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Abstract— This paper proposes a novel application of recent
research on sums-of-squares (SOS) optimization to feedback
motion planning. We use nonlinear programming (NLP) to
provide open-loop control and dynamic trajectories for a vehicle
in segments, and then consider the problem of generating
global trajectories by using a probabilistic roadmap (PRM)
or a rapidly-exploring random tree (RRT). Furthermore, we
compute funnels (reachable sets) using SOS optimization along
the trajectory in which the vehicle’s state is guaranteed to
remain [1]. Considering the expensive computation of SOS,
we adopt a ”funnel library” to pre-compute funnels [2]. A
vehicle is subjected to disturbances due to model uncertainty
and sensor noise, and the funnel library is computed without
any knowledge of the severity of noise before motion plan-
ning. Therefore, we propose to use the Pontryagin difference
method to shrink the funnels to account for noise-corrupted
measurements, whose availability varies spatially throughout
the state space. Our major contribution is to take into account
the effect of measurement and model uncertainty in funnel
computation, and we propose two efficient algorithms, feedback
belief roadmap (FBRM) motion planning and feedback rapidly-
exploring random belief trees (FRRBT) motion planning, to
generate safe trajectories. Our algorithms are demonstrated in
simulated experiments showing their advantages over others.

I. INTRODUCTION

Vehicles maneuvering in complex environments lack guar-
antees on their safety when in close proximity to obstacles
without an accurate dynamic model and accurate measure-
ments. Autonomous maneuvering is also challenging when a
vehicle is governed by nonlinearities, underactuated dynam-
ics, and input constraints. Meanwhile, disturbances may drive
a vehicle out of safe and stable operating regimes [2]. Rele-
vant applications include flying through a cluttered area [3],
control design for stabilization of robots [4], and planning
under challenging task constraints [5]. These applications
share the challenges of improving robot performance under
fast motion, operation in close proximity to obstacles, and
difficult state estimation. In this paper, we focus on obtaining
a safe path to a goal under such conditions.

In particular, a stable feedback control strategy was devel-
oped for vehicles around a nominal trajectory, using a sums-
of-squares (SOS) algorithm to certify a vehicle’s stability
and safety in [6]. The proposed algorithm was designed
for nonlinear feedback motion planning in which each of
a sequence of open loop trajectories is locally stabilized
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Fig. 1: A safe and stable trajectory, with a high initial uncertainty,
found by FBRM. A longer trajectory leading to the lowest uncer-
tainty at the goal was demonstrated in Fig. 1(d) in [11].

to lead to a specified goal point. An SOS algorithm is a
reliable way to certify the stability of local regions employing
specific feedback policies, and to approximate these regions
throughout the duration of a trajectory. These sets of stability
regions constrained by local linear feedback control are
called funnels, as developed in [7]. Following these initial
works, SOS was used in invariant funnels around trajectories,
which computed regions of stability of limit cycles for
time-varying Lyapunov functions [1]. However, their time
complexity prohibits their effective use in practical, real-time
planning and maneuvering applications.

In [2], Majumdar et al. presented a funnel library which
is capable of being composed at runtime. Moreover, they
considered noise in SOS programming subject to an un-
certainty term that models external disturbances or para-
metric model uncertainties, where the uncertainty must be
described as a semi-algebraic set, and then converted to
SOS constraints. The robust funnel library is computed of-
fline, and consequently when the uncertainties have changed
we need to re-compute the whole funnel library, which is
costly. In our proposed algorithms, we estimate disturbances
using the extended set-membership filter (ESMF) and use
the Pontryagin difference to shrink the funnel. If there is
any additive disturbance, the one-step set can be computed
by the Pontryagin difference [8]. We apply the Pontryagin
difference to compute the set difference between the nominal
stable region and the noise-corrupted probabilistic region
under which changing uncertainties are considered, which
is real-time viable.

In order to compute funnels, we need to obtain a collision-
free open-loop trajectory. Path planning algorithms like the



rapidly-exploring random tree (RRT) [9] and probabilistic
roadmap (PRM) [10] are suitable for quickly identifying
collision-free paths. If measurement uncertainty is taken into
account in path planning, the belief roadmap (BRM) [11]
and rapidly-exploring random belief trees (RRBT) [12] may
be used instead to search for feasible paths in belief space.
However, a vehicle’s safety may be further improved if
its behavior under uncertainty can be stabilized and also
certified. Thus, we propose two algorithms, feedback belief
roadmap (FBRM) motion planning and feedback rapidly-
exploring random belief trees (FRRBT) motion planning,
based on BRM and RRBT respectively, for motion planning
using funnel libraries, which allow us to compute safe and
low-cost paths efficiently for a nonlinear system.

II. BACKGROUND

A. Problem Statement

BRM and RRBT produce paths that achieve low state
estimate uncertainty en route to the goal. RRBT extends
to nonlinear systems, linearizing about a nominal trajec-
tory which employs local linear feedback control. However,
RRBT has two limitations. First, for nonlinear systems, local
linear controllers will not work all the time. If the state is
outside of the local region of attraction (RoA), the feedback
controller cannot drive the system back to an equilibrium
point [13]. Hence we need to predict the deviations in
advance in order to take corrective actions [14]. This can also
be explained by the local separation principle: in practice,
an optimal feedback controller is employed by designing an
optimal observer for estimating the state of the system, and
the optimal estimate is also required to be inside funnels to
ensure convergence, since linearization and stability are only
guaranteed inside funnels. The limitation is illustrated in Fig.
2a, where a vehicle’s uncertainty decreases significantly after
entering a measurement zone, but two possible paths in red
don’t pass through the blue region and may collide.

Second, an optimal path with respect to a covariance
matrix’s trace, as produced by the BRM algorithm, would
traverse regions where the vehicle is able to acquire more
observations. For the purpose of reaching the goal position
with low uncertainty, more energy-conservative paths (e.g.
shorter ones) that may nonetheless be capable of safely
reaching the goal are omitted. Also, a vehicle may elevate its
risk of colliding with obstacles in order to obtain obstacle-
relative measurements. One such example is illustrated in
Fig. 2b. Path P3 leads to the most certain goal state, whereas
paths P1, P2 are potentially safe to follow with lower cost.

The systems we are interested in are generally nonlinear
and partially observable. The robot is described by its
dynamic model and sensor model:

ẋ = f(x(t), u(t), w(t))

z = h(x(t), v(t))
(1)

where state vector x(t) ∈ X ⊂ Rn, u(t) is the control
input u(t) ∈ U ⊂ Rm, w(t) is the model disturbance
w(t) ∈ W ⊂ Rd, and v(t) is the measurement disturbance

(a)

(b)

Fig. 2: (a) Predicted error ellipses (black) and closed-loop ellipses
(orange), a slice of funnel (blue), measurement zones (green
regions), and the nominal trajectory (dashed line). If the actual
trajectory is out of the blue region, the vehicle may collide with
obstacles even though its closed-loop ellipses and error ellipses are
collision-free, because the linear feedback control law is invalid
outside of this region. (b) Three different trajectories are shown.
P1 is the optimal trajectory if the measurement is neglected, and
P3 is an optimal trajectory which can be found by BRM and RRBT
with the lowest goal uncertainty. In fact, if we can guarantee the
final state following P1 or P2 is within a set of funnels, they would
be safer and less costly than P3.

v(t) ∈ V ⊂ Rd′ . For any time t ∈ [0, T ], the piecewise-
continuous open-loop control u0(t) : [0, T ] → U , can be
integrated to compute a nominal trajectory x0(t) : [0, T ] →
X . The state space X can be decomposed into X free and
X obs which represent whether states are in collision. Our
approach to finding feasible trajectories in X free requires
the computation of funnels representing regions in which the
closed-loop system is guaranteed to remain.

Finding open-loop controls and a nominal trajectory could
be described as an nonlinear programming (NLP) problem.
There are a variety of algorithms capable of solving this
problem, and in our paper, GPOPS [16] is implemented
to generate optimal trajectory primitives. The local optimal
trajectory is produced by minimizing a cost function, for
which we employ the LQR cost-to-go function,

J =

∫ T

0

(xT0Qx0 + uT0 Ru0)dt

Q = QT > 0, R = RT > 0,

(2)

where Q and R are positive-definite matrices. This cost-
to-go function is the objective function of each trajectory
primitive used to construct a motion planning solution;
similar functions are used as the cost metric in feedback
motion planning algorithms such as [6].

B. Funnel Libraries

In this section we describe the process of computing the
outer approximations of reachable sets around trajectories



for a nonlinear system. The procedure is used to verify
motion primitives, which are later connected to obtain a
fully verified vehicle trajectory, and to parameterize motion
primitives in order to cover continuous sets of behaviors,
which are achieved in [2] with SOS techniques.

Given a set of initial conditions χ0 ⊂ Rn with x0(0) ∈ χ0,
our aim is to find a tight outer approximation of the subset
of states the system may evolve to at time t ∈ [0, T ]. In
particular, we are concerned with sets F (t) ⊂ Rn such that:

x(0)− x0(0) = x̄(0) ∈ χ0 ⇒ x̄(t) ∈ F (t),∀t ∈ [0, T ]. (3)

Definition 1[2]. A funnel F : [0, T ] maps from the time-
interval [0, T ] to the power set of Rn such that the sets F (t)
satisfy the condition (3) above.

The sets F (t) are parameterized as sub-level sets on value
ρ of non-negative time-varying functions V ([1]):

F (t) = {x̄ ∈ Rn | V (t, x̄(t)) 6 ρ(t)}
= {x̄ ∈ Rn | x̄(t)TS(t)x̄(t) 6 1, S(t) > 0},

(4)

where S(t) is a symmetric positive definite matrix. In [1],
Tobenkin first presented an SOS algorithm to compute the
regions of finite-time invariance (funnels) around solutions of
polynomial differential equations. Moore [17] presented S-
parameterization to improve the volume of funnel. Majumdar
[15] presented feedback control to find a larger-volume
funnel. In motion planning, sequential composability of
funnels is analogous to the compatibility condition required
for sequencing trajectories in the library of a Maneuver
Automaton [18]. A Maneuver Automaton for the solution
of a class of motion-planning problems is described as
the concatenation of well-defined motion primitives selected
from a finite library. Specifically for our problem, funnel
libraries can be pre-computed using trajectory libraries which
are derived from the graph edges of a PRM or the edges of
an RRT, to which sequential composition will be applied.

III. EXTENSION TO UNCERTAINTY FUNNELS

This section presents a novel solution to the problem of
calculating funnels with uncertainty. In [2], uncertainty is
described as a bounded semi-algebraic set W = {w ∈
Rd | gw,j(w) > 0,∀j = 1, ..., Nw} which can be easily
described as a SOS constraint and solved by the S-procedure.
This is a conservative computation for uncertainty with
a funnel library since the library is computed based on
initial conditions and uncertainty in the dynamics without
considering the distribution of uncertainty throughout the
environment. Robustness is considered in our paper by taking
the Pontryagin difference between a funnel and bounded
uncertainty. This step will ensure the stability of the distur-
bance invariant set for the controlled system with bounded
disturbances. Bounded uncertainty can be captured using
the extended set-membership filter (ESMF) [19] or extended
Kalman filler (EKF)[12], which produce error ellipsoids that
account for measurement noise.

A. Pontryagin Difference

Definition 2. The Pontryagin difference [20] of two sets
of the same dimension U ⊂ Rn, V ⊂ Rn is as follows:

U ∼ V = {x1 ∈ U : x1 + x2 ∈ U,∀x2 ∈ V }.

The properties of the Pontryagin difference are given in [8],
Theorem 2.1.

So if U represents the initial funnel at a particular time
without disturbances, it is a convex set which can be de-
scribed as an ellipsoid. The Pontryagin difference does not
restrict a vehicle’s uncertainty to be an ellipsoid, or even
convex. The Pontryagin difference shows that if the state is
inside the robust funnel, the state with added disturbances is
also inside the initial funnel.

Definition 3. Ellipsoid ε(q,Q) in Rn with center q and
shape matrix Q is the set,

ε(q,Q) = {x ∈ Rn | 〈(x− q), Q−1(x− q)〉 ≤ 1},

wherein Q is positive definite Q = QT and 〈x,Qx〉 > 0 for
all nonzero x ∈ Rn. Here 〈·, ·〉 denotes the inner product.
An ellipsoid set is a bounded and convex set.

A funnel can be expressed using ellipsoids at a particular
time t, with q = x0(t) and Q = S(t)−1, such that:

ε(t) = {x ∈ Rn | ε(x0, S(t)−1)}
= {x̄ ∈ Rn | ε(0, S(t)−1)}.

(5)

The Pontryagin difference between the initial set and the
disturbance set means if the state is inside the resulting set,
after adding any disturbances the state will remain within the
resulting set.

Assumption 1. The disturbances we take into account
are bounded and convex. We suppose the disturbances are
expressed as an ellipsoid at time t: εt(0, δ) ⊂ W , where δ
is the shape matrix representing the extent of uncertainty.

Theorem 1. Robustness funnel set F (t) at time t is the
set of ε(t) ∼ εt(0, δ).

Proof : Assume the two sets U = ε(t) and V = εt(0, δ)
always represent two different ellipsoids in this paper respec-
tively, which are symmetric, convex and bounded, so that
U ∼ V is symmetric, convex and bounded [8]. Suppose U is
compact and convex and U ∼ V 6= ∅, then the convex region
U can be expressed as U = {u | ηTu 6 hU (η), η ∈ Rn},
where hU (η) = sup

u∈U
ηTu, similar to set V . Accordingly, the

robust funnel at t may be described as ε = U ∼ V =
{z ∈ Rn | ηT z = hU∼V (η) 6 hU (η) − hV (η),∀η ∈ Rn}.
Thus upper bound U ∼ V is a solution of max ηT z subject
to ηT z 6 hU (η) − hV (η); the robust funnel is a compact
subset of this region. This is approximately equivalent to the
procedure for constructing the maximal volume of ellipsoids
max vol(ε) to find the set boundary. SOS programming
can be also used to find the robust convex set in [2].
Fortunately, if U and V are ellipsoidal sets and supposing
U = {u | sTi u 6 rUi, i = 1, ..., N} (subscript i refers to
different directions - si is the direction vector and rUi is
the radius in different directions), then so does V , and they
can be approximated by polytopes. However the Pontryagin



difference can be much easier and faster to compute (see
details in [21]). The Pontryagin difference will provide points
on the boundary in different directions, and can be easily
computed by optimization methods like [22].

B. Uncertainty Prediction

In this section, a singular value decomposition based
algorithm is developed and applied to nonlinear nominal
trajectory time-varying state estimation. In the previous
section, it is more practical to assume that noise is unknown
but bounded (UBB), especially when the bounds of noise
can be obtained. The key strategy of the formulation is to
find a feasible set such that the bounded error specification is
met for any member of this set. As a result, set-membership
filtering (SMF) is aimed at estimating the feasible set itself
[19], which computes a compact feasible set in which the
true states or parameters lie only under the UBB noise
assumption. The approach can also be extended to nonlinear
systems, e.g. [24] and [25]. Linearization error is also
taken into account and convergence is proved. However,
extended set-membership filtering (ESMF) leads to a large
computation time. So if the problems of state or parameter
estimation can be solved via stochastic approaches based
on Bayesian theory, with assumptions such as white noise
and known mean and covariance, the ESMF can also be
replaced by a Gaussian filter, e.g. an EKF [12], to predict
error ellipsoids with a high probability of being inside.

Considering the disturbances acting on the system, the
robot dynamics of Eq. 1 are transformed to discrete time:

xk+1 = g(xk, uk, wk)

yk+1 = h(xk, vk),
(6)

where xk ∈ X , uk ∈ U , wk, yk is the measurement vector,
and vk ∈ V . The noise follows the conditions:

wk ∈ ε(0, Qk), vk+1 ∈ ε(0, Rk+1). (7)

We can take appropriate partial derivatives for any se-
quence of state vectors xk, and obtain the following time
varying linear system:

x̄k+1 = Akx̄k +Bkūk + wk

ȳk+1 = Hkx̄k + vk,
(8)

where Ak, Bk, and Hk are the linearization coefficients
near a nominal trajectory (x0k, u0k) and x̄k = xk − x0k,
ūk = uk − u0k, ȳk = yk − y0k, represent the deviation from
the nominal path. This is the most restrictive assumption.
It states that our system must be perfectly locally linear.
Nonetheless, this is a reasonable approximation, and it is
justified since we are using a feedback control law to stay
close to the nominal trajectory. A convergence analysis is
shown in [12].

The local feedback control gain Kk for a nominal trajec-
tory can be obtained from LQR:

uk = u0k +Kk(x̂k − x0k), (9)

where x̂k is the optimal estimate. Assume ee = x− x̂ is the
estimation error, where x contains the real states, and thus:

eek ∈ ε(0, Pk), (10)

where Pk is the posterior covariance, which can be calculated
by an ESMF [25]. Assume ec = x̂−x0k is the error between
estimated states and nominal states, so if we use the control
law (9), then we will obtain the standard filter:

eck+1 = Ake
c
k + Lk+1(Hk+1e

e
k + vk). (11)

Let Hk+1 be the observation matrix, wck = Lk+1(Hk+1e
e
k +

vk), and by fusing the two sets Lk+1Hk+1Pk ⊕ Lk+1Rk ,
Lk+1 =

P k+1|k
1−ρk HT

k W
−1
k , Wk = Hk+1

Pk+1,k

1−ρk H
T
k+1 + Rk+1

ρk
,

ρk = rm√
pm+

√
rm

, and pm and rm are the maximum singular
values of matrices Hk+1Pk+1H

T
k+1 and Rk+1, respectively.

So the above Eq. (11) can be rewritten as:

eck+1 = Ake
c
k + wck, (12)

expressing the error between the real system and the nominal
system, and thus we employ the equation:

x = x0 + x̄ = x0 + (ec + ee). (13)

In every step, the real error (the error between the real system
and nominal system) is x̄k ∈ ε(0,Σk), where Σk is the
ellipsoid envelope matrix, and control law (9) will drive the
system to:

x̄k+1 = Akx̄k +BkKk (xk − eek − x0k) + wk

= Akx̄k +BkKkx̄k −BkKke
e
k + wk

= AGx̄k + (−BkKke
e
k + wk)

= AGx̄k + w′k,

(14)

where,

AG = Ak +BkKk

w′k = wk −BkKke
e
k ∈W ′k = ε(0, Q̌k)

Q̌k =
−BkKkPk

1− β1
+
Qk
β1

β1 =

√
tr(Qk)√

tr(−BkKkPk) +
√
tr(Qk)

.

(15)

If we have a one-step prediction, x̄k ∈ ε(0,Σk):

Σk+1 = AG
Σk|k

1− β2
ATG +

Q̌k
β2

β2 =

√
tr(Q̌k)√

tr(AGΣk|kA
T
G) +

√
tr(Q̌k)

.

(16)

UD-factorization in [25] ensures all sets above are positive
definite and symmetric, which are sufficient conditions to
construct the ellipsoid. This derivation is similar to [12]
for the EKF, where the real state is estimated in the set
ε(x0,Σ) near the nominal trajectory under feedback control.
If disturbances obey a Gaussian distribution, the set could
be replaced by a high probability confidence error ellipsoid
from the EKF, which is much faster than the ESMF. The



Pontryagin difference between ROA ellipsoids (5) and error
boundary ellipsoids ε(0, Pk) will provide the subset of the
ROA that holds under uncertainty. In the path planning
algorithms to follow, we will check whether ε(x0,Σ) is
inside the funnel or not.

IV. FEEDBACK BELIEF ROADMAP MOTION PLANNING

We assume that a PRM with node set V and edge set E
is provided. Funnel libraries are computed offline using the
SOS algorithm described in Section II.

Assumption 2. Each edge e ∈ E is associated with an
open-loop trajectory library and funnel library resulting from
a different combination of from-edge and to-edge.

Fig. 3: Three possible trajectories along edge e.

Assumption 2 is a simplification for funnel libraries with-
out shifting. As shown in Fig. 3, different lines represent
different dynamic open-loop trajectories which could be
sequentially composed along edge e. The number of trajec-
tories associated with edge e is N = np×ns, where np and
ns are the numbers of edges which are linked with current
edge e. In practice, N < np×ns due to dynamic constraints.

A. Algorithm Description

For vertex v ∈ V , v.x is the position of vertex v, v.path
is the path from the initial vertex, and v.c is the cost from
the initial state. v.ε is the error ellipsoid in (10), v.Σ is the
closed-loop ellipsoid in (16) for the real state and nominal
state, and for each edge e ∈ E, MT = {τ, F, c, u} is a
tuple to represent the maneuver along every edge. τ are
dynamic trajectories with open-loop control associated with
a funnel F with cost c in (2). The selection of e[MT ] is
based on predecessor and successor vertices, and u is the
feedback control. The tuple is built with E before searching
the roadmap. The ellipsoid prediction described in Section
III.B is implemented by FORECAST(e[MT ], v).

Sequential composition of two funnels is defined by
SEQCOMPOSITION(F1, F2), which is shown in detail in
[2], Chapter 5. In other words, two funnels are sequentially
composable if the “outlet” of F1(T ) is contained within the
“inlet” of F2(0). Suppose that the xout in F1(T ) is the state
along the nominal trajectory at time T . Closed-loop ellipsoid
ε(xout,Σ) defined in (16) is used to express an estimated
region for real state x ∈ ε(xout,Σ), if ε(xout,Σ) ⊆ F2(0) ∼
ε (see Assumption 3). This check is important to ensure
the state will enter the next funnel even under uncertainty.
ε(xout,Σ) * F2(0) ∼ ε may happen when an error ellipsoid
grows so fast that feedback control is unable to drive the
system back to the nominal trajectory and into the next
funnel. If ε(xout,Σ) * F2(0) ∼ ε, this funnel will return 0.
It is more reasonable for path planning with environmental
uncertainty to check ε(xout,Σ), F2(0) ∼ ε than checking

the sequential composition of funnel F1 and F2. Sequential
composition between a polytope (F2(0) ∼ ε) and ellipsoid
(xout,Σ) is easy to check: transform the ellipsoid to a
polytope in the same direction as the first polytope. For
two polytopes U, V , if all rUi 6 rV i, then U is inside V ,
where rUi, rV i are the radii for each direction as described
in Theorem 1..

Assumption 3. The initial closed-loop ellipsoid in Eq. (16)
at each entrance of funnel F should be updated by the set
F (0) ∼ εmax, which expresses every possible entrance state.

Calculating the initial closed-loop ellipsoid is a simple
convex optimization problem which can be solved efficiently
[22]. This procedure computes an inscribed ellipsoid of
polytope F (0) ∼ εmax, where εmax is the largest error
ellipsoid in funnel F . However, this is a rough estimate.
The most accurate way is finding the error ellipsoid which
is closest to the funnel at t ∈ [0, T ] (the distance can
be computed using the method in [14]; this is a QCQP
optimization). We then compute the Pontryagin difference
at t and shrink all of the funnels within [0, t] to ensure that
all the states enter the most narrow region of the funnel.
However, this accurate approach is costly, since the funnel
and error ellipsoid do not change much within a short period
so that we could use F (0) ∼ εmax to estimate the funnel
entrance. The less length of a single funnel we compute, the
more accuracy we can get.

Algorithm 1 Feedback Belief Roadmap

1: Build PRM in obstacle Map O. Initialize node set V and
edge set E. Build MT for every e ∈ E

2: Initialize n.ε = ε0, v.Σ = Σ0, v.path = v.xinit
3: PUSH v → Q
4: while Q 6= ∅ do
5: POP n← Q with the smallest n.c in Q
6: if n = vgoal then
7: return n.path
8: end if
9: for all v ∈ E[n] and v /∈ n.path do

10: v ← FORECAST(n, v)
11: Find F1 ∈ n[MT ], F2 ∈ v[MT ]
12: if SEQCOMPOSITION(F1, F2) then
13: v.c = n.c+v[MT].c
14: v.path = n.path ∪ v.x
15: PUSH v → Q
16: end if
17: end for
18: end while

The FBRM search process is shown in Algorithm 1. The
algorithm builds a graph, whose edges are based on [23].
Algorithm 1 assumes that the initial error ellipsoid is ε0 and
Σ0 is an estimated value which satisfies Σ0 < all (F (0) ∼
ε0) to express that the real state is inside the funnel at the
initial state. We push the initial vertex into search queue Q.
Line 5 in Algorithm 1 finds the optimal cost for each node
in Q; n.c could rely on an A* heuristic to find the goal faster.



Fig. 4: The best trajectory is shown when a robot is initialized with
low uncertainty.

Lines 9-18 are the kernel of Algorithm 1. Line 9 searches
the near node along an edge which is not in the path of the
current node. Line 11 chooses a funnel along the edge. If
the condition in line 13 is not satisfied, we continue the loop
to find other nodes which may satisfy the funnel constraints.
If the funnel is shrunken by an obstacle, the condition will
be harder to satisfy. If the state through the funnel can reach
the new node, the node is added to queue Q.

B. Simulation Results

In this section, we applied the FBRM algorithm proposed
in this paper to a simulated ground vehicle built in Matlab.
The ground vehicle moves with constant speed; the dynamic
model is formulated as follows,

x =


x
y
ψ

ψ̇

 , ẋ =


v (t) sin (ψ)
v (t) cos (ψ)

ψ̇
u

 . (17)

The vehicle has a fixed forward speed of 10m/s and the yaw
angle ψ can be controlled. The uncertainty in the simulation
is assumed to consist of modeling and measurement error.
The initial state x(0) was set to [8.5; 8.5;π/2; 0], the final
state was set to [26; 40; 0; 0], and the control is bounded in
the range [−2π, 2π] rad/s2.

As shown in Figs. 1, 4, and 5, we used a similar map
to that of the original BRM algorithm [11]. In the figures,
geometric obstacles are illustrated in filled regions, and
observation beacons are distributed in the map to provide
measurements nearby. The edges of the BRM are shown as
blue dotted lines, and computed funnels are shown in the
gray regions. Green lines represent the projection onto the
x−y plane of the entrance ellipsoid of each funnel, whereas
yellow lines represent the projection of the final ellipsoid
with the closed-loop estimation. Two connected edges are
safe for the vehicle to traverse if and only if the final ellipsoid
of the first funnel completely falls into the start ellipsoid
of the second funnel. If the funnels can be connected from
the start to the goal by checking the above condition in the
graph, then we obtain a stable and safe trajectory near the
nominal one without collision and we remain within the sets

Fig. 5: The best trajectory has been found when a beacon is out
of service. Compared to Fig. 4, the vehicle chose a different path
with more observations.

of funnels all the time. The path generated by our algorithm
is highlighted in red with the funnels overlaid on top of it.

In Figs. 1 and 4, we demonstrate the performance of our
algorithm by configuring the vehicle with different initial
uncertainty. With a lower initial uncertainty, it’s unnecessary
for the vehicle to localize itself (Fig. 4). In contrast, higher
initial uncertainty makes the localization by beacons essen-
tial, which results in a detour through the beacons (Fig. 1). In
Fig. 5, we assume one of the beacons is out of service, so the
trajectory in Fig. 1 no longer achieves all funnel connections
and a better trajectory is found to ensure safety.

V. FEEDBACK RAPIDLY-EXPLORING RANDOM BELIEF
TREES MOTION PLANNING

A. Algorithm Description

In Section IV, we proposed a new algorithm FBRM and
compared it with the BRM algorithm. However in Algorithm
1, if there is a large number of edges in the graph, we
need more trajectory libraries and funnels along each edge
to connect adjacent funnels with sequential composition,
which is expensive. Therefore, a more efficient algorithm
than FBRM is proposed here. Funnel libraries and trajectory
libraries can shift along cyclic coordinates (see [2] and [18]
for details on shifting). Hence, we can build general funnel
libraries offline, each of which is associated with a nominal
trajectory and cost, and after that an RRT may be built with
the edges from the funnel libraries [2].

The FRRBT algorithm is shown in Algorithm 2. The major
components of the algorithm include the vertex v ∈ V , where
V is the node set. FT is a funnel tuple {F, c, τ}, FT.F is the
funnel, FT.c is the cost, and FT.τ is the nominal trajectory
from the predecessor node. The definition of v.x, v.c, v.Σ,
v.ε, and v.path are the same as in Section IV. E is the edge
set, which is comprised of funnel tuples.

The SAMPLE() and NEAREST(V, x) functions are the
same as in RRBT. Since F could connect two nodes with
a specific trajectory, RANDOMGROW(v) returns a node
which a random funnel shifted from F ∈ F connected with
vertex v can be connected to. The new random vertex belongs
to a specified distribution based on the constructed F .



Algorithm 2 Feedback Rapidly-exploring Random Belief
Trees

1: Build Funnel Library F
2: Initialize Map O, v.ε = ε0, v.Σ = Σ0, v.path = v.xinit,
v.c = 0, V = v, E = ∅

3: while i < M do
4: xrand = SAMPLE()
5: vnearest = NEAREST(V, xrand)
6: vrand = RANDOMGROW(vnearest)
7: FT = SHIFT(F , vnearest, vrand)
8: if ¬ CheckFunnelCollision(FT,O) then
9: n = PROPAGATE(vnearest, vrand)

10: if n 6= ∅ then
11: PUSH n→ Q
12: end if
13: end if
14: E = E ∪ FT
15: while Q 6= ∅ do
16: POP n← Q
17: for all v ∈ V near n find a feasible

FT ′ ∈SHRIFT(F , v, n) do
18: if ¬CheckFunnelCollision(FT ′,O) and v.c +

FT ′.c < n.c then
19: n′ = PROPAGATE(v, n)
20: if n’ 6= ∅ then
21: PUSH n′ → Q
22: end if
23: end if
24: end for
25: end while
26: i = i+1
27: V = V ∪ n′
28: E = E \ FT , E = E ∪ FT ′
29: end while

SHIFT(F , v, n) is used to find a funnel in F and shift
in cyclic coordinates to connect two nodes v and n.
CheckFunnelCollision(F,O) checks if a funnel intersects
X obs. If the funnel intersects X obs partially, the funnel is
shrunk based on X obs ([2]). Meanwhile the function returns
a safer modified funnel to replace funnel F .

PROPAGATE(v, n) is a function to propagate the error
ellipsoid and closed-loop ellipsoid, and to find a funnel
in F to connect two nodes. SEQCOMPOSITION() finds
two funnels with uncertainties that satisfy the condition of
sequential composition which is introduced in Section IV.
If the funnels can be sequentially composed, then lines 4-5
will update the cost and path, and return the node n.

In Algorithm 2, lines 15-28 are an optimization process
that tries to find all candidate feasible parents of node n and
add the best node to the tree. At line 18 is an inequality
which ensures the minimization of cost to the current node.
Lines 19-20 determine whether the new edge to node n′ with
minimum cost can satisfy the constraints.

Algorithm 3 n=PROPAGATE(v, n)

1: n← FORECAST(v, n)
2: FT = SHRIFT(F , v, n)
3: if SEQCOMPOSITION(E[v].F, FT.F ) then
4: n.c = v.c+ FT.c
5: n.path = v.path ∪ n.x
6: else
7: return NULL
8: end if

B. Experimental Results

In this section, we applied the FRRBT algorithm to the
model described in section IV.B. Fig. 6 illustrates a trajectory
library and its funnel library (one funnel is shown).

Fig. 6: Funnel libraries and trajectories.

Figs. 7 and 8 show results from Algorithm 2. The start
point is located at [0, 40]m and goal at [80, 40]m. The
gray region cannot be reached due to the distribution of
funnel libraries. The black regions are obstacles, and we
can obtain position measurements near the obstacles through
relative measurement. Similarly to the experiments in the
above section, lower initial uncertainty leads to a shorter
trajectory, and higher initial uncertainty forces the vehicle to
take a longer path to collect observations. In Fig. 7, the tree
was built after 300 iterations and the green curve represents
the shortest safe trajectory to the goal. The enlarged part
highlights that a funnel is shrunk near an obstacle. However,
we didn’t plot the entire tree after 1000 iterations, whose
resulting path is depicted in Fig. 8. FRRBT is faster than
FBRM in off-line computation, since we use the shift of
funnel libraries so that fewer funnels need to computed.

VI. CONCLUSIONS

In this paper we presented an approach for feedback mo-
tion planning in uncertain environments to ensure a vehicle
safely avoids obstacles and instability. We construct stable
feedback controllers around the nominal trajectory provided
by optimal control to ensure the state remains inside a
funnel. The method extends feedback motion planning by
considering a belief space with environment uncertainty,
uses the Pontryagin difference to update the current funnel
(reachable set), and we can thus guarantee that all real
vehicle states will lie within sequential composition funnels.
The simulations provided demonstrate that our approach



Fig. 7: FRRBT finds the shortest trajectory to the goal.

Fig. 8: A longer trajectory returned under higher initial uncertainty.

offers new capabilities for trajectory planning and control
in the presence of noise and uncertainty. We have applied
our approach in uncertain environments with results that
guarantee vehicle stability and collision avoidance.

However, there are several remaining challenges. The
extended set-membership filter is slower than an EKF, but
it can provide a well-defined boundary for any distribution
to ensure safety. We haven’t yet tested a real robot to verify
our approach, but this will be a subject of future work. We
are hopeful that this approach has the potential to assist in
the safe operation of autonomous vehicles, for which safe
operation under uncertainty is a pressing concern.
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