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Abstract— Recent progress in the use of feature-based 
navigation for ship hull inspection performed by an 
autonomous underwater vehicle is discussed. 
Localization and map-building results using both 
imaging and bathymetry sonar are presented.  We 
then assess the dynamic stability of the closed-loop 
localization and feedback control process, and 
formulate a robustness-optimal motion planning 
framework designed to maximize a marine vehicle’s 
stability margins against ocean disturbances.   

I. INTRODUCTION 
Feature-based navigation methods involving 

localization, map-building, and simultaneous localization 
and mapping (SLAM) have become ubiquitous as a means 
of perception for autonomous mobile robots [1], [2], [3].  
Using the natural features of the surrounding environment 
for navigation is especially important in applications 
where traditional odometry and direction sensors are 
unavailable. One such example is ship hull inspection 
performed by an autonomous underwater vehicle, in 
which sonar imaging and range-sensing present cost-
effective alternatives to high precision inertial navigation, 
and underwater operation near a large steel structure 
prevents use of compass, GPS, or long baseline acoustic 
tracking as consistent sensors.  In addition, random 
disturbances in the ocean environment necessitate the use 
of high-fidelity feedback control, and hence we not only 
wish to utilize feature-based methods for estimation, but 
we seek a better understanding of integrated localization, 
mapping, and dynamic control.   

In our approach to localization and mapping for hull 
inspection, we first present the results of an extended 
Kalman filter SLAM framework that was implemented 
successfully during hull inspection exercises at AUVFest 
2008.  The MIT-Bluefin HAUV [4], pictured in Figure 1, 
identified a series of mine-shaped training targets using 
DIDSON imaging sonar [5] and mapped these targets in 
real-time.  We also present the results of mapping using 
BlueView bathymetry sonar, which provides an 
informative view of running gear and other complex hull 
structures. 

 
 
Figure 1: The MIT-Bluefin Hovering Autonomous Underwater Vehicle, 
designed to perform autonomous ship hull inspections. 
 

In our consideration  of  dynamic control, we then 
expand on previous analyses of the integrated localization, 
mapping, and control process [6], [7], [8], which have 
considered single and three degree-of-freedom vehicles 
governed by constant-gain controllers and estimators. In 
the present work, motivated by the application of ship hull 
inspection, we consider a planar marine vehicle using 
range and bearing measurements of a set of point features 
to traverse a path expansive enough to require time-
varying controller and estimator gains. The stability of the 
controller and estimator duo is investigated using a pair of 
theorems requiring boundedness and convergence of the 
transition matrix Euclidean norm.  Perturbations are then 
considered using a theorem on the convergence of the 
perturbed system transition matrix, yielding a robustness 
test for the closed-loop system. Specifically, we show that 
the robustness of a marine vehicle varies as a function of 
the sequence by which the vehicle observes its 
surrounding features.  Together, these stability and 
robustness tests form a set of tools which can be used in 
planning and evaluating the robustness and performance 
of marine vehicle survey trajectories.   

Finally, the stability analysis is utilized in the 
development of a path-planner which uses an augmented 
version of the A* algorithm [9] to plan survey trajectories 
which deviate from the shortest path to improve the 
marine vehicle’s robustness to perturbations.   
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II. REAL-TIME FEATURE-BASED MAP-BUILDING 
At AUVfest 2008, an event organized for collective 

experiments and demonstrations of Navy-sponsored AUV 
technology, the MIT-Bluefin HAUV performed a hull 
inspection exercise aimed at the identification of mine-
shaped training targets planted on a ship hull. The task 
was performed on the hull of the USS Saratoga, a retired 
naval aircraft carrier. The HAUV performed surveys 
along a portion of the hull very similar in curvature and 
orientation to a flat vertical wall. The HAUV used its 
IMU, DVL, and depth sensor to localize along with 
layered proportional-integral-derivative (PID) control to 
correct perceived errors as it carried out the hull survey. 
While these standard hull survey processes were 
performed using the vehicle’s internal computer, the 
feature extraction and map-building processes were 
carried out on a topside computer. The computer 
intercepted real-time image data from the DIDSON, 
odometry data from the DVL, and used these to produce 
real-time localization and map estimates. Two algorithms 
were run in series to produce these estimates, a feature 
extraction algorithm which identified the vehicle-relative 
range and bearing of mine-shaped training targets 
observed in DIDSON imagery, and an Extended Kalman 
Filter algorithm which recursively estimated the vehicle 
pose and velocity, and the location of each target on the 
hull. 

A. Feature Extraction Algorithm 
The goal of the feature extraction algorithm is to 

identify mine-shaped training targets and approximate 
their location by designating a single entry of a DIDSON 
frame’s image matrix to represent a sighted target.  Each 
entry of the matrix, which consists of an intensity value, 
corresponds to a vehicle-relative range and bearing 
identified by the row and column of the entry.  If a color 
spectrum is assigned to the intensity values in the image 
matrix, the image will appear similar to the example in 
Figure 2, which contains one of the mine-shaped training 
targets used on the USS Saratoga.  To identify the targets, 
knowledge of their intensity signature in DIDSON 
imagery is used, specifically the high intensity returned by 
the target itself and the low intensity returned by the 
target’s “shadow”.  The significant contrast between the 
shadow and the surrounding image data, especially the 
contrast between the shadow and the target itself, can be 
exploited to produce an algorithm which runs fast enough 
to allow mapping to be executed in real-time. 

Sections of the image matrix are evaluated iteratively to 
obtain a mean difference in intensity between a small 
rectangular portion of the matrix (designed to capture the 
low intensity of the shadow) and the ring that immediately 
surrounds it  (designed  to  capture  the  high intensity just  

 
 

 
 

Figure 2: Performance of real-time feature extractor is demonstrated using 
two example DIDSON frames.  The raw data is presented at left, and the 
feature extractor detection index for each rectangular quadrant of the image 
that was processed is displayed at right.  Areas where features were 
identified (indicated by the blue asterisk) correspond to high peaks in the 
feature detection index. 

 
outside of the shadow).  This heuristically-designed 
feature extraction technique yielded selective and 
consistent identification of training targets, although more 
advanced and widely applicable methods are available and 
in development by our collaborators as our mapping 
exercises grow in complexity [10]. 

B. Localization and Mapping Algorithm 
An EKF is employed to estimate the pose and velocity 

of the HAUV and to construct the map of hull features.  
The EKF approach was selected to enable the probabilistic 



  

mapping of the training targets while conforming to the 
framework of our feedback design approach.  Although 
the HAUV is a six degree-of-freedom vehicle subjected to 
hydrodynamic drag, a number of approximations are 
made to keep the vehicle model as simple as possible.  
First, a planar three degree-of-freedom vehicle model is 
used since the HAUV is surveying an approximately 
vertical wall at fixed range, fixed heading, and zero pitch.  
As a result, only the roll angle and x-y position are 
necessary to locate the vehicle and determine its 
orientation relative to the hull.  In addition, the hull 
survey run on the Saratoga consists of horizontal and 
vertical straight-line trajectories only, with no planned 
variation in roll angle.  For this reason, the vehicle’s 
orientation in roll will be decoupled from its dynamics in 
x and y.  In reality the vehicle will be perturbed in range, 
heading, pitch, and roll, but because the HAUV layered 
control acts to correct any errors in these degrees of 
freedom, they are assumed to be of constant magnitude as 
described above (although we still estimate the roll angle 
for the purposes of monitoring angular perturbations).  
One final simplification is the approximation that the 
vehicle dynamics consists of double integrators in each of 
its three planar, uncoupled degrees of freedom (i.e., 
hydrodynamic drag is neglected).  Since this model will 
not be used to compute a control action for the vehicle and 
is being used for estimation only, this assumption will not 
hinder performance of the algorithm.  Given these 
assumptions, the HAUV dynamic equations, which use 
an Euler discretization, appear as follows: 
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         kkvkv wxFx  |1|  
The body-referenced sway velocity, heave velocity, and 
roll rate are described by u, v, and , respectively, and x, 
y, and represent  the  horizontal,  vertical,  and  angular 
position of the vehicle relative to the ship hull.  Process 
noise wi, which is zero mean Gaussian white noise with 
diagonal covariance matrix Q, is applied in each degree of 
freedom.  The notation xv refers to a column vector which 
contains all six vehicle states. 

Features observed on the hull are approximated as point 
features defined by an x-y position.  Because the EKF is 
used to estimate both the vehicle states and the feature 
locations, the feature locations must be included in the 
state vector.  The features are assumed to be permanently 
fixed to the shp hull and have no dynamics.  The 
aggregate state vector containing both vehicle and feature  

 

 
 
Figure 3:  Real-time map and vehicle localization data obtained from a 
survey of the USS Saratoga in May 2008 using an Extended Kalman Filter.  
At bottom, a sonar mosaic image of the targets placed on the ship hull 
(courtesy of AcousticView http://www.acousticview.com). 
 
states has the following structure: 

         [kx nnkv yxyxyxx ...2211|
T]        (2)                                

The size of the system transition matrix F must be 
increased to accommodate these new states.  Because the 
features are static, two rows and columns of zeros must be 
added to F for each new feature, with a single entry of 
magnitude one along the diagonal to propagate the 
constant value of each static feature state.  Although the 
above state vector is depicted with n features, the number 
of features in the state vector changes over the course of 
the algorithm.  The algorithm is initialized with zero 
features in the state vector, and new features are added as 
they are observed by the vehicle.  Features are never 
removed from the state vector, regardless of the time 
passed since they were last sighted. 

The  measurement  process  returns DVL odometry  and 
feature sightings extracted from DIDSON data. The 
feature measurements consist of range and bearing from 
the vehicle to the training targets, which are nonlinear 
functions of the system states in (2) and require the use of 
the extended rather than linear Kalman filter.  The EKF 
algorithm produces an estimate of the state vector given 
by (2) and the associated estimation error covariance 
matrix.  

C. Experimental Results 
The HAUV survey covered a section of the hull 
approximately  12m  by  2m  in  size on which nine mine- 

. 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
shaped training targets were mounted; a sonar mosaic 
displaying the layout of the targets underwater is given by 
Figure 3.  Biofouling on the hull hindered the visibility of 
three targets, and so only six were used in the real-time 
localization and mapping exercise. Although localization 
was performed concurrently with the mapping process 
during the hull surveys, the sparsity of feature sightings 
required the localization process to depend heavily on 
vehicle odometry from the DVL.  Results from a 
representative hull survey are displayed in Figure 3. The 
EKF-estimated vehicle trajectory is plotted alongside the 
map of training targets, with red asterisks marking the 
estimated feature locations.  Ninety-five percent 
confidence ellipses derived from the error covariance 
matrix are plotted around each feature on the map.  In the 
cases  of  features  sighted  thirty to forty times, the filter’s 
confidence in the feature estimate yielded an ellipse of 
about 0.5m in diameter.   Features with the largest ellipses 
were sighted only a handful of times, with confidence 
ellipses as large as 2m in size.  

III. 3D MAPPING WITH BATHYMETRY SONAR 
The HAUV has also been deployed with bathymetry 

sonar to produce 3D rather than 2D hull visualizations, 
using both the BlueView 3D MicroBathymetry (MB2250) 
sonar and the DIDSON with a one-degree concentrator 
lens. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A.  Profile extraction 
When running in bathymetry mode the sonar is pointed 

directly up towards the ship hull, giving the best 
resolution for measuring range to the hull.  The sonar 
returns a series of range values (of varying intensity) 
corresponding to each of several vehicle-relative bearing 
values, and the range value with the largest intensity is 
selected to represent its respective bearing value.  Using 
the coordinate transformation between the sonar (which is 
pitched relative to the vehicle) and the HAUV (whose 
angular position is estimated using integrated gyro data), 
the range data is mapped in 3D space.  Our most recent 
bathymetry-enabled mapping results, displayed in Figure 
4, pair the range data with vehicle positions obtained from 
integrated DVL data.  Use of the bathymetry sonar allows 
3D visualization of the running gear and keel cooling 
pipes on the hull of a 65-foot buoy tender. 

B. Submapping and Registration 
Over a short period of time the HAUV can accurately 

report its location using its ring laser gyro and DVL, but 
the accuracy of its position estimate gradually drifts when 
relying solely upon dead reckoning (drift of the current 
IMU is approximately 10 degrees/hr). Current work in 
progress to improve the accuracy of HAUV bathymetric 
mapping includes use of a submapping algorithm, based 
on work by Roman et al. [11], which uses sonar 

Figure 4: BlueView MB2250 bathymetry sonar data collected from an HAUV survey of a 65’ retired Coast Guard Inland Buoy Tender, featuring 3D 
visualization of the running gear and keel cooling pipes.  For comparison, an imaging sonar mosaic of the same vessel (provided courtesy of AcousticView). 



  

bathymetry data to bound long-term navigation drift. The 
algorithm creates submaps by combining a sequence of 
sonar scans into a single point cloud. To improve 
localization accuracy the mission must contain overlap 
between submaps, and when overlap occurs we can 
register two adjacent submaps together to obtain a 
constraint between two points in the vehicle trajectory. 
These constraints can then be used to optimize the 
estimate of the vehicle trajectory and bound the vehicle’s 
position error. 

A method commonly used to register two point clouds is 
the iterative closest point algorithm (ICP) [12], [13]. In its 
simplest form it consists of finding the correspondences 
among two point clouds, solving for the coordinate 
transformation that minimizes the cost function, applying 
the transformation, and repeating the process until the 
change in error falls below a designated threshold. Using 
the information from the vehicle navigation system and 
the registration of overlapping submaps, we can then form 
a pose graph representing the vehicle trajectory over the 
entire hull survey, accompanied by a more accurate map 
of the hull.   

IV. DYNAMIC STABILTY OF AUV SURVEY TRAJECTORIES 
Turning our attention to dynamic control, we proceed 

with an analysis aimed at evaluating the stability of an 
HAUV survey trajectory which utilizes a feature-based 
estimation process similar to that of Section II.    

A. Marine Vehicle Model 
Seeking a more descriptive dynamic model for the 

purposes of stability analysis, we now present the 
holonomic marine vehicle dynamics using the following 
discrete time equations: 

 
 
 

 
 
 
 
 
    
The body-referenced forward velocity, sway velocity, and 
yaw rate are described by u, v, and , respectively, and x, 
y, and represent the horizontal, vertical, and angular 
position of the vehicle in the inertial plane.  
Hydrodynamic drag b is expressed as a function of 
velocity in each degree of freedom, and vehicle mass and 
rotational inertia are described by m and J. Surge, sway, 
and yaw commands are applied to the channels U1, U2, 
and U3, respectively, and process noise wi, which is zero 
mean Gaussian white noise with diagonal covariance 

matrix Q, is also applied to each channel.  As in Section 
II, the six vehicle states will be combined with 2n feature 
states in the aggregate state vector expressed in (2).   

A nominal trajectory is generated for the vehicle to 
send it to a desired waypoint from its starting position in 
the plane.  An open-loop input trajectory delivers a 
nominal command at each time step, and a closed-loop 
control correction is used to counteract disturbances.  The 
closed-loop system and measurement dynamics is given 
by: 




The term represents the deviation of the state 
estimate from the nominal state trajectory, used as an 
error signal for the controller.  The nonlinear functions 
f(x) and h(x) are used to represent, respectively, the state 
transition relationships in (3) and the nonlinear 
measurement of range and bearing relative to each of the 
features.  The sensor noise term vk represents zero mean 
Gaussian white noise with diagonal covariance matrix R.  
Gk is a time-varying matrix of controller gains, which we 
compute optimally using the discrete-time matrix Riccati 
equation.  N is a 6 by 6+2n stripping matrix needed to 
extract the vehicle states from the state vector, discarding 
the 2n feature states for the purposes of control.  Because 
the feature states have no dynamics, the lower part of f(x) 
is the identity, the lower part of B is zero, and the lower 
part of  is zero.  

The use of a nominal vehicle trajectory permits a 
linearized Kalman filter to serve as the estimator for 
vehicle localization.  This strategy allows the vehicle to 
move to any desired location in the plane, as long as an 
approximate layout of features is known in advance.  It is 
also assumed that feature association can be performed 
successfully, and that T between measurements is 
constant.  These assumptions will allow vehicle pose 
estimation and refinement of a feature-based map to occur 
using a precomputed set of gains and Jacobians.  The 
estimation equation is written in terms of deviation from 
the nominal trajectory, kx : 
                                                                                     
                                                                                         
                                                                                         
The nonlinear state transition function f(x) and the 
measurement function h(x) are now replaced by their 
corresponding  Jacobians          and        , which are 
linearized  about  the  nominal  trajectory  at each time 
step. The term   represents the deviation of the  
measurement  from  the deterministic measurement along   
the  nominal trajectory.  Kk  is  the time-varying Kalman  
gain, which, as per the linearized  Kalman  filter  
framework,  is computed in advance  along  each  step of  

 . 
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the nominal trajectory (see Gelb [14]). Although an EKF 
is likely to yield better estimation in the presence of 
perturbations, its nonlinearity and dependence on the 
vehicle’s noise-influenced trajectory do not allow linear 
matrix computation or computation in advance of the 
vehicle’s deployment. Thus the LKF will serve as our 
estimator at the risk of inaccuracy in the presence of large 
perturbations and with the benefit of enabling a more 
descriptive stability analysis.    
 Thus far the only linearization approximations have 
been those which are called for specifically by the 
linearized Kalman filter.  To enable our stability analysis, 
it will be further assumed that dynamics of the true 
physical plant are well approximated by the state 
transition Jacobian, and that the true measurement process 
is also well approximated by the measurement Jacobian.  
Simplification of (4) and (5) yields the following compact 
formulation:                   
 
 
 
 

 
 
                                                                           

The upper half of the state vector contains deviations 
from the nominal trajectory, rather than the full states, 
and the lower half of the state vector contains the 
estimation error. Equation (6) provides us with an 
equilibrium point of zero throughout the system’s 
operation, and it also offers an expression of the closed-
loop system dynamics which lends itself to Lyapunov 
stability analysis.  

B. Stability Theorems 
Before we assess the stability of (6), two stability 

theorems are laid out.  These theorems are defined for use 
with discrete systems by Willems [15].   
 
Theorem 1.  The null solution of (6) is stable in the sense 
of Lyapunov if and only if there exists a bound M, for any 
k0, such that the following inequality holds for all k≥k0: 
 
                                                                      
(k,k0)is the transition matrix which propagates the 
system to time k from time k0.  If M can be taken 
independently of k0, then the solution is uniformly stable 
in the sense of Lyapunov.  In other words, for any region 
R in which we wish the system to stay, we can identify a 
region r in which the system must start, independent of 
initial time k0. 
 
Theorem 2.  The null solution of (6) is asymptotically 
stable if and only if the conditions of Theorem 1 for 
stability in the sense of Lyapunov are satisfied, and: 

                                                               
 
The solution is uniformly asymptotically stable if the 
above is satisfied and the bound M of Theorem 1 can be 
taken independently of k0. If perturbed, a uniformly 
asymptotically stable system will return to a state of 
equilibrium and will do so independently of initial time 
k0. 
 
The norm used in Theorems 1 and 2 is the Euclidean or 
spectral norm, equivalent to the largest singular value of 
the transition matrix.  The state transition matrix of (6) is 
equivalent to (k+1,k), the transition matrix of Theorems 
1 and 2 when a transition from k to k+1 is made.  By 
multiplying the successive state transition matrices of (6), 
the transition matrix from any k0 to any time k along the 
nominal trajectory can be computed.   

Although the control and estimation framework 
described above is designed for a nominal trajectory that 
connects two waypoints, this scenario can be augmented 
for analysis at infinite time.  We will hereafter assume 
that our ship hull survey vehicle travels between a series 
of waypoints periodically and for infinite time, allowing 
assessment of stability using Theorems 1 and 2.  Our 
previous findings have demonstrated that a vehicle which 
can adjust its estimates of both the vehicle and feature 
states can satisfy Theorem 1 but not 2, and a vehicle 
which is allowed only to adjust its vehicle state estimates 
(i.e., localization only, rather than full SLAM), can satisfy 
both theorems [16].      

C. Perturbed Stability Analysis 
In addition to guarantees of stability, we also seek a 

better understanding of how the closed-loop hull 
inspection vehicle will reject ocean disturbances.  
Although stability margins are difficult to quantify for a 
linear time-varying system, analysis of the transition 
matrix of the perturbed system will provide some insight.   

1) Problem Formulation 

To understand the system’s behavior in the presence of 
perturbations we must consider how the governing 
equations change when the vehicle is displaced from the 
nominal trajectory.   Because a displacement from the 
nominal trajectory renders the linearization of the 
nominal state transition Jacobian F and measurement 
Jacobian H incorrect, correction terms F and H are 
needed to express the true location of the vehicle.  Despite 
this, the need for correction is unknown to the estimator.  
Using these correction terms the propagation of the state 
and the estimate appears as follows: 
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These equations can be manipulated in a manner similar 
to equation (6), and all terms containing the correction 
matrices F and H can be collected in an aggregate 
perturbation matrix A, where A is defined as follows: 
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The aggregate perturbation matrix is combined with the 
state transition matrix of equation (6) as well as the 
process and measurement noise to express the system 
equations as follows: 
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The state transition matrix of equation (5) is represented 
here by Ak.  By taking the Euclidean norm of both sides of 
this equation and applying the Bellman-Gronwall lemma, 
Chen and Dong [17] first described a sufficiency condition 
for asymptotic stability of a linear system subjected to a 
perturbation A, which is now a well-documented result 
[18], [19].    
 
Theorem 3.  The null solution of equation (9) is 
uniformly asymptotically stable if two conditions are 
satisfied.  First, the system must be uniformly 
asymptotically stable in the absence of perturbations, 
indicated by the following: 
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This means that the Euclidean norm of the state transition 
matrix must be bounded by a discrete exponential with 
parameters m and r, and that this bound holds 
independently of k0.  Second, for a series of perturbation 
matrices Ak, the following must also hold for all k:  

m
rAk


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If both conditions are satisfied, then the system will 
remain uniformly asymptotically stable in the presence of 
plant perturbations Ak.  

2) Evaluating System Robustness 

The conservative nature of Theorem 3 requires that the 
unperturbed system under consideration must be 
uniformly asymptotically stable, which means any system 
that fails to satisfy Theorem 2 cannot satisfy Theorem 3.  
Although this means we can only guarantee perturbed 
system  stability for closed-loop vehicles using features for  

 
 
Figure 5: The relative robustness of two HAUV candidate trajectories is 
evaluated. The perturbation matrix norm ||A|| is plotted in the angular 
degree of freedom as a function of vehicle cruising speed for angular 
disturbances of incrementally varying magnitude (the solid blue lines).  
Alongside each set of perturbation matrix curves is plotted the exponential 
bounding curve performance metric, indicating the maximum perturbation 
size for which each feature layout is asymptotically stable (expressed as a 
series of red points with a best-fit line).   
 
localization  rather than full SLAM, it  is  conjectured that 
aspects of filter conditioning (such as the choice of 
nominal trajectory) which are best-suited for robustness in 
cases of localization will also be best-suited for robustness 
in cases of localization and mapping.   
 One challenge in implementing Theorem 3 is choosing 
an appropriate perturbation matrix A.  For this reason, 
we evaluate the theorem at perturbations of incrementally    
varying magnitude, and separately in each degree of 
freedom.  In simulation, the vehicle is displaced from its 
nominal trajectory by a given distance at each point along 
the trajectory (in a single degree of freedom), and the 
worst-case perturbation norm over the entire trajectory is 
chosen as ||A|| to represent the magnitude of the 
displacement.  The effect of combining perturbations in 
multiple degrees of freedom is not considered. 
  Next we obtain the parameters r and m, which, 
according to Theorem 3, must comprise an exponential 
function that bounds the transition matrix norm for any 
choice of k and k0 along the nominal trajectory. To 
achieve this, we find the k0 which yields the worst-
behaved plot of ||(k,k0)|| and produce an exponential 
function which bounds all values on this curve efficiently.  
By comparing the parameters of the exponential bounding 
curve with the norm of A, it is apparent when the system 
is guaranteed asymptotically stable. In addition, by 
comparing system conditions which achieve a stability 
guarantee for differing perturbation magnitudes, the 
relative robustness of two trajectories, maps, or otherwise 
can be compared.  In this manner the second inequality of 
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Theorem 3 is used as a performance metric. 

D. Robustness of HAUV Survey Trajectories 
As an illustrative example of how the above stability 
theorems may be used to analyze a closed-loop vehicle 
survey, we consider the problem of choosing a robust 
trajectory for a HAUV hull inspection.  The two survey 
trajectories depicted in Figure 5 were selected heuristically 
based on simplicity and apparent hull coverage, and both 
have been used frequently in vehicle experiments 
performed on the hull that is pictured (the same hull 
depicted in Figure 4).  The simulated survey will use DVL 
odometry  and   range-and-bearing   measurement   of  the 
hull’s zinc anodes (marked in red in Figure 5) for 
navigation. The robustness of these trajectories is 
challenging to predict since the viewing window of the 
DIDSON imaging sonar, pictured in Figure 5, is limited 
in size, and only a subset of the zincs will be observed at 
each time step. If the cruising speed of the vehicle is 
varied, the frequency with which the features will be 
observed will vary in turn.   

For a variety of cruising speeds, the maximum 
perturbation magnitude for which stability is guaranteed is 
computed for each of the two candidate trajectories. At the 
bottom of Figure 5, ||A|| is plotted for varying 
perturbation magnitudes in the angular degree of freedom.  
This perturbation norm is compared with the r and m 
parameters of the exponential fit to (k,k0) for each of the 
cruising speeds examined.  To offer an example of what 
we may conclude from these plots, the bottom right plot of 
Figure 5 shows that for Trajectory 2, the vehicle is 
guaranteed stable against angular perturbations of order 
10-4 radians for a cruising speed of 3 m/s, but this 
guarantee cannot be made for a cruising speed of 4 m/s.  
Hence, a vehicle executing trajectory 2 is more robust 
traveling at 3 m/s than at 4 m/s, since it is guaranteed 
stable against larger-sized perturbations.  In general, 
Figure 5 permits the conclusion that a vehicle executing 
Trajectory 1 is guaranteed stable against lager-sized 
perturbations than a vehicle executing Trajectory 2. 
Hence, our performance metric would indicate that 
Trajectory 1 is the robustness-optimal choice from among 
the two candidates.   

This method for comparing the relative robustness of 
two nominal trajectories is not limited to this particular 
choice of dynamic model or suite of sensors, but can be 
applied to any closed-loop system for which asymptotic 
stability is attainable and whose dynamics may be 
expressed using a linear time-varying state space 
framework. 

V. ROBUSTNESS-OPTIMAL MOTION PLANNING 
The   process  of  finding  the  most  robust  closed-loop 

 
Figure 6: The discrete input choices used for implementation with A* are 
displayed in a spatial grid.  The distance of each choice from the center 
corresponds to the relative energy required to enact its input thrust 
command.  Input choices with equivalent cost are assigned the same color. 
 
system configuration for a holonomic marine vehicle is 
next combined with a globally optimal kinodynamic 
motion planning algorithm.  As introduced above, a 
system configuration is designated the most robust 
configuration if it achieves a guarantee of asymptotic 
stability against a larger sized-perturbation than other 
competing system configurations.  Rather than 
heuristically choosing a handful of system configurations 
and evaluating their relative closed-loop robustness, a 
modified A* algorithm is used to select the most robust 
trajectory from among all trajectories in the vehicle state 
space that connect a given start waypoint and a given goal 
waypoint.  The robustness-optimal trajectories selected by 
the kinodynamic planning algorithm are compared with 
A* trajectories that do not consider the robustness 
performance metric.  

A. Kinodynamic Planning in Control Input Space 
Figure 6 displays the nine discrete control input choices 

used by the planning algorithm and their associated costs 
tabulated in a spatial grid.  In this grid, a positive surge 
thrust is located one unit to the right from the center, and 
a negative surge thrust is located one unit to the left from 
the center.  A positive sway thrust is located one unit up 
from center, and a negative sway thrust is one unit down.  
Applying positive thrust in surge and sway corresponds to 
the grid’s upper right corner, and so on.  The location of 
these input choices on the nine-by-nine spatial grid 
corresponds approximately to the energy required to 
implement them.  Costs are assigned to the eight 
outermost input choices based on the Euclidean distance 
of each grid entry from the center.  The center square is 
assigned a non-zero cost so the vehicle does not find 
sitting idle to be the cheapest action.  In addition, this cost 
is less than the cost of single-actuator thrust so the vehicle 



  

will opt to coast along without using additional thrust 
once it is close to the goal, instead of hitting the goal at 
top speed. 

B. Cost-to-Go Heuristic 
To ensure that the A* algorithm converges quickly to 

the goal, an admissible heuristic must be employed which 
accurately approximates the cost required to reach the 
goal without over-estimating the true minimum cost of 
travel to the goal node from the node under consideration.  
To achieve this, three simplifying assumptions are made.  
First, all hydrodynamic drag forces are neglected.  It is 
assumed that the marine vehicle behaves as a double 
integrator in each degree of freedom.  Less input thrust is 
required to move a double integrator from one location to 
another than to move an equivalent mass with any amount 
of hydrodynamic drag, and so this assumption will aid in 
producing an underestimate.  The second simplifying 
assumption is that regardless of the vehicle pose at the 
node being evaluated, it is assumed that a thruster is 
pointing directly at the goal so that the double-thruster 
cost will never be applied in generating the cost-to-go.  
The only input cost that will be used is the cost associated 
with running a single thruster.  The third assumption 
projects the vehicle velocity onto a vector connecting the 
vehicle’s current position and the goal, neglecting the 
velocity component normal to this vector.  The only thrust 
required by the heuristic will be thrust directed at the goal.  
The resulting procedure for computing the cost-to-go is 
given by (10): 

                           

m
F

d
m
FVV

t goal
0

02
00 2


                             (10) 

                          
0*)( CTtfloorC plangoalgo   

This procedure directly computes the time required to 
reach the goal from the current vehicle position, tgoal.  
This closed-form solution is possible because of the double 
integrator assumption. V0 represents the net velocity in the 
direction of the goal, which is positive when the vehicle is 
moving toward the goal and negative when the vehicle is 
moving away from the goal.  The distance between the 
current position and the goal is d, and F0 represents the 
fixed amount of thrust that may be applied by a single 
thruster.  The mass of the vehicle is m, Tplan is the fixed 
time interval over which each input command is applied, 
the “floor” function rounds its argument down to the 
nearest integer, and C0 is the baseline unit of cost 
introduced in Figure 6.  It has not been proven that this 
procedure yields a cost-to-go heuristic that is always 
admissible, but it has thus far yielded satisfactory 
planning results and fast algorithm convergence.  The 
only possibility left to chance by this heuristic is that 

thrusting, followed by coasting, may sometimes be the 
most cost-efficient behavior.  Since computing the exact 
time to turn off the thrusters and begin coasting in the 
computation of Cgo is yet another optimization problem, 
the double integrator and velocity vector assumptions are 
used instead to offset any possibility of getting to the goal 
at a lower cost by coasting. 

C. Robustness-Augmented Cost Function 
The final and most unique feature of this kinodynamic 

A* algorithm is the consideration of robustness against 
perturbations to the marine vehicle.  In addition to the 
cost-to-come and the cost-to-go, the cost function used in 
this analysis includes a term which evaluates the 
robustness of the path from the start node to the current 
node by applying the performance metric introduced in 
Section IV. This new cost is concerned only with the 
specific path traveled so far, and so it is an additional 
cost-to-come.  The complete cost function is given by 
(11): 
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The robustness component of the cost function consists 
of a tunable weight W multiplying the base ten logarithm 
of the difference between a perturbation matrix norm and 
an exponential performance metric, the two components 
of the inequality of Theorem 3.  The robustness 
parameters are obtained by designating the trajectory 
under consideration between the start node and the 
current node to be the vehicle’s nominal trajectory.  A 
series of LKF and feedback control gains are computed for 
this nominal trajectory so that a closed loop transition 
matrix may be formulated for the system.  The 
perturbation matrix is computed according to (8) for a 
benchmark perturbation size selected for the entire 
duration of the algorithm.  The perturbation is applied to 
the vehicle in positive and negative x and y at each 
sampling instant of the trajectory, and the A matrix with 
the largest Euclidean norm over the entire nominal 
trajectory, over all perturbations considered, is selected for 
the robustness cost function.  A large perturbation size is 
selected so that A is always greater than the robustness 
performance metric and the argument of the logarithm in 
(11) is always positive.  The exponential parameters r and 
m, which were first introduced in Theorem 3, are obtained 
by bounding the marine vehicle’s transition matrix norm 
along the A*-formulated nominal trajectory with an 
exponential function.  In this procedure, the norm of 
(k,k0) from every instant k0 to every instant k along the 
entire nominal trajectory is no longer considered.  Instead 
r and m are obtained  by  fitting an exponential function to  



  

 
Figure 7: Results from regular and robustness-augmented A* when the start 
and goal waypoints are separated by a horizontal distance of 0.7m.  Three 
cases with different vertical distances from the three-feature baseline are 
considered.  A robustness weight of 100 is required to produce the curved 
trajectory for the 0.2m case, a weight of 200 is required to produce the 
curved trajectory for the 0.3m case, and no weight is capable of producing a 
curved trajectory in the 0.4m case.  The points plotted represent the location 
of the vehicle at each sampling instant along the A*-planned path.  A photo 
of the laboratory test platform is also provided. 
 
||(k,k0)|| for the single k0 which corresponds to the start 
node. This simplification is made to improve 
computational efficiency of the algorithm, since many 
hundreds of nominal trajectories might be evaluated over 
the course of the A* algorithm, and computing the norm 
of (k,k0) for every possible k and k0 is an expensive task.  
The only consequence is that the stability guarantees of 
Theorems 2 and 3 now pertain to asymptotic rather than 
uniform asymptotic stability. 

D. Performance of Algorithm 
The motion planning results to follow discuss 

trajectories which have been planned for a scaled-down 
holonomic laboratory platform (pictured in Figure 7) 
rather than the HAUV itself.  Testing the algorithm on 
this platform will allow simple plans using small numbers 
of features to be executed before scaling up to the HAUV.  
To evaluate the A* algorithm’s performance, a set of three 
collinear features is selected and (0,0) and (0,0.7) are 
chosen as start and goal waypoints in the x-y plane.  
Figure 7 displays the three-feature map and the 
trajectories produced by A* with and without a robustness 
cost for three different separation distances between the 
features and the waypoints.  

In the absence of a robustness cost (achieved by setting 
the weight W from (11) to zero), A* yielded a horizontal 

straight-line trajectory between the two waypoints.  This 
makes intuitive sense as it achieves the shortest spatial 
distance between the two points and it uses the cheapest 
and most basic application of thrust.  In each case where 
W was set to zero the algorithm used two consecutive 
applications of the surge thruster to reach the goal.  By 
setting the robustness weight to larger values, a curved 
trajectory eventually emerged which departed from the 
energy-efficient path to stay in more robust locations 
relative to the features.  In all locations where the curved 
path emerged, it consisted of a simultaneous application 
of thrust in positive surge and negative sway, followed by 
an application of positive thrust in sway, after which the 
vehicle refrains from using thrusters and coasts to the goal 
for the remainder of the trajectory.  Relative to the 0.2m 
vertical separation between the waypoints and the three-
feature baseline, the 0.3m separation required twice the 
weighting factor to force the vehicle away from the 
regular A* path, and no weight was found which could 
force the trajectory with 0.4m separation to curve its path.  
These results suggest that as the three-feature baseline is 
moved closer to the designated waypoints, the regular A* 
trajectory becomes less and less robust. 

E. Jacobian Sensitivities 
As numerical computation revealed, the measurement 
Jacobian is significantly more sensitive to perturbations 
along the horizontal straight-line trajectories than to 
perturbations along the robustness-optimal curved 
trajectories for the 0.2m and 0.3m separation distances.  
The part of the trajectory with the greatest sensitivity was 
the portion near the center of the three-feature baseline.  
An examination of the perturbation norm ||A||max and the 
ratio of exponential parameters (1-r) to m revealed that the 
greatest sensitivity is present in the perturbation norm, 
and it is contributed largely by the error H in the 
nominal measurement Jacobian when the vehicle is 
perturbed.  H represents, as it does in (7) and (8), the 
difference between the nominal measurement Jacobian 
used by the LKF for localization and a Jacobian linearized 
about the vehicle’s perturbed location.  This error in the 
measurement Jacobian is displayed graphically in Figure 
8, which illustrates the size of H for perturbations of 
0.1m in x and in y, respectively, for each of the A*-
computed nominal trajectories that is plotted in Figure 7.  
The size of the H matrix is represented by computing the 
Euclidean norm.  The location of each bar in Figure 8 
corresponds approximately to the location of the 
respective point in x along the A*-computed nominal 
trajectory.   

Figure 8 demonstrates that the measurement Jacobian is 
especially sensitive to perturbations from the 0.2m 
horizontal  straight-line  trajectory,  which  was computed  
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with a robustness weight W of zero.  It was second-most 
sensitive to perturbations from the horizontal trajectory 
spaced 0.3m from the baseline.  Both robustness-
augmented curved trajectories yield significant 
improvements in the sensitivity of the measurement 
Jacobian, and also in the overall robustness cost assigned 
to the trajectory.  In particular, for the 0.3m spacing case 
the robustness-augmented trajectory accumulates a 
robustness cost-to-come of 1, while the regular A* 
trajectory accumulates a robustness cost of 47.  Changes 
in nominal trajectory had almost no effect on the ratio 
produced using exponential parameters m and r, which 
are nearly identical in value for all trajectories.  All of the 
sensitivity to perturbations was exhibited in the 
perturbation norm ||A||max, and in particular this 
sensitivity can be traced to the measurement Jacobian.   

VI. CONCLUSION 
We have reported recent progress in the effort to 

achieve autonomous ship hull inspection in the areas of 
perception, stability analysis, and motion planning.  First, 
mine-shaped training targets were identified and mapped 
by the HAUV in real time, and bathymetry sonar is used 
to construct a detailed 3D representation of a ship’s 
running gear.   

In addition, a stability analysis has been applied to a 
planar model of a ship hull inspection vehicle, and it has 
been shown that (k,k0), the vehicle’s linearized time-
varying transition matrix, can be computed to evaluate the 
stability of the unperturbed system.  It has also been 
shown that by considering perturbations to the system, a 
performance   metric   can   be   derived   which  allows  a 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

comparison of robustness among different system 
configurations. This performance metric allows us to 
discern the impact of subtle aspects of filter conditioning, 
such as the sequence in which features are observed, on 
the robustness of the closed-loop vehicle.  The use of this 
technique yields a procedure for evaluating which of 
several candidate trajectories is best-equipped to tolerate 
perturbations.     
 Finally, a kinodynamic planning algorithm was 
introduced which deviates from the shortest path between 
waypoints to achieve a stronger guarantee of asymptotic 
stability in the presence of perturbations.  We hope that 
continued consideration of the dynamic stability of an 
integrated localization, mapping, and control process will 
allow for the implementation of more robust and 
aggressive motion planning and control algorithms on the 
HAUV as we enhance its reliance on feature-based 
navigation. 
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