Autonomous Exploration with
Expectation-Maximization

Jinkun Wang and Brendan Englot

Abstract We consider the problem of autonomous mobile robot exploration in an
unknown environment for the purpose of building an accurate feature-based map
efficiently. Most literature on this subject is focused on the combination of a vari-
ety of utility functions, such as curbing robot pose uncertainty and the entropy of
occupancy grid maps. However, the effect of uncertain poses is typically not well
incorporated to penalize poor localization, which ultimately leads to an inaccurate
map. Instead, we explicitly model unknown landmarks as latent variables, and pre-
dict their expected uncertainty, incorporating this into a utility function that is used
together with sampling-based motion planning to produce informative and low-
uncertainty motion primitives. We propose an iterative expectation-maximization
algorithm to perform the planning process driving a robot’s step-by-step exploration
of an unknown environment. We analyze the performance in simulated experiments,
showing that our algorithm maintains the same coverage speed in exploration as
competing algorithms, but effectively improves the quality of the resulting map.

1 Introduction

While simultaneous localization and mapping (SLAM) has been applied success-
fully for state estimation and map-building with data collected passively on sensing
platforms, it’s still a challenge for an autonomous vehicle to actively explore an
unknown environment and manage the quality of its state estimate and map. The ca-
pability of autonomous exploration may be especially impactful in scenarios where
teleoperation is limited or infeasible due to constrained communication, e.g. in un-
known subsea environments with underwater robots.
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In general, the autonomous exploration problem for mobile robots comprises
three stages: 1) the robot identifies candidate locations to explore or paths to follow;
2) a utility function is evaluated for every candidate and the optimal one is selected;
3) the robot executes the optimal action and updates its current knowledge of the
environment. While the first task is commonly achieved by enumerating frontier
locations or by employing sampling-based methods and the third task is simply per-
formed by feedback controllers, the remaining question is how to properly formu-
late a utility function that effectively captures the exploration-exploitation dilemma,
i.e., a balancing of visiting unknown areas to reduce map uncertainty and revisiting
known areas to seek better localization.

1.1 Related Work

Without considering the robot’s localization uncertainty, the problem has been ap-
proached by using Cauchy-Schwarz quadratic mutual information (CSQMI) to re-
duce computation time [6], by combining global planning with local motion primi-
tives and also refining a trajectory using optimization methods [7], and by exploring
on continuous Gaussian process frontier maps [11]. The simplified problem, plan-
ning with a priori maps, has also been discussed [9], [17],[19] to actively minimize
the uncertainty of known landmarks.

Most of the existing research on exploration in unknown environments takes ad-
vantage of occupancy grid maps, considering utility functions of map entropy and of
the uncertainty of robot poses. An integrated exploration strategy was proposed to
combine different utilities [2], [16], e.g. the utility of information gain over the oc-
cupancy grid maps, the utility of travel distance to the goal, and the utility of localiz-
ability, which incorporates the uncertainty of robot poses and landmarks. However,
these methods ignore the correlation between localization and information gain.

High-uncertainty poses are likely to result in inaccurate occupancy grid maps,
limiting the usefulness of the information gained by exploring unknown regions.
The correlation between localization and information gain was taken into account
by integrating over a map’s entropy weighted by trajectory probability [20], [22],
[23]. The trajectory probability was transformed into particle weight in the particle
filter in [20], and the integral was simplified to use only the mean trajectory in [23].

Instead of leveraging the entropy of occupancy grid maps, in this paper, we pro-
pose the concept of a virtual map comprised of virtual landmarks, and acting to
minimize the uncertainty of these landmarks. In occupancy grid mapping, grid cells
inside the sensor observation cone are less affected by the uncertainty of robot poses,
which gives rise to overconfidence in the information gained by exploring unknown
maps. In contrast to that, every virtual landmark is deeply connected with robot
poses that can observe it in our proposed approach. The proposed metrics contain
the uncertainty from potential landmarks that may be observed in the future, and
therefore, more accurate landmark positions are obtained in the course of exploring
an a priori unknown environment.
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1.2 Paper Organization

We describe in Section 2 the formal definition of the exploration problem within a
feature-based SLAM framework, and the proposed utility function is formulated by
considering virtual landmarks. In Section 3, the optimization problem with latent
variables is solved through expectation-maximization, where the E-step involves
updating the occupancy probabilities (Section 3.3) and the M-step searches for the
best path among motion primitives (Section 3.4). Experimental results are presented
in Section 4, with conclusions and discussion of future work in Section 5.

2 The Exploration Problem with Feature-Based SLAM

In this paper, we consider the autonomous mobile robot exploration problem in un-
known environments, where’s the robot’s objective guiding exploration is to produce
a feature-based map of its surroundings accurately and efficiently. Here we make the
following assumptions for simplicity:

1. There are a certain number of static landmarks in the environment which can be
used for localization.

2. Landmarks are identifiable without considering the data association problem.

3. The movement of the robot is confined in a limited space, the border of which
doesn’t have any landmarks.

2.1 The SLAM Framework

We use the smoothing-based approach rather than the filtering-based approach,
adopting incremental smoothing and mapping [14] to repeatedly estimate the en-
tire robot trajectory. The benefit of that will be discussed in Section 3.

Let a mobile robot’s motion model be defined as

X; = fi(xi—1,w) +wi, Wi~ N(0,0:), e9)
and let the measurement model be defined as
z;; = &ij(xi,1;) +vij,  Vij ~N(0,R;;), 2

where we assume the data association between x;,1; is known.
Given measurements Z = {z;}, we can obtain the best estimate of the entire
trajectory X' = {x;} and observed landmarks £, = {1;},

X", L5 2 = argminP(X, L| Z). 3)
X,

Lo
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Fig. 1: A few representative steps of planning and execution using our proposed
algorithm, over advancing, but non-consecutive time instants during a single explo-
ration process. Virtual landmarks are embedded in the underlying grid cell environ-
ment map with occupancy probabilities shown in grayscale color. Error ellipses (2
standard deviations) of observed landmarks (orange) and robot poses (green) are
overlaid on top of the corresponding best estimates. An RRT rooted at the current
robot pose is constructed (purple). The trajectory from the RRT offering the ex-
pected minimum cost is marked by a red line. From top left to bottom right, one
figure showing the expected best trajectory is followed by a figure showing its exe-
cution, and the final figure simply represents the final step of the exploration task.
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The maximum a posteriori (MAP) estimate can be used by maximizing the joint
probability, which afterwards leads to a nonlinear least-squares problem. By con-
structing a graph representation and linearizing nonlinear functions, the marginal
distributions and joint marginal distributions, both of which are Gaussian, can be
extracted using graphical model-based inference algorithms [14].

2.2 Utility Function

Let £ = {l;} be the set of landmarks in the environment. We have an estimate for
each of them 1; € R2, which is distributed as N/ (I;,X),). The definition of the utility
function for the exploration problem is as follows,

U=y ¢(x), 4)
Liel
where ¢ : £ — R represents the uncertainty criterion for covariance matrices (see
Sec. 3.1). In addition to the uncertainty of landmarks, it is beneficial to add a cost-
to-go C(a) to favor a shorter path [20]. Thus the optimal action sequence is the one
minimizing the uncertainty with a weighted smaller cost:

a* = argmin U + aC. 5)
a

Since there are landmarks that haven’t been observed yet, in most works, the
common strategy is to omit the values of unknown landmarks and replace them
with the entropy of occupancy grid maps. In this paper, we introduce the concept of
virtual landmarks and treat the landmarks as latent variables. The objective is then
to minimize the uncertainty of possible landmarks that would be observed when
following the planned path. This uncertainty is defined

U Y 0(%y,), (©6)

\A%

where V = {v;} are virtual landmarks (see Fig. 2), which represent all the possible
locations of actual landmarks. They won’t be incorporated into a robot’s SLAM op-
timization unless they are revealed to be true landmarks, but the potential to reduce
their uncertainty is considered throughout the course of autonomous exploration.

Intuitively, the approximation computes the expected uncertainty of actual land-
marks after taking into account the observations collected while following a can-
didate path. The function provides a trade-off between exploration and localization
internally: exploration will decrease the uncertainty of virtual landmarks, which are
initialized to have large covariance matrices, but poor-quality localization will lead
to higher cost, since the covariance matrices of landmarks are estimated based on
the robot poses that can observe them.
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3 The EM Exploration Algorithm
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Fig. 2: Gaussian error ellipses (0.5 standard deviations) of virtual landmarks. Left:
The uncertainty of virtual landmarks at the bottom of the map isn’t reduced signif-
icantly after exploration, as the robot hasn’t met a loop-closure, which means the
possible landmarks observed in the future would have high uncertainty. The pro-
posed algorithm makes a decision to travel upwards in order to revisit a landmark
for better localization. Right: The execution leads to an accurate estimate of the
trajectory, and the error ellipses of virtual landmarks shrink significantly.

Because of the introduction of latent variables, it is intuitive to approach the ex-
ploration problem using an EM algorithm. Such an approach encompasses the up-
date of the probability of a landmark’s existence, represented by virtual landmarks,
and also the prediction of its uncertainty. Here we show that iteratively the probabil-
ity can be calculated from an occupancy grid map maintained along the landmarks
in the Expectation step, and afterwards it is utilized to evaluate the covariance cri-
teria in the Maximization step. Correspondingly, the E-step provides the expected
landmark locations, and the M-step is merely to maximize the utility function, which
essentially is an exploration problem with prior knowledge of the environment.

A mathematical formulation is as follows. We wish to maximize the marginal
log-likelihood of observations Z given an action sequence a with latent variables V:

Inp(Z|a) zln{;p(z,wa)}. )

Different from traditional EM applications, the exploration problem involves col-
lecting measurements after each iteration. For that reason, we assume a maximum
likelihood measurement model and add measurements of all virtual landmarks into
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Z in Eq. 7. For virtual landmarks beyond the robot’s maximum sensing range, we
use priors with large uncertainty.

According to the EM algorithm, in the E-step, we use the current a®¢ to eval-
uate the posterior distribution of latent variables p(V|Z,a°%). In the M-step, we
determine a"" by maximizing the function below:

a"V = argmapr(V|Z,a°ld)lnp(Z,V|a). 8)
a v

The equation above poses a challenge for efficient solution due to the exponen-
tial growth of virtual landmark configurations with respect to the number of virtual
landmarks. Inspired by classification EM algorithms, an alternative solution would
add a classification step (C-step) [5] before the M-step to provide the maximum
posterior probability estimate of the virtual landmark configuration,

V* = argmax p(V| Z,a%9). )
4

Afterwards, the M-step can be solved given the deterministic variable V* as follows,
a""V = argmaxInp(Z,V*|a) (10)
a
= argminln Xy» = argmin ¢ (Xy+). 11
a a
Here, we choose to replace the log-likelihood function with the logarithm of the
determinant because we assume Gaussian distributions of the virtual landmarks and

maximum likelihood observations. We also use ¢ to generalize the log-determinant
covariance criterion as shown in Sec. 3.1.

3.1 Uncertainty Criteria

In this section, we discuss the choice of uncertainty criteria ¢ (Xy,) in Eq. 1 1. In gen-
eral, there are two commonly used uncertainty criteria in the exploration problem,
namely A-Optimality and D-Optimality [4], [19], formulated respectively as:

a =) Ai=tr(Zy) (12)
i=1

%Zﬁl,':det(zv). (13)
i=1

Assuming all of the virtual landmarks are independent, the computation of determi-
nant and trace can be written as tr(Xy,) =Y, ¢y tr(Zy, ) and det(Zy) =[]y, cy det(Zy, ).
As pointed out in [19], we can drive the determinant of the entire covariance ma-
trix to zero by minimizing the eigenvalue of one feature to zero. Specifically, D-
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optimality doesn’t capture the global information gain and hence we choose A-
optimality in the utility function, and also in the evaluation of all of the algorithms
examined in this paper. Now we can derive the utility function introduced in Eq. 6.

3.2 Covariance Intersection

To obtain the covariance estimate of a virtual landmark from poses where the robot
is able to observe it, it is desirable to add these “virtual measurement factors” into
the graphical model and then compute its marginalization. However, two problems
arise due to this addition. First, due to the large number of virtual landmarks, the
virtual factors increase the burden of optimization. Second, some virtual landmarks
will become actual landmarks, providing localization information for the system.
For a virtual landmark v, suppose that there are n related robot poses X; =
[x] X3 ... xn]T, each of which corresponds to a measurement term zj; = g jk(x j,vk) +
Vjx. Then the predicted covariance estimate per an EKF is HXy H T where H =

diag(Hy,Ha, ..., H,) is the Jacobian matrix with H; = aa‘i"(‘
J

covariance of poses observing the virtual landmark. Both [13] and [21] present an
efficient algorithm to recover the parts of the covariance matrix associated with non-
zero factor entries, which correspond to variables in the same clique of a Bayes tree
[14]. However, the condition is unlikely to be satisfied, and the covariance estimate
must be approximated to avoid the expensive recovery of full pose uncertainty.

The Covariance Intersection (CI) algorithm [8] was presented to estimate the
covariance matrix when the correlation between two sources are unknown. Let X; =
H X HT, £, = Hy Xy, H be two independent estimates from the first two poses.
Then the CI combines these two estimates to provide an upper bound based on the
following equation:

%> and X, is the marginal

=+ (1-0)z (14)
The weight @ can be optimized to achieve the minimal determinant of X as follows:

2b—ac
=_—"—""-— 15
2(a+b—ac)’ (15)
where a = |£1|7!, b= |%,|7!, and ¢ = Tr(Z, £, 1). By iteratively fusing estimates
from different poses, we derive an optimal upper bound on the actual covariance in
terms of the minimal determinant, given only the block diagonal of Xy, .

3.3 Expectation Step

The E-step is used to compute g; = p(vx € L), the probability of a potential land-
mark given the current measurements. By discretizing the map into grid cells, these
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Algorithm 1 Q'*! X'+ £i+1 — Expectation(X', L!, Z")

0

: Q’+I ~—0
. Xl+l7££)+l — Optimize(Xl7££)7Zl) /liISAM2
: {X["]} — Sample(XH])
: for vy € Vdo
for X" € {x"} do

¢t = p(my| X1, 2") / #samples
end for
Qt+1 Vs Qt+1 Uqfl
: end for
: return Q! X1l Lo+l

SVRXIDNE LD 2

—_

probabilities are equivalent to the occupancy probabilities used in occupancy grid
maps, that is g = p(my| X, Z) [18].

Generally, occupancy grid maps are constructed based on the most likely hypoth-
esis of the robot path X'*. As a result, the uncertainty of poses is not expressed in grid
maps, which, under circumstances with severe drift, would falsely exclude some hy-
potheses that observe actual landmarks by reducing their probabilities close to zero.
Therefore, we adopt the concept of an expected map [1] to take a weighted aver-
age of occupancy grid maps computed from all path hypotheses. Different from the
method in the original paper which relies on samples generated by particle filtering,
we employ Monte Carlo sampling to approximate the integral over the continuous
space of poses,

qx = E[p(my | X, Z)] (16)

- /X p(m|X, 2)p(X, L, Z) (17)
L&

~ N’;p(mk |xl z), (18)

where N is the number of samples. The expectation step is performed as shown in
Algorithm 1, in which the occupancy probabilities computed from posterior samples
(line 3) are averaged (line 4-9) and after that the distributions of virtual landmarks
are updated.

3.4 Maximization Step

In the M-step, given the distribution of virtual landmarks, the path candidates are
selected and the utility function is evaluated for each of them. The global paths
over a long period must take into account two types of actions, exploration actions
and place-revisiting actions [20]. Usually exploration actions have destinations near
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frontier locations where explored cells meet unknown cells, and place-revisiting
actions choose to go back to locations the robot has visited. The prevalence of these
particular locations requires us to examine a large amount of free grid cells in order
to obtain a near-optimal solution. After identifying destinations, it is also of great
benefit to refine the path to a destination rather than take the shortest one [7].

In consideration of these factors, we employ a sampling-based routine for gen-
erating action primitives, in which exploration and revisiting actions, possibly with
varying paths, are considered simultaneously. The rapidly-exploring random tree
(RRT) [15] is a randomized algorithm designed to quickly solve motion planning
problems in high-dimensional spaces with constraints such as obstacles and dynam-
ics. RRTs have the property of probabilistic completeness, ensuring that a solution
will be found in the limit, if a feasible solution exists. Also due to their randomized
construction, a tree might end up with a variety of paths to the same goal region.
RRT presents a simple and efficient method for building our action primitives.

An optimal variant of the RRT algorithm, RRT* [12], guarantees asymptotic op-
timality, converging in the limit toward the shortest path. And RRT* has been suc-
cessfully applied to active SLAM to generate a robot’s action set [23] using two
“distance functions”, one is the traditional Euclidean travel distance and the other
one is cumulative map entropy reduction. As shown in [23], generating candidate
paths using the robot’s travel distance as a cost metric still provides a sufficient
diversity of primitives to achieve a good compromise between computational com-
plexity and entropy reduction. Since our computational task is even more expensive,
we also adopt the Euclidean travel distance in the Nearest function of RRT.

The M-step is summarized in Algorithm 2, in which the details of building RRTs
are omitted for the sake of brevity. The utility function is evaluated for every path
a from the tree root to the leaves. First, the measurements following the path are
predicted assuming maximum likelihood observations (line 4). Second, the whole
trajectory is re-optimized to incorporate future measurements (line 5). Third, the
virtual landmarks are updated using the optimized trajectory (line 6-9). Finally the
best action sequence is selected with the minimum utility value, which is computed
from the updated virtual landmarks (line 11). To account for the deviation from the
nominal trajectory during execution, model predictive control (MPC) performs only
the first few steps [10] (line 6-12). One example of the M-step is shown in Fig. 2.

3.5 Algorithm Analysis

The proof that the EM exploration algorithm maximizes the likelihood of measure-
ments is essentially to explain why the function in Eq. 8 is increased after executing
action a"®". This will be satisfied if the prior uncertainties of virtual landmarks are
large enough to encourage exploration. However, this also implies that the algorithm
can fail to explore if it does not have a properly initialized prior - in such a case, a
robot may conclude that there isn’t a viable path that explores an unknown area with
a guarantee of acceptable estimates of the surrounding landmarks.
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Algorithm 2 Z' = Maximization(Q', X", L)

1: Tree < BuildRRT ()

2: for a € Tree do

3 V20

4:  Z?« Predict(X',a)

5. X% L3« Optimize(X', L], Z?)
6

7

8

for q; € Q' do
E3 = CI(x},block-diagonal (£} ))

' Ve V(g I3,
9:  end for
10: end for
11: a* = argmina kagva I(qkzl’occupied)zvk
12: Z' = Execute(a* #steps)
13: return Z’

Next we analyze the computational complexity of the algorithm. The computa-
tion in Algorithm 1 involves an iISAM?2 update, sampling from the robot trajectory,
and an occupancy probability update. The complexity of the iSAM2 update gen-
erally is bounded by O(n?), where n is the number of variables [14]. The most
expensive part in the sampling phase is to extract the joint covariance, which de-
pends on the sparsity of the factor matrix. For the case of exploration, we force the
robot to perform loop-closure occasionally, and the complexity of covariance recov-
ery could deteriorate to O(s*), where s is the size of the dense block in the factor
matrix [13]. The update of occupancy probability has the computational complexity
O(Nsamples - Nv1 ), in which Ngampies is the number of samples in Eq. 18, and generally
a small set of samples can well approximate the expected map. Ny is the number of
virtual landmarks; an appropriate resolution may vary depending on the application.

Algorithm 2 has the computational complexity of O(Npodes + Nieaves(C1 +C2)),
where the first term describes the construction of an RRT, and the second term de-
scribes the evaluation of our utility function (C; for the iSAM2 update and C, for
the covariance update for virtual landmarks) for each path to a tree leaf. To alleviate
costly computation, we propose a simplified process to handle situations without
loop-closures. First, EKF propagation is used to predict the covariance instead of
using iISAM2. Second, the virtual landmarks are cached in every node, and the co-
variances of a child node inherit from its parent with a few updates after incorporat-
ing the latest robot poses. Overall, by limiting the number of nodes in the RRT, we
are able to achieve nearly real-time decision making (see Section 4 for details).

4 Experiments and Results

We analyze the performance of the proposed algorithm in a simulated environment
(see Fig. 1 as an example). The simulation employs an environment with point fea-
tures uniformly distributed in its inner region (the square [—20m,20m] in Fig. 1).
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Table 1: Simulation Parameters

Bearing: stddev (deg) 0.5 Translational speed (m/s) [0.5, 1.0]
Range: stddev (m) 0.002 Rotational speed (rad/s) [-0.5, 0.5]
Rotation: stddev (deg) 0.2 Simulation step (s) 0.2
Translation: stddev (m) 0.01 Simulation duration (s) [1.0, 4.0]
Bearing FOV (deg) 120 Safe distance (m) 1.5
Range FOV (m) [1.0, 8.0] Number of landmarks 20

Initial position: ([m, m]) [10.0, 0.0] Initial sigmas ([m, m, deg]) [0.05, 0.05, 0.01]

The robot is equipped with a range sensor with a limited field of view (FOV) that
is capable of measuring the relative range and bearing to a landmark. Zero-mean
Gaussian noise is added to both measurements. Our mobile robot is configured as a
Dubins car, which we assume has constant translational and rotational speed during
one simulation period 7'. The assumed vehicle dynamics are as follows:

X = X;—1 + vy dtcos 6,y (19)
Vi =Yi—1+vrdtsing,_, (20)
0, = 6,1 + o dt, (21)

where vr, € [Vimin, Vmax], O7, € [@min, Omax],? € [Tin, Tmax]. Similarly, zero-mean
Gaussian noise is added to the state propagation equations above. We also place
a circumscribed obstacle radius around landmarks to avoid collision. The robot is
initialized with low uncertainty to perform the exploration task. The configuration
details of our simulation environment are listed in Table 1.

The RRT planner only takes samples within the free space, which is defined by
an occupancy probability less than 0.4. To take into account the kinodynamic con-
straints, we construct a motion library in advance by forward simulating the vehicle
with all possible combinations of simulation period, translational and rotational ve-
locity. In the Steer function, the connectivity of nodes is checked through searching
for the nearest end point in the motion library given a certain radius.

4.1 Comparison
We analyze the performance of our proposed algorithm by comparing it with two
variants of entropy-based exploration algorithms.

1. SLAM-OG [2]. The utility function consists of a normalized localization com-
ponent (SLAM) and a normalized occupancy grid (OG) mapping component:

ISLAM(X7 £|a)
ISLAMrnax

Hog(m|a)

Usiam.06 = @ +(1-a) ) (22)

H OGmax
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Lo
where Iszapy =~ Zl‘:ll \/ det(Eli), Hoc = ZmiemH(mi)'
2. OG [1], [20]. The utility function computes the map entropy weighted by the
likelihood of robot poses:

Uoo = [ HmIX. Z)p(X.L,|2) (23)
1 N

~~ Y Hm"|xM z). (24)
N n=1

In the first utility function (SLAM-OG), the uncertainty of continuous pose vari-
ables is expressed using differential entropy, unlike occupancy grid maps with a
discrete probability distribution. As a consequence, the scale of pose uncertainty
is much smaller than that of map entropy [3]. The second utility function (OG)
prioritizes grid cells that lie inside the robot’s current sensor observation cone. In
addition, the potential impact of loop closures on previously observed portions of
the map (and their accuracy) is ignored, due to the utility function’s emphasis on the
entropy of occupancy maps.

4.2 Results

The simulated experiments were conducted such that all the parameters are the same
for all algorithms except for the weight of the distance cost. Here we used a dis-
tance weight with a constant rate of decay with respect to the area discovered, or
O = Wpax :tf;fﬁcczllt For each algorithm, the maximum weight wy,x was chosen to
achieve the best performance through exhaustive search. Landmarks were uniformly
sampled in the environment and 50 environments were generated. We also tested all
algorithms using two levels of resolution for the virtual landmarks and occupancy
grids: 2.0(m) and 0.5(m) to see the effect of using a high resolution map. One exam-
ple of exploration using the EM algorithm with a low resolution is demonstrated in
Fig. 1. The performance of the algorithms was averaged among the 50 experiments
performed, as listed in Fig 3.

Fig. 3a shows the uncertainty reduction of landmarks, where the uncertainty is
computed by Y,c,tr(X)), in which unobserved landmarks have initial estimates
op = 3.0. On one hand, this metric takes into account localization and mapping
uncertainty through observed landmarks; on the other hand, it also measures the
exploration rate by incorporating unknown landmarks. Fig. 3b shows the evolution
of localization error by evaluating maxy¢ y tr(Xy). We also compare different algo-
rithms with respect to average map entropy (Y H(m;)/Np) reduction, shown in Fig.
3c. The planning time is shown in Fig. 3d under Ubuntu 14.04 on an i7-6950X CPU,
although these Python-based implementations are capable of futher optimization.

We have the following observations from the comparisons. The OG algorithm,
weighing map entropy by localization uncertainty, has a comparable exploration
rate with the proposed algorithm (EM) in the beginning (Fig. 3a, 3c). However,




14 Jinkun Wang and Brendan Englot

—-- EM-20 —=- EM-2.0
—— EM-05 —— EM-05
100 ~=- 0G-2.0 2.5 ~=- 0G-2.0
— 0G-05 — 0G-0.5

=== SLAM-OG - 2.0
~—— SLAM-OG - 0.5

=== SLAM-OG - 2.0
~—— SLAM-OG - 0.5

Mapping uncertainty
Max localization uncertainty

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Distance (m) Distance (m)

(a) Sum of landmarks’ uncertainty (b) Max uncertainty of the trajectory

Resolution
- 0.5
2.0

~=- SLAM-0G - 2.0
—— SLAM-OG - 0.5

Map entropy reduction
mean(Time (s))

0 50 100 150 200 250 300 350 400 EM
Distance (m) Algorithm

(c) Average entropy reduction (d) Planning time

Fig. 3: The results of 50 exploration trials with the same randomly initialized land-
marks for every algorithm.

landmark uncertainty is reduced at a lower rate when most of the landmarks are
observed (Fig. 3a). In addition, by exploring with the EM algorithm, we end up with
more accurate feature-based maps - their curves are closer to zero in the final stage
of Fig. 3a. The SLAM-OG algorithm places constant relative weights on SLAM
and OG uncertainty, and thus its exploration is the most conservative, but it has the
lowest localization error as shown in Fig. 3b. In contrast, the EM algorithm is able to
maintain low trajectory uncertainty and it achieves a superior exploration rate until
landmark uncertainty is close to zero. More importantly, the planning time of the
EM algorithm is much cheaper because it doesn’t need to calculate the map entropy
for every candidate by sampling from the posterior trajectory distributions (Eq. 24).
Overall, by using a finer resolution, the performance of all algorithms improves.
However, for the EM algorithm, the small gains in performance do not appear to
merit the sacrifice in computation time.
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Fig. 4: An exploration example in a structured environment.

5 Conclusions and Future Work

In this paper, we proposed the concept of virtual landmarks, which are latent vari-
ables representing the possible locations of actual landmarks in the environment.
We presented a novel utility function for the autonomous exploration problem in
feature-based maps, which essentially computes the covariance criteria at virtual
landmarks. The direct modeling of landmarks potentially observed in the future en-
ables more accurate mapping and also a comparable exploration rate with respect to
traditional methods. However, the evaluation of the proposed utility function relies
on the recovery of a full trajectory, which is expensive for real-time applications.
In addition, a more memory-efficient approach to storing and updating virtual land-
marks is a subject of ongoing and future work.
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