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Abstract— In this paper, we propose a novel approach for
underwater simultaneous localization and mapping using a
multibeam imaging sonar for 3D terrain mapping tasks. The
high levels of noise and the absence of elevation angle in-
formation in sonar images present major challenges for data
association and accurate 3D mapping. Instead of repeatedly
projecting extracted features into Euclidean space, we apply
optical flow within bearing-range images for tracking extracted
features. To deal with degenerate cases, such as when tracking is
interrupted by noise, we model the subsea terrain as a Gaussian
Process random field on a Chow–Liu tree. Terrain factors are
incorporated into the factor graph, aimed at smoothing the
terrain elevation estimate. We demonstrate the performance
of our proposed algorithm in a simulated environment, which
shows that terrain factors effectively reduce estimation error.
We also show ROV experiments performed in a variable-
elevation tank environment, where we are able to construct
a descriptive and smooth height estimate of the tank bottom.

I. INTRODUCTION

Over the last two decades, the application of autonomous
underwater vehicles (AUVs) has proliferated across challeng-
ing perceptual tasks such as pipeline and ship hull inspection,
bathymetric survey, and structure mapping. Many efforts
have been devoted to achieving the autonomy of underwater
vehicles for such tasks, and an accurate representation of the
environment is an essential prerequisite for such autonomy.
To acquire such a representation of the environment, optical
sensors (cameras) or acoustic sensors (sonars) are typically
utilized. Although a camera can capture fine details of the
underwater environment, its capability is often limited by
the turbidity of the water. Additionally, illumination changes
may make captured data unreliable. On the other hand, sonar
will function in water that has high turbidity, offering long-
range visibility and a wide aperture.

Among much of the underwater simultaneous localization
and mapping (SLAM) literature, mapping is limited to 2D
representations of the environment [1], [2]. However, con-
structing a 3D representation of the underwater environment
with sonar is challenging due to its physical limitations.
Sonar is plagued by high levels of noise and low resolution,
and the lack of an elevation angle in a sonar measurement is
another major obstacle to achieving accurate 3D mapping.

In [3], two sonars mounted orthogonally on a torpedo-
shaped AUV are used to support scan-matching within a
SLAM framework, and the vertical sonar with a narrow
beam is used for 3D mapping. In [4], point features are
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Fig. 1: Overview of this work. A multibeam sonar mounted at 20
degrees downward is used to observe objects on the floor, including
a pegboard ramp. Extracted features are tracked for data association,
and smooth terrain constraints are incorporated in a factor graph.
Finally, a GP terrain map can be built using estimated 3D features.

extracted and registered to those from other sonar images,
and the pairwise transformation between images is used to
constrain the vehicle. However, this work assumes that an
imaging sonar is aligned with the terrain surface, otherwise
the transformation is erroneous. The detailed model of a
ship hull can be generated by configuring a multibeam sonar
in profiling mode with narrower vertical beam-width [5].
Elevation recovery from acoustic shadows is proposed in [6],
but the application is limited when shadows do not exist.

Acoustic structure from motion (ASFM) [7] is proposed
to address the ambiguity of the elevation angles associated
with an imaging sonar’s returns from the surrounding envi-
ronment. The influence of different robot motion primitives
on this degeneracy is discussed in [7], [8]. Data association
in ASFM based on reprojection error is proposed in [9].
Non-parametric and semi-parametric factors are introduced
to handle under-constrained landmarks in [10]. Degeneracy
is determined by examining the eigenvalues of the Jacobian
matrix of a specific landmark. However, under-constrained
landmarks are beneficial only for localization, and elevation
angles can’t be accurately estimated from graph optimization.
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Fig. 2: Imaging sonar model. A feature p can be represented as
[r, θ, φ]T in a spherical coordinate frame. Note that the range r and
the azimuth angle θ of p can be directly derived from measurements,
while the elevation angle φ is lost in the 2D sonar image.

In this work, we propose a feature-based SLAM formula-
tion for underwater vehicles performing terrain mapping with
automatic feature extraction and data association. Our work
is similar to the ASFM framework seeking to solve elevation
ambiguity, but includes the following novel contributions. We
propose using an optical flow method for tracking features
directly within raw sonar images. To cope with under-
constrained features resulting from tracking failures, we
introduce correlation between feature points, assuming they
are sampled from a Gaussian Process terrain map. The model
is approximated by a Gaussian Process random field on a
tree structure, which can be easily integrated into a factor
graph. We present this feature-based SLAM framework with
tracking-based data association and terrain factors in the next
two sections, followed by simulation and real experiments
with a remotely operated vehicle (ROV).

II. FEATURE-BASED SLAM WITH IMAGING SONAR

In this section, we give a brief introduction to the geometry
of imaging sonar measurements and feature-based SLAM,
then data association is solved by feature tracking using an
optical flow method.

A. Imaging Sonar Model

Given a feature ls = [x, y, z]T in the sensor frame
represented in Cartesian coordinates, we can describe it as
s = [r, θ, φ]T in spherical coordinates, where r is the range
to the sensor origin, θ is the azimuth and φ is the elevation
angle (see Fig. 2). The conversion between these two forms
can be expressed with the following equations:

ls =

xy
z

 =

r cosφ cos θ
r cosφ sin θ
r sinφ

 (1)

s =

rθ
φ

 = h(ls) =


√
x2 + y2 + z2

arctan 2(y, x)

arctan 2(z,
√
x2 + y2)

 . (2)

Though the range r and the azimuth angle θ of feature
ls can be directly derived from the 2D sonar image, the
elevation angle φ = hφ(ls) is lost due to the wide vertical
aperture. In other words, the mapping of a 3D world into a
2D sonar image eliminates the elevation information, which
results in the ambiguity of features appearing along any

|φ| ≤ φmax arc. Although the vertical aperture is significantly
reduced by leveraging a lens or using a profiling sonar, a
large field of view in elevation angle is often beneficial for
a robot’s situational awareness.

B. Feature-based SLAM

We formulate feature-based SLAM as a least-squares
problem using the same notation as [11]. We assume a
Gaussian measurement model between robot state xi ∈ X
and feature position lj ∈ L, and we assume that the process
model given an input ui ∈ U is as follows:

xi = fi(xi−1,ui) + wi, wi ∼ N (0,Λi), (3)
zk = hk(xik , ljk) + vk, vk ∼ N (0,Γk), (4)

where ik, jk denote the associated state and feature cor-
responding to the k-th measurement (see Sec. II.C). The
evolution of state is modeled by f using measurements from
navigation sensors, including an inertial measurement unit
(IMU) and Doppler velocity log (DVL). The observation is
predicted in h by transforming features from the global frame
to the sonar frame parameterized in spherical coordinates, or
formally, h(x, l) = h(ls) in Eq. 2. The estimate is obtained
by solving the nonlinear least-squares equation,

X ∗,L∗ = arg min
X ,L

∑
i

||xi − fi(xi−1,ui)||2Λi

+
∑
k

||zk − hk(xik , ljk)||2Γk . (5)

In previous work on 3D SLAM using imaging sonar,
no constraints are imposed on the elevation angle, and its
ambiguity is clarified by solving the least-squares equations,
which may contain measurements of the same feature from
a variety of perspectives. However, in practice, the nonlinear
system regularly becomes ill-posed without a proper initial
estimate and sufficient sensor motion [7], [8]. Advanced
multi-beam sonars feature a narrow vertical aperture (12°
in our experiments), and given the mounting configuration
shown in Fig. 1a, elevation angles of observed features
are distributed symmetrically around zero. Therefore in this
work, an imaginary elevation angle φ̃ is incorporated into the
measurement vector z = [r, θ, φ̃]T , which is varied based on
the predicted elevation hφ(ls),

φ̃ =

{
φ̂, : |hφ(ls)| ≤ φmax

0, : |hφ(ls)| > φmax.
(6)

The measurement noise covariance matrix is simplified to
Γ = diag([σ2

r , σ
2
θ , σ

2
φ]), with the standard deviation of eleva-

tion noise set to half the vertical aperture, and φmax = 3σφ.

C. Feature Tracking

As a variety of noise exists in sonar images, such as Gaus-
sian, impulse and speckle noise, we rely on the A-KAZE
feature detector [12] as in previous work on this subject [10],
which is designed to describe features at different smoothing
scales while retaining details. An example of extracted A-
KAZE features is shown in Fig. 1(c) (denoted by black ×).



The correspondence (ik, jk) between features detected
in different sonar frames has been solved through data
association techniques [9], [13] and point cloud registration
[4]. Data association requires the computation of feature
uncertainty in 3D space, which is computationally expensive
in the presence of dense features. The ambiguity of elevation
angles also presents a challenge.

In this work, our ROV moves at a relatively slow speed,
and we seek to match features by tracking based on optical
flow. Optical flow, specifically the Lucas-Kanade method
[14], is developed on two assumptions: (1) feature intensities
do not change between consecutive frames, and (2) neigh-
boring pixels have similar motion. Although acoustic returns
from objects at different elevation angles have different
intensities, the assumptions hold well in practice with sonar
images acquired at high frequency and with slow motion.

The feature tracking works as follows. We extract A-
KAZE features that are used for tracking in the initial frame,
and new features are introduced if they are not in close
proximity to current features. Tracking of a feature stops
when the minimum eigenvalue criterion isn’t satisfied in the
Lucas-Kanade method, or the distance between descriptors
computed at previous and current feature locations is larger
than a designated threshold. The tracking history of A-
KAZE features is visualized in Fig. 1(c). Feature motions
are consistent with the trajectory, but tracking is error-prone
when the range to a feature is larger than 2.0 meters. One
reason is that sonar has limited angular resolution, causing
sonar imagery further away from the origin to be blurrier
along the bearing-axis. There are also a few short feature
tracks that don’t start from the top of an image due to
tracking failure. To some extent, estimation error is attributed
to the insufficient measurement constraints from short tracks.

III. TERRAIN MODEL WITH GAUSSIAN PROCESS
RANDOM FIELDS

In this section, we discuss the Gaussian Process terrain
model and the approximation methods required for it to be
integrated into a factor graph.

A. Gaussian Process Terrain Models

We frame the mapping part of SLAM as a terrain modeling
problem. Let x− = [xi, yi]

T be the x− y location of feature
li, let mi = zi be the height of the feature, which is defined
as the vertical distance from the water surface to the feature
in Fig. 3a, and let X−M×2 and mM×1 be the 2D location
matrix and height vector for feature set L. The terrain model
maps 2D location to height m = g(x−) .

Gaussian Processes (GPs) are a non-parametric approach
to learn a latent function enforcing correlation among input
data. We use Gaussian Process regression to model the terrain
data [15], and thus feature heights are spatially dependent in
spite of the fact that they are independently observed and
tracked. Mathematically,

g(x−) ∼ GP(0, k(x−,x−′)), (7)

(a) Factor graph with terrain factors

y

x

(b) Terrain factor construction using CLT

Fig. 3: Terrain factors (orange) connecting two landmark nodes are
constructed on the edges of a Chow–Liu tree. The tree is built with
projected 2D features {x−

i }, and nodes are colored by optimized
terrain height zi for visualization.

in which the mean function is zero, and k(·, ·) is the
covariance function that defines the similarity between a pair
of height variables. Under the GP assumption, the aggregated
height vector is distributed as a joint Gaussian distribution
with dense covariance matrix,

m ∼ N (0,K(X−, X−)). (8)

The predicted mean at any location given existing observa-
tions is expressed as

E[m∗] = K(X−∗ , X
−)K−1(X−, X−)m. (9)

GPs bring several benefits to the terrain reconstruction
problem. Under-constrained landmarks can be handled more
effectively, whether this stems from the fact that feature
detection is less accurate on sonar images with low signal-to-
noise ratio, or from an overly simplistic motion a robot has
executed. The addition of a GP model imposes constraints on
the shape of the terrain formed by the observed features. The
impact of a GP terrain model is depicted in Fig. 4, where 20
samples are drawn from the distributions

∏
N (φi|φ̃i, σ2

φ)

and
∏
N (φi|φ̃i, σ2

φ)N (m|0,K(X−, X−)). Here, we only
consider range and elevation angle, and we use a feature’s
true elevation as a mean value (with the parameters men-
tioned in Sec. IV-A). In addition to the above advantages,
features are sparse in underwater environments, thus leaving
gaps between 3D points. GP regression enables rich and
reasonable inference in regions without measurements.

B. Terrain Factors

The GP model is essentially a giant factor involving all
landmark nodes, and the optimization cost is prohibitive. In
order to implement correlated terrain factors while maintain-
ing sparsity of the factor graph, we approximate the full GP
model with a Gaussian Process random field [16] defined
on a tree structure. A product of conditional distributions is
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implied from a tree structure,

p(m) ≈ qtree(m) = p(mroot)
∏
i 6=root

p(mi|mπi), (10)

where πi is the parent of node i.
Given the assumption that [mi,mπi ]

T are distributed as
a Gaussian process, we can formulate the joint distribution
and conditional distribution as[

mi

mπi

]
∼ N

([
0
0

]
,

[
kii kiπi
kπii kπiπi

])
, (11)

mi|mπi ∼ N (µi|πi ,Σi|πi)

= N (kiπik
−1
πiπimπi , kii − k2

iπik
−1
πiπi), (12)

where kij is defined as k(x−i ,x
−
j ). Accordingly, the terrain

constraint is expressed as

mi = µi|πi + εi, εi ∼ N (0,Σi|πi). (13)

The terrain factors are error functions between two elevation
variables, which in turn are incorporated into the least-
squares minimization in Eq. 5,

||mi=root||2kii +
∑
i6=root

||mi − µi|πi ||
2
Σi|πi

. (14)

C. Implementation

The tree structure relating a set of features is determined
using the Chow-Liu algorithm [17], [18], which constructs
the Chow–Liu tree (CLT) by minimizing the Kullback–
Leibler divergence between the joint Gaussian distribution
and the approximated distribution. In essence, the problem
is to find the maximum mutual information spanning tree on
a graph, which contains edges connecting any two 2D points
with weights defined by the mutual information between two
random elevation variables,

I(mi,mj) = −1

2
log(1− ρ2), (15)

where ρ =
kij√
kiikjj

is the correlation coefficient. The

mutual information is monotonically decreasing with respect
to the Euclidean distance between two 2D points if we
use a stationary covariance function. As a consequence, the
maximum mutual information spanning tree is equivalent to

the Euclidean minimum spanning tree, and searching can be
limited to edges in a Delaunay triangulation of 2D points.

The terrain factor requires the 2D location x− of a feature
to compute the conditional distribution in Eq. 12. Since
our vehicle’s motion is mostly along the x-axis (forward),
ambiguity in feature position is likely to appear along the
z-axis [7]. Take the sensor configuration shown in Fig. 1a
as an example. The spread due to elevation change has less
impact on the projected x− y plane than it does in z:

∆z

∆xy
=
r sin(20° + 6°)− r sin(20°− 6°)
r sin(20°− 6°)− r cos(20° + 6°)

≈ 2.75. (16)

Therefore, we optimize the trajectory and feature positions
without introducing terrain constraints, and then terrain fac-
tors are constructed upon estimating the 2D feature locations
X−, followed by further optimization of the whole system.

IV. EXPERIMENTS AND RESULTS

To validate the proposed methodology, simulated and real
experiments are carried out. In both cases, an underwater
vehicle is commanded to move forward at low speed (0.2
m/s) while holding a fixed depth. The sonar is mounted at 20
degrees downward from horizontal for better coverage of the
terrain, as depicted in Fig. 1a. We implement our algorithm
upon GTSAM [19], and in particular, DogLeg optimization
is used to perform factor graph optimization. Functions in
OpenCV are utilized for feature extraction (A-KAZE) and
tracking (iterative Lucas-Kanade method with pyramids). We
employ Gaussian Process regression using the scikit-learn
library [20], and the Matern kernel (ν = 5/2) remains fixed
without optimization.

A. Simulation Results

The simulation environment is designed to emulate our
subsequent real experiment in a towing tank, and is aimed at
evaluating our algorithms quantitatively. The vehicle follows
a straight-line trajectory (z = 1.0 m) as shown by the black
line in Fig. 5(a) from y = 7.5 m to y = −5 m over 60
seconds. A random terrain is generated with average depth
at z = 1.5 m (Fig. 5(b)). We assume a limited number of
features on the terrain are trackable, 200 of which are in the
field of view (Fig. 5(a)). Vehicle poses are uniformly sampled
at intervals of 0.2s, and at each pose, sonar measurements are
simulated. The sonar has a field of view of r = [0 m, 3 m],
θ = [−35°, 35°] and φ = [−15°, 15°], and Gaussian noise
is added to range and bearing measurements σr = 0.0025
m, σθ = 0.01 rad. We also introduce randomness into
feature tracking across consecutive frames. Consider two
observations of the same feature at step i and i + 1, ip
and [i + 1]q , each being assigned to landmarks jp and jq
respectively. We assume that a feature can be successfully
tracked, i.e., it is assigned to the same label in the current
frame as it is in the previous frame, with probability 0.95,
and thus P (jp = jq) = 0.95.

The experiments are repeated for 50 independent trials to
evaluate performance, and one example trial is visualized
in Fig. 5. We analyze three types of error of the SLAM
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Fig. 5: Simulation results of terrain reconstruction. From left to right: algorithm without terrain factors, with terrain factors, and ground
truth. The trajectory estimate and ground truth are represented by green and black lines, respectively. Features and maps are colored
according to depth (red represents higher terrain elevation).
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result. First, localization error is computed as the Euclidean
distance between estimated vehicle position and ground truth
position. Secondly, we compare the mapping error as the
distance between estimated feature position and ground truth
position. Thirdly, we perform Gaussian process regression
using estimated feature points (X−,m) as training data to
produce a height map as shown in Fig. 5(b); the height error
is composed of the difference between prediction and ground
truth at every location.

All results are presented in Fig. 6 using box plots to
provide more information on the error distribution. It is clear
that all types of error exhibit longer tails without adding
terrain factors. GP regression in post-processing aids the
terrain height estimate when feature error is small enough,
however, it is not helpful when dealing with abnormalities.
Overall though, smoothness constraints significantly reduce
elevation error when applied in the form of terrain factors
during graph optimization.
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Fig. 7: Two representative camera and sonar images near location
B/C (Fig. 8(a)) where one of pegboards is in the field of view.
In the sonar images (colored by intensity), A-KAZE features are
marked with ×, and red features highlight the peak heights of the
pegboards, which are used in Table 1.

B. Experimental Results

Similar data was gathered using the BlueROV2, with ad-
ditional sensors (Fig. 1(a)). IMU data from a VectorNav VN-
100, body velocity from an RTI SeaPilot DVL (600 MHz),
and depth from a Bar30 pressure sensor on the BlueROV2
were used for constructing odometry factors in GTSAM. We
used the Oculus M750d multi-beam imaging sonar, operated
in 1.2MHz mode with a field of view of maximum range
3 meters, horizontal aperture 70° and vertical aperture 12°.
The sonar image updates at 10Hz and has range resolution
of 0.005 m and an angular resolution of 0.0024 rad.

The experiment was conducted in the Stevens towing
tank. We placed two pegboard “ramps” at the bottom of
the tank. Illustrative representations of the pegboards are
shown in Fig. 1(b). Each pegboard is 80 cm × 40 cm, and
two pegboards form a ramp with height 20 cm. During the
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Fig. 8: Experimental results in water tank. From left to right: algorithm without terrain factors, with terrain factors. See Fig. 5 for notations.
The locations of two pegboards are marked by B/C, and a sample region of the tank floor is marked A. Pegboards are visible in GP
terrain maps, but outliers are pervasive around pegboards without adding terrain constraints.

experiment, the vehicle is driven at a fixed depth of 1m and
an approximate speed of 0.15m/s. The trajectory of the whole
operation, which has a length of 8 meters over 1 minute,
is shown in Fig. 8(a). The two pegboards are marked as
B and C respectively in Fig. 8(a). The trajectory avoids
regions directly above the pegboards to ensure successful
DVL bottom tracking.

From the feature point cloud and predicted height map
(Fig. 8), two protruding regions (B and C) are visible using
the proposed terrain factors, whereas treating features inde-
pendently produces more erroneous estimates. One recon-
structed pegboard is visualized in Fig. 1d. However, terrain
heights near the origin and the top boundary of the map
gradually drift away from the ground truth. These regions
are observed from a limited span of elevation angles, and
as a consequence, those under-constrained features stay near
the initial estimate with zero-elevation. Although terrain fac-
tors build pairwise connections between two feature nodes,
they cannot prevent height from drifting due to degeneracy,
provided that the observed terrain surface is smooth.

depth (m) w/o terr. factors w/ terr. factors

A 1.708 ± 0.084 1.711 ± 0.028
B 1.539 ± 0.059 1.542 ± 0.024
C 1.558 ± 0.057 1.549 ± 0.026

TABLE I: Depth with 1 standard deviation of three regions marked
in Fig. 8(a) without/with terrain factors. The height of the ramp
peak at B/C is calculated by the difference compared to ground A.

With regard to quantitative analysis, we only inspect the
height of the ramp above the tank floor. Features that are
likely to lie on the ramp peaks are manually selected in the
sonar images as depicted in Fig. 7 using red × marks. The
depth of the tank floor is estimated as the average height of
features in region A. From the result in Table I, we can see
that height estimates have lower variance when terrain factors

are incorporated into the optimization, and the estimated
height of the ramps is slightly closer to the actual geometry
(0.2 m). However, both algorithms underestimate their true
height, which may be caused by inaccurate calibration of
factors including sensor displacement and speed of sound.

V. CONCLUSIONS AND DISCUSSION

We offer two improvements for underwater feature-based
SLAM with a forward-looking imaging sonar, for terrain
mapping. First, data association is performed via optical flow
tracking, which is more robust to noise and the absence
of elevation angle. Second, a degenerate system is partly
solved by adding terrain constraints connecting feature pairs,
constraining their height values to be similar. The effective-
ness of terrain factors is validated in both simulation and
experiment. Outliers among the resulting feature estimates
are reduced, and thus GP terrain maps are more accurate.

Looking ahead at areas for improvement, better initializa-
tion estimates can potentially be provided using the linear
triangulation proposed in [8]. In addition, the real-time
viability of our SLAM framework is impeded by adding
terrain factors, since the construction of a CLT requires full
knowledge of a feature’s 2D location. This also introduces a
large number of additional constraints into the factor graph,
making optimization computationally costly and challenging
for real-time applications on embedded platforms. Although
the offline SLAM solution in Fig. 8 requires about 7 seconds
of computation on a laptop equipped with an Intel Core
i7-4810MQ @ 2.80 Ghz × 8, the setup of our current
experiment, without loop closures, is idealistic. Future work
involves exploring its application at larger scales.
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