odometry for navigation. In this case, trees are grown
that obey Dubins constraints for a 0.3m turning radius, and a
solution gradually evolves in real-time that limits the duration
in which the vehicle relies exclusively on odometry.

VI. CONCLUSION

We have proposed a new path planning algorithm, MM-
RRT*, that curbs localization uncertainty by minimizing the
maximum value of its uncertainty metric encountered during
the traversal of a path. This approach offers an alternative
to other sampling-based belief space planning algorithms
that employ additive cost representations of uncertainty. It
also makes efficient use of a tree structure, with only a
single belief allowed per graph node. As demonstrated in
our computational results, an additive approach may often
provide a suitable solution that curbs the growth of localiza-
tion error, but the inherent preference for shorter paths will
occasionally eliminate families of paths that are capable of
further uncertainty reduction and safer operation. This initial
exploration of a min-max uncertainty cost function also
leaves room for future work: the approach may be combined
with uncertainty-based rejection sampling to reduce collision
risk, and the prospect of establishing formal optimality
guarantees will be further explored.
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