
Deep Learning for Detection and Tracking of Underwater Pipelines
using Multibeam Imaging Sonar

Jinkun Wang, Tixiao Shan, Muthukumaran Chandrasekaran, Timothy Osedach and Brendan Englot

Abstract— We propose a methodology for the automated
detection and tracking of an underwater pipeline along the
seafloor by an autonomous underwater vehicle (AUV) or
remotely operated vehicle (ROV) equipped with a forward-
looking multibeam imaging sonar. After training on a few
hundred representative hand-segmented images, we use U-Net
to segment sonar imagery in real-time and detect any portions
of pipeline present in the imagery. The geometry of the pipeline
is estimated by fitting a parametric curve to a skeletonization
of the detected pipe segments, and this is used for repeatedly
issuing waypoints to the underwater robot performing the
inspection, allowing an AUV or ROV to perform a full-
coverage automated flyover of a pipeline that is visible along
the seafloor. The proposed framework is tested and validated
using a BlueROV2 robot equipped with an Oculus multibeam
imaging sonar. The ROV is tasked with performing multiple
automated flyovers of a 100-foot pipeline placed in our testing
tank, in configurations with varying curvature. The proposed
deep learning framework is found to yield accurate estimation
of the pipeline’s geometry with very few false positives, and
its integration with the ROS navigation stack yields fast and
efficient pipeline inspections.

I. INTRODUCTION

Underwater pipeline inspection is an important task for
safe operations in the oil and gas, chemical and power gener-
ating industries. This task is often the responsibility of divers
and manually piloted, remotely operated vehicles (ROVs),
and it is both time and cost consuming. Divers performing
underwater inspections risk injury, and can operate over
limited ranges and durations. The requirement for intensive
human supervision and control in ROV teleoperation is
also inefficient, especially if long-duration, pervasive deploy-
ments are desired. For these reasons, untethered, autonomous
underwater vehicles (AUVs) are a desirable solution for this
task, which are increasing in maturity.

Existing robot platforms designed for pipeline tracking
rely on a variety of sensors, including cameras, side scan
sonar, multibeam echo sounders, sub-bottom profilers, and
magnetic sensors. A vision-based system provides straight-
forward guidance, in which camera images can be processed
in a traditional manner, e.g., edge detection followed by
the Hough transform to track a straight pipeline [1], [2], or
segmentation to allow the detection of rectangular pipeline
sections [3]. A nonlinear control algorithm using visual

J. Wang, T. Shan and B. Englot are with the Department of Me-
chanical Engineering, Stevens Institute of Technology, Castle Point
on Hudson, Hoboken NJ 07030 USA, {jwang92, tshan3,
benglot}@stevens.edu.

M. Chandrasekaran and T. Osedach are with Schlumberger-Doll Re-
search Center, One Hampshire Street, Cambridge MA 02139 USA,
{mchandrasekaran, tosedach}@slb.com.

DVL

Camera

Sonar

20°

(a) BlueROV2 (b) Onboard camera view

(c) A pipeline placed at the bottom of Stevens’ testing tank

Fig. 1: Configuration of our vehicle and experiment setup.

feedback was also proposed to track a straight pipeline [4].
Side scan sonars provide a high-resolution image of the
seafloor even in turbid water, but due to a limited field of
view, their imagery has been used in aggregate to detect a
pipeline prior to the initiation of tracking missions [5], or in
offline mapping processes [6]. Multibeam echo sounders can
be utilized for pipeline tracking once the pipeline is identi-
fied from side scan sonar [5]. Multiple sensing modalities,
including cameras and sonars, have been fused to overcome
the limitations of one individual sensor [7], [8].

In contrast with existing work, the aim of this work is
to propose perception and navigation tools that can enhance
the robustness and reliability of AUVs performing close-up
pipeline inspections only with a high-resolution, forward-
looking multibeam imaging sonar, without requiring exten-
sive prior knowledge of a pipeline’s location and geometry.

In this paper, we propose to use a deep neural network to
perform pipeline detection using images from a multibeam
imaging sonar. More specifically, we adapt an encoder-
decoder network architecture and perform real-time pipeline
segmentation. We obtain the dataset for training the neural
network by hand-segmenting a collection of representative
sonar images. A parametric curve fitting approach is then
used to estimate the pipeline’s geometry. Candidate way-
points are sampled from the curve and sent to the naviga-
tion system to achieve pipeline following by a BlueROV2
robot equipped with a RTI SeaPilot Doppler velocity log, a
VectorNav VN100 inertial measurement unit, and an Oculus
multibeam imaging sonar (Fig. 1). We conduct laboratory
experiments in a testing tank as a proof of concept to
demonstrate the utility of the proposed approach.

16
x1
02
4

16

32

64

128

256

128

64

32

16

Input/Output Upsampling
Conv+BatchN+
ReLU

Max
Pooling

Dropout
Conv+
Sigmoid

Fig. 2: A simplified U-Net model for pipeline segmentation using
sonar images. The network follows an encoder-decoder architecture.
Skip-connections are denoted by solid lines with arrows.

II. U-NET FOR PIPELINE DETECTION

The wide variety of pipeline shapes and appearances in
sonar imagery, and the similarity of intensities representing
pipelines to those of walls and other structures, presents a
great challenge to segmenting pipelines using a traditional
approach. Therefore, we adapt a successful segmentation
architecture, U-Net [9], to the task of pipeline detection, in
which case, similar to U-Net for biomedical image segmen-
tation, we rely heavily on a limited set of annotated training
images. To achieve real-time segmentation and pipeline
detection, we simplify the original U-Net, reducing feature
channels while using the full resolution sonar image.

a) Deconvolution: While the imaging sonar is most
sensitive within the beam width, the reflections originating
from side lobes are also noticeable. During our laboratory
experiments in a testing tank, we found Wiener deconvolu-
tion [10] to be of crucial importance for pipeline detection,
and for discrimination between a pipeline and a vertical wall.
As a result, both training and testing take the sonar image
after deconvolution as input. The raw data and processed
data after deconvolution are visualized in Fig. 4a.

b) Network architecture: We adapt the U-Net encoder-
decoder architecture for this problem setting, shown in Figure
2. The encoder of the network consists of a sequence of
convolutional blocks and average pooling layers for down-
sampling the feature spatial resolutions while increasing
filter banks. On the other hand, the decoder has a reversed
structure with transposed convolutions for upsampling the
feature spatial resolutions. All convolutions in the convolu-
tional blocks are followed by batch normalization [11] and
ReLU [12]. The output layer produces the final high-res
range image using a single convolution filter without batch
normalization. Note that a dropout layer is added to prevent
over-fitting.

c) Data augmentation: The sonar image is represented
in a polar coordinate system, where columns denote individ-
ual beams and rows denote range samples. As the number of
rows changes with respect to the maximum sensing range,
and the number of columns is fixed to 512 beams for our
imaging sonar, the raw image is resized to 512 px by 512 px.

Fig. 3: Points extracted from sonar images are projected onto a flat
floor based on altitude measurements from a DVL.

During training, the image is augmented by a series of
random operations: horizontal flip (p = 0.5), resized crop
(scale ∈ [0.7, 1.0]), and affine transformation (|rotation| ≤
20°, |translation| ≤ 50 px, |shear| ≤ 20°).

d) Training: The training dataset for the network is
obtained by augmenting 114 segmented images that are
labeled manually. SGD optimizer [13] is used with a learning
rate of 10−4, momentum of 0.99 and decay factor of 10−5

after each epoch for network optimization. Dice loss [14] is
utilized for penalizing the differences between the network
output and ground truth, as it achieves high accuracy, fast
convergence and improved stability during training. The filter
size for each convolutional block is shown in Figure 2. A
kernel size of 3 by 3 is used for all convolutional operations.

III. PIPELINE FOLLOWING

We now describe the procedures that enable us to achieve
automated pipeline following. We first perform curve fitting
to the output of the neural network. The result will be
considered to represent the geometry of the pipeline detected
in the sonar image. Then we project the pipeline curve from
polar coordinates into Cartesian coordinates. At last, we issue
a waypoint, which is sampled from the pipeline curve, to
the robot operating system (ROS) [15] navigation stack. The
details for each procedure are described below.

a) Curve Fitting: Since our sonar only covers a limited
range, we would like to fit a curve to an observed pipeline
to allow our robot to plan beyond its immediate field of
view. We apply a parametric curve fitting approach to handle
a variety of shapes as follows. First, the pipeline area is
chosen to maximize the contour area in the output image
after thresholding. Next, skeletonization is applied to the
pipeline area. We then find a smooth curve that passes
through the middle of the data using principal curves [16] to
remove artifacts resulting from skeletonization. Considering
the pipeline generally has small curvature, the final step is
to fit a second-order parametric curve, and the pipeline can
be reasonably extrapolated to a desired distance.

b) Curve Projection: The detected pipe is represented
in polar coordinates relative to the sonar, and we would
like to issue waypoints in Cartesian coordinates. However,
the elevation angle is lost during the formation of the
sonar image, which poses a problem to recovering the true
geometry of the pipeline. As shown in Fig. 3, we obtain

(a) Visualization of samples of training data. At top: raw sonar intensity images in polar coordinates. Middle row: images after the deconvolution
process are shown, which are the actual input to the neural network. At bottom: Hand-drawn polygons used to label the training data are denoted
by the orange regions shown. Unlabeled, bright returns from our tank walls are visible in the imagery.

(b) Demonstration of automated pipeline detection. Output pixels with probability higher than 0.9 are visualized on top of raw images. Images
are transformed to Cartesian coordinates in the bottom row.

Fig. 4: Examples showing the input and output of the neural network depicted in Fig. 2. For illustrative purposes, the network is queried
here over images used for training. The pipeline boundaries predicted in (b) are improved compared with the manual labeling in (a).

the range r and bearing θ measurements directly, but the
elevation relative to the imaging plane is ambiguous. In this
work, we assume the environment has a flat bottom, such that
we are able to estimate the 3D location of a given point in
the imagery with the knowledge of altitude from the bottom.
The altitude measurement can be obtained from a DVL or a
pressure sensor given a fixed water depth.

c) Waypoint Following: We then sample waypoints
from the pipeline’s curve in Cartesian coordinates. For the
purpose of smooth motion, we continuously select a way-
point that is a designated distance ahead of the robot’s current
position along the parametric curve (1.5m in Fig. 5). Thus,
the robot always faces the pipeline as it moves forward. The
velocity control commands for following the waypoint are
provided by the ROS navigation stack. Since we assume the

operational environment is flat, we only need three types of
velocity commands: two velocities for forward and lateral
translation, and a yaw rate command. Note that for non-flat
environments, we can implement a controller that adjusts the
depth of the robot using the readings from the onboard depth
sensor, or which controls altitude using the DVL returns.

IV. EXPERIMENTS

Two experiments were carried out to demonstrate the
performance of our proposed pipeline tracking framework.
The first experiment was conducted in the Stevens towing
tank (with dimensions 313×16×8 ft3). We anchored a 100-
foot long, 4.5-inch diameter polyethylene drainage pipe to
the floor, and our ROV was tasked with performing an au-
tonomous flyover of the pipe (Fig. 1(b)(c)). The experiment

−2 −1 0 1 2
y (m)

0

1

2

3
x

(m
)

−2.5 −2.0 −1.5 −1.0 −0.5 0.0
y (m)

0.0

0.5

1.0

x
(m

)

Fig. 5: A representative example of a sharply curved pipeline at
the corner of a small tank. The skeletonized points and the curve
fitting result are projected to the tank floor based on an altitude of
1.0 m. The corresponding waypoint is shown by the green arrow.

was performed using the BlueROV2, with inertial data from
a VectorNav VN-100 IMU, vehicle velocity from an RTI
SeaPilot DVL (600MHz), and depth from a Bar30 pressure
sensor. These measurements were used to construct odometry
factors for the iSAM2 [17] factor graph used as our basis
for state estimation, via the GTSAM library [18]. We used
the Oculus M750d multi-beam imaging sonar, operated in
1.2MHz mode with a field of view of maximum range
3m, horizontal aperture 70° and vertical aperture 12°. The
sonar image updates at 10Hz and has a range resolution of
0.005m and an angular resolution of 0.0024 rad. The sonar
is mounted pointing 20° downward from the horizontal, to
obtain the largest possible coverage. The proposed method
was implemented using PyTorch [19] in ROS Kinetic running
Ubuntu 16.04 on a laptop with an i7-7700HQ CPU and an
NVIDIA GTX 1050 GPU.

The setting for this experiment is depicted in Fig. 1. The
ROV was manually driven to collect pipeline images from a
variety of perspectives. The parameters of our simplified U-
Net model were tuned by splitting a total of 114 annotated
images into 91 training images and 23 validation images,
achieving a dice score of 0.73 and an intersection of union
(IOU) of 0.60. The model was re-trained using the entire
dataset afterwards, and we were able to perform pipeline
segmentation at 5Hz using the computer resources described
above. We can see from Fig. 4b that the pipeline boundaries

obtained from U-Net are largely accurate. Although some
outliers are detected from the tank walls, their small area
allows them to be filtered easily. We further tested the
pipeline following capability in an extreme case as shown
at the right of Fig. 6. The pipeline formed a C shape in the
tank, and the robot successfully tracked the pipeline with the
tank wall present in the sonar’s field of view.

Raw sonar images are stitched together using the dead-
reckoned trajectory, which is visualized in Fig. 6. The inten-
sity of every location in the mosaic is the average intensity of
all measurements interpolated from sonar images at different
poses assuming the elevation angle is zero. It is worth
noting that due to ambiguous elevation angles, the mosaic
does not accurately represent the true pipeline’s geometry.
The detected pipeline regions, which are extracted from
prediction with the largest connected area after thresholding,
were accumulated during the tracking mission as shown in
the orange regions in Fig. 6. The mosaic image also exhibits
a significant amount of drift from dead reckoning. Although
the automated pipeline following wasn’t influenced by drift,
as the robot was navigating in a body frame, it would be
desirable in the future to introduce sonar-derived measure-
ment constraints into iSAM2 to produce a globally consistent
map of a pipeline. Representative results from successful
automated flyovers of straight1, curved2, U-shaped3, and
loop-shaped4 pipe geometries are linked below. All results
described above were produced from training data gathered
over a single pipe configuration - the layout depicted in Fig.
1(c) and at the left of Fig. 6.

Our second experiment was conducted in a much smaller
tank (20 × 9 × 4.5 ft3) with a different sensor, the higher-
resolution Oculus M1200d multi-beam imaging sonar, to
evaluate the approach across different sensor arrangements.
As the operational conditions (e.g. altitude, properties of the
tank floor and walls) and sonar specifications (e.g. vertical
aperture, resolution) have changed, the acoustic shadows cast
by the pipeline, which are informative for distinguishing
them from other objects, changed accordingly. Therefore
we re-trained the model using a separate dataset, though
in future work, the previous dataset can be expanded to
incorporate training data from different environments. Fig.
5 shows a result from this experiment, collected using the
Oculus M1200d operated at 1.2Mhz but with a horizontal
aperture of 120° and a vertical aperture of 20°. A large
portion of the pipeline is visible in a single image, and a
sufficiently accurate curve is recovered from its predicted
segmentation.

V. CONCLUSION

We have proposed a methodology for the automated detec-
tion and tracking of an underwater pipeline using a forward-
looking multibeam imaging sonar. Our method performs
real-time pipeline segmentation from sonar images using a

1https://youtu.be/pzIS3_mFft0
2https://youtu.be/oL45QrxqbYI
3https://youtu.be/SYWY6X3eMZw
4https://youtu.be/eMaWhvyYFLg

Fig. 6: Dead reckoning-derived mosaics of raw sonar images during two pipeline tracking missions in the 16-foot wide Stevens tank. The
estimated trajectory is shown by the green line, and the detected pipeline is shown by the orange region (intensity denotes number of
detections). Left: tracking of a straight pipeline (100 ft) with some local bends and curves, right: Tracking of a sharply curved pipeline.

deep neural network, U-Net, on a laptop. With the predicted
pipeline segments, we adapt a parametric curve fitting ap-
proach to represent the pipeline as a curve. Then we sample
waypoints from the pipeline curve and issue them to the
ROS navigation stack, which provides velocity commands
for pipeline following. We conducted laboratory experiments
to demonstrate the utility of the proposed approach. Future
work will involve performing experiments on non-flat terrain,
such as pipeline following in true subsea environments, and
incorporating sonar-derived measurement constraints into our
simultaneous localization and mapping framework.

ACKNOWLEDGMENTS

This research was supported by a grant from Schlumberger
Technology Corporation.

REFERENCES

[1] S. Matsumoto and Y. Ito, “Real-time vision-based tracking of
submarine-cables for AUV/ROV,” Proceedings of the IEEE/MTS
OCEANS Conference, 1995

[2] M. Narimani, S. Nazem, and M. Loueipour, “Robotics vision-based
system for an underwater pipeline and cable tracker,” Proceedings of the
IEEE/MTS OCEANS Conference, 2009.

[3] J.O. Hallset, “Simple vision tracking of pipelines for an autonomous
underwater vehicle,” IEEE International Conference on Robotics and
Automation, pp. 2767-2772, 1991.

[4] S. Krupiński, G. Allibert, M.D. Hua, and T. Hamel, “Pipeline tracking
for fully-actuated autonomous underwater vehicle using visual servo
control,” Proceedings of the American Control Conference, pp. 6196-
6202, 2012.

[5] Y.R. Petillot, S.R. Reed, and J.M. Bell, “Real time AUV pipeline
detection and tracking using side scan sonar and multi-beam echo-
sounder,” Proceedings of the IEEE/MTS OCEANS Conference, 2002.

[6] A. Bagnitsky, A. Inzartsev, A. Pavin, S. Melman, and M. Morozov,
“Side scan sonar using for underwater cables & pipelines tracking by
means of AUV,” IEEE Symposium on Underwater Technology and Work-
shop on Scientific Use of Submarine Cables and Related Technologies,
2011.

[7] M. Jacobi and D. Karimanzira, “Underwater pipeline and cable in-
spection using autonomous underwater vehicles,” Proceedings of the
IEEE/MTS OCEANS Conference, 2013.

[8] M. Jacobi and D. Karimanzira, “Multi sensor underwater pipeline track-
ing with AUVs,” Proceedings of the IEEE/MTS OCEANS Conference,
2014.

[9] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional Net-
works for Biomedical Image Segmentation,” Proceedings of the Interna-
tional Conference on Medical Image Computing and Computer-assisted
Intervention, pp. 234-241, 2015.

[10] P.V. Teixeira, F.S. Hover, J.J. Leonard, and M. Kaess, “Multibeam
Data Processing for Underwater Mapping,” Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1877-
1884, 2018.

[11] S. Ioffe and Christian Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” Proceedings
of the International Conference on Machine Learning, pp. 448-456, 2015.

[12] V. Nair and G.E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” Proceedings of the International Conference on
Machine Learning, pp. 807-814, 2010.

[13] J. Kiefer, and J. Wolfowitz, “Stochastic estimation of the maximum of
a regression function,” The Annals of Mathematical Statistics, vol. 23(3),
pp. 462-466, 1952.

[14] C.H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M.J. Cardoso,
“Generalised Dice Overlap as A Deep Learning Loss Function for Highly
Unbalanced Segmentations,” Proceedings of the International Workshops
on Deep Learning in Medical Image Analysis and Multimodal Learning
for Clinical Decision Support, pp. 240-248, 2017.

[15] N. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Wheeler, and A.Y. Ng. “ROS: an open-source Robot Operating System,”
IEEE International Conference on Robotics and Automation, Workshop
on Open Source Software, 2009.

[16] U. Ozertem and D. Erdogmus, “Locally defined principal curves and
surfaces,” Journal of Machine Learning Research, vol. 12, pp. 1249-
1286, 2011.

[17] M. Kaess, H. Johannsson, R. Robert, V. Ila, J.J. Leonard, and F.
Dellaert, “iSAM2: Incremental smoothing and mapping using the Bayes
tree,” The International Journal of Robotics Research, vol. 31(2), pp.
216-235, 2012.

[18] GTSAM, https://bitbucket.org/gtborg/gtsam
[19] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z.

Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” NIPS 2017 Autodiff Workshop: The Future of Gradient-based
Machine Learning Software and Techniques, 2017.

