Computer and Digital System Architecture

EE/CpE-810-A

Bruce McNair
bmcnair@stevens.edu
Week 12

Embedded ARM applications

Furber Ch. 13
System-on-a-chip concept

- CPU
- MMU
- Memory
- Coprocessor(s)
- I/O Interface(s)
- Special Purpose Hardware
- Peripherals
- Memory
Ruby II advanced communication controller

- ARM core
- 512x32 SRAM
- Interrupt controller
- Counter/timer
- Clock control
- Parallel I/F 1,2,3,4
- I/O mode select
- PCMCIA host interface
- UART1 (2)
- Host FIFOs (16x8)
- Serial FIFOs (16x8)
- Serial controller
- Parallel interface 0
- External bus control
- External interrupts (3)
- Control
- Address (22)
- Data (8/16/32)
- I²C
- 8 data bits & control
- Serial
- High-speed serial I/F
Ruby II advanced communication controller

<table>
<thead>
<tr>
<th>Mode</th>
<th>Function</th>
<th>Current</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-line</td>
<td>All circuits clocked at full speed</td>
<td>30 mA</td>
<td>150 mW</td>
</tr>
<tr>
<td>Command</td>
<td>ARM core runs with 1-64 wait states, all other circuits run at full speed.</td>
<td>7.9 mA</td>
<td>40 mW</td>
</tr>
<tr>
<td></td>
<td>Interrupts cause system to change to on-line mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep</td>
<td>Other than oscillators and timers, all circuitry stopped. Some interrupts change system to on-line mode</td>
<td>1.5 mA</td>
<td>7.5 mW</td>
</tr>
<tr>
<td>Stop</td>
<td>All circuits (including timers and oscillators) stopped. Some interrupts return system to on-line mode</td>
<td>150 μA</td>
<td>750 μW</td>
</tr>
</tbody>
</table>

Power consumption at 5V, 20 MHz

80-pin TQFP package

Ruby II available in 144 and 176-pin TQFP as standard communications processor
Typical VIP (VLSI ISDN Subscriber Processor) system configuration

- Display
- V24 interface
- S0 ISDN interface
- Driver
- Power
- ROM
- RAM
- ISDN subscriber processor
- Volume
- Hands-free
- Hook switch
- KEY
- PAD
VIP organization

36.864 MHz during normal operation

460.8 kHz during power-down

Reset if no activity for 1.28 sec

Refresh DRAM every 2.5 ms

36.864 MHz during normal operation

460.8 kHz during power-down

Reset if no activity for 1.28 sec

Refresh DRAM every 2.5 ms
Clock generation

(1) Generating low speed clocks, e.g., 1 second signal for RTC

32.768 kHz

piezoelectric crystal oscillator

Divide by $N = 2^{15}$

1 Hz

How do you generate clocks at higher frequencies than oscillator?
Clock generation

(2) Generating high speed clocks, e.g., processor clock at 50 MHz

- System clock oscillator
- M/N PLL
- piezoelectric crystal oscillator

\[f_{\text{ref}} \rightarrow \text{System clock oscillator} \rightarrow \text{M/N PLL} \rightarrow M/N \times f_{\text{ref}} \]
Clock generation

(2) Generating high speed clocks, e.g., processor clock at 50 MHz

\[f_{\text{out}} = f_{\text{ref}} \times M \]
Clock generation

(2) Generating high speed clocks, e.g., processor clock at 50 MHz
Clock generation

(2) Generating high speed clocks, e.g., processor clock at 50 MHz
(2) Generating high speed clocks, e.g., processor clock at 50 MHz
(2) Generating high speed clocks, e.g., processor clock at 50 MHz

\[f_{\text{out}} = f_{\text{ref}} \times M \]
(2) Generating high speed clocks, e.g., processor clock at 50 MHz

\[f_{out} = f_{ref} \times \frac{M}{N} \]
(2) Generating high speed clocks, e.g., processor clock at 50 MHz

Clock generation

\[f_{out} = f_{ref} \times \frac{M}{N} \]
Typical GSM handset architecture
GSM handset power management

- Power down most circuitry (digital, analog, RF) between calls, except to periodically listen on control channel for calls
- Slow down clocks in idle mode
- Pulse-width modulate battery charging circuitry for optimum operation
- Use A/Ds to monitor battery temperature and change/discharge voltage
OneC VWS22100 GSM chip organization

- GSM protocol stack
- user interface
- power management
- peripheral I/O
- data applications

- Voice coding
- equalization
- channel coding
- echo cancellation
- noise suppression
- voice recognition
- data compression

EE810A
4/18/2011
Bluetooth networking

- Piconet master
- Piconet slaves

Ad-hoc piconet
~10 cm – 10 m range
2 – 8 stations
Common hopping sequence and synchronized clocks
Bluetooth networking

Scatternet made of multiple piconets
Typical Bluetooth application

- Flash memory
- Bluetooth baseband controller
- Radio module
- Host interface (RS232/USB)
Ericsson-VLSI Bluetooth Baseband Controller organization

Ericsson Bluetooth Core
- link controller
- packet handling
- radio interface
Bluetooth chip power

<table>
<thead>
<tr>
<th>Mode</th>
<th>Function</th>
<th>Current</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-line</td>
<td>All circuits clocked at full speed</td>
<td>30 mA</td>
<td>75 mW</td>
</tr>
<tr>
<td>Command</td>
<td>ARM7TDMI core runs with wait states,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep</td>
<td>ARM7TDMI is stopped, power state of other circuits is programmable</td>
<td>300 µA</td>
<td>750 µW</td>
</tr>
<tr>
<td>Stop</td>
<td>Clock oscillators are stopped</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ericsson Bluetooth chip

approx. 4.5 mm
Next steps

Integration of RF circuitry with digital and processor circuits
Typical ARM7500 system organization

Functions included:

CPU
Floating point co-processor
Video and sound I/F
Memory and peripheral controller
→ nearly complete PC function

Applications
• Acorn RISC PC
• Video set top box
ARM7500 chip

approx 8.5 mm
The Psion Series 5MX PDA
The Psion Series 5 hardware organization
ARM7100 organization

- ARM710a
 - MMU
 - ARM7 core
 - 8 kbyte cache
 - LCD controller
 - interrupt controller
 - AMBA

- External bus control
 - Address (28)
 - Data (32)

- Control
- Power mgmt
- Counter/timers

- UART
- Codec I/F
- Sync serial
- Parallel I/O

- DRAM controller
 - DRA (13)
 - RAS, CAS (8)
 - WE, OE (2)

- Expansion
- PSU control

- Clock PLL
- RTC osc
- 3.6864 MHz
- 32.768 kHz
ARM7100 chip
SA-1100 organization

- CPU core
- Instruction MMU
- Instruction cache
- StrongARM core
- Data cache
- Mini-cache
- Data MMU
- Write buffer
- Read buffer
- System bus
- Memory & PCMCIA
- Serial 0
- Serial 1
- Serial 2
- Serial 3
- Serial 4
- Codec (4)
- UART (2)
- IrDA (2)
- USB (2)
- SDLC (2)
- Serial 0
- Serial 1
- Serial 2
- Serial 3
- Serial 4
- Control
- Address (26)
- Power manager
- Reset (2)
- Battery (3)
- I/O pins (28)
- 32.768 kHz
- 3.6864 MHz
- Clock PLL
- RTC oscillator
- RTC
- Interrupt control
- OS timer
- Reset control
- LCD control
- LCD (5)
SA-1100 chip

approx 9 mm