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ABSTRACT: We develop a new linear-regression-based method
for determining surface tension, γ, from interfacial curvature.
Across a static fluid−fluid interface, γ is balanced by the difference
in hydrostatic pressure, ΔP. The balance is described by the
Young−Laplace relation: ΔP = γ (k1 + k2), where k1 + k2 is the
sum of the principal interfacial curvatures. Along the interface, ΔP
varies linearly with elevation. It has been assumed that, even when
there is surfactant at the interface, γ is constant along the interface.
If this assumption is correct, then, according to the Young−Laplace
relation, k1 + k2 must also vary linearly with elevation. For images
of a constrained sessile droplet and a captive bubble, each with an interfacial dipalmitoyl phosphatidylcholine (DPPC) monolayer
that is compressed to varying degrees, we determine the offset in ΔP from that at a reference elevation, ΔP − ΔPo, and k1 + k2 at
interfacial points of different elevations. We find that k1 + k2 indeed varies linearly with elevation. Thus, if we plot ΔP − ΔPo versus
k1 + k2, we obtain a linear plot with a slope equal to γ. We develop and make available an algorithm for determining γ by linear
regression. And we assess accuracy by comparison to γ values determined by axisymmetric drop shape analysis. For a droplet or
bubble with a DPPC monolayer, over a γ range of 2−70 mN/m, the absolute value of the difference in γ determined by the
alternative methods averages 0.30 ± 0.37 mN/m. Further, while we apply the method to axisymmetric interfaces and make use of
axisymmetry to determine the curvature from two-dimensional images, the underlying theory does not require axisymmetry. With
3D volumetric imaging, the method could potentially be extended to more complex interfacial geometries.

■ INTRODUCTION
Across static fluid−fluid interfaces, the trans-interfacial hydro-
static pressure difference, ΔP, balances surface tension, γ. The
balance is described by the Young−Laplace relation:1 ΔP = γ
(k1 + k2), where k1 and k2 are the principal interfacial
curvatures and we refer to k1 + k2 as the summed curvature. In
the absence of or with negligible gravity (Bond number Bo =
ΔρgL2/γ ≪ 1, where Δρ is the difference between the
densities of the fluids at the interface, g is the gravitational
constant, and L is a characteristic length), interfacial curvature
would be spherical. However, gravity morphs the interface
from spherical. As such, curvature varies along the interface
with elevation and, for Bo > 1, γ can be determined from
analysis of that variation in curvature.

Along an interface, gravity causes ΔP to vary linearly with
elevation. Thus, according to the Young−Laplace relation, the
summed curvature, too, would need to vary linearly with
elevation in order for γ to be constant along the interface.
From the contour alone, ΔP cannot be determined. However,
the offset in ΔP from ΔP at a reference elevation, ΔP − ΔPo,
can be calculated and also varies linearly with elevation. Thus,
plotting ΔP − ΔPo versus the summed curvature should be
informative. A nonlinear relation would indicate that the
summed curvature varied nonlinearly with elevation and γ

varied along the interface. A linear relation would indicate that
the summed curvature varied linearly with elevation and γ was
constant along the interface. Further, with a linear relation, the
value of the slope would be the surface tension.

Surface tension determination from interfacial contour has
been performed previously, and is performed in the present
study, for axisymmetric interfaces. Existing methods assume γ
to be constant along the interface. An approach developed by
Malcolm and Elliott employs numerical solution of the
differential equation for the meridian curve of a droplet or
bubble.2 For this method, gravity-induced deviation from a
spherical contour is specified by a shape factor that is a
function of capillary length, LC = g/( ) , and γ is assumed
to be constant. An alternative approach, axisymmetric drop
shape analysis (ADSA), employs differential equations para-
meterized as a function of an arc length variable along the
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interface.1,3 The solution of the equations comprises numerical
integration, optimal fitting of a theoretical curve to an
experimentally-captured interfacial contour, and an assumption
that γ is constant.

ADSA typically yields an excellent fitting of the theoretical
curve to the experimental interfacial contour, which suggests
that the assumption of constant γ is appropriate. However, for
droplets or bubbles with surfactant monolayers, whether the
summed curvature varies linearly with elevation and γ is
constant along the interface has not, to our knowledge, been
directly explored. And it is not a given that γ be constant.
Along a static interface with a surfactant monolayer,
Marangoni forces tend to normalize the surfactant concen-
tration and thus γ. However, interfacial surfactant concen-
tration, and γ, can vary when Marangoni forces are opposed by
other forces. In a soap bubble, for example, Marangoni forces
are balanced by fluid weight. Over the height of a large soap
bubble, γ can vary ∼100%.1

Here, for the particular systems of a droplet and a bubble
with dipalmitoyl phosphatidylcholine (DPPC) monolayers, we
test the assumption that γ is constant. We evaluate the
variation in summed curvature with respect to elevation, thus
performing our analysis in the direction of action of the
gravitational force that deforms the interface from spherical.

■ METHODS
We first present relevant theory and develop an algorithm for using
linear regression to determine γ. We next detail experimental methods
for imaging and analyzing sessile droplets and captive bubbles with or
without interfacial monolayers compressed to different surface
tensions. We finally detail metrics for validating regression-determined
surface tension, γRegression, by comparison to ADSA-determined surface

tension, γADSA (software purchased from Neumann, W. A., University
of Toronto).
Theory. Consider a sessile fluid droplet (Figure 1A). Across the

interface at the origin, at the top of the droplet where depth h ≡ 0,
there is pressure difference ΔPo = PF1o − PF2o, where PF1 and PF2 are
the pressures in fluids 1 and 2, respectively. At a greater depth, hi, ΔPi
= PF1i − PF2i. The pressures at the two depths are related by
hydrostatic variation

P P P gh P gh( ) ( )F i F i F o F i F o F i1 2 1 1 2 2= + + (1)

where ρF1 and ρF2 are the densities of fluids 1 and 2, respectively.
Note, PF1o and PF2o are not known, though their difference, ΔPo, can
be determined as detailed below, and the position of h ≡ 0 at the top
of the droplet is arbitrary but convenient.

Alternatively, PF1i − PF2i can be determined from the Young−
Laplace relation

P P k k( 1 2 )F i F i i i1 2 = + (2)

where k1i and k2i are the principal curvatures of the droplet interface
at depth hi. Further, for an axisymmetric interface, k1i and k2i can be
determined from local interfacial geometry (Figure 1A)1,3

k s1 d /di i= (3)

and
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R
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where θi is the angle between the interfacial tangent at hi and the
horizontal; s is the arc length variable; R2i is the perpendicular
distance between the interfacial tangent at hi and the central axis of
the droplet; and R2Hi is the horizontal radius of the droplet at hi.
Combining eqs 1 and 2 yields

gh P P k k( ) ( ) ( 1 2 )F F i F o F o i i1 2 1 2= + + (5)

Figure 1. Regression-based surface tension determination method for a sessile droplet. (A) Schematic of sessile droplet. Depth below origin, o, at
the top of the droplet indicated by h. Arc length variable s increases in clockwise direction along the interface on the right side of the droplet.
Interfacial pressure drop ΔP is the difference between pressures PF1 and PF2 of fluids #1 and #2 inside and outside of the droplet, respectively.
Pressures PF1 and PF2 vary hydrostatically, proportional to fluid densities ρF1 and ρF2, respectively. At depth hi, interfacial tangent forms angle θi with
horizontal, distance to central axis in direction normal to tangent is R2i, and horizontal radius is R2Hi. The angle between R2i and central axis is also
θi. (B) At multiple depths, one can determine (i) offset in ΔP from that at a reference elevation, ΔPi − ΔPo = (ρF1 − ρF2)ghi, where g is the
gravitational constant; and (ii) summed curvature k1i + k2i, where k1i and k2i = 1/R2i are the principal interfacial curvatures that are determined as
detailed in the text and Figure 3. Plotting ΔPi − ΔPo vs k1i + k2i yields a relation with an intercept equal to −ΔPo = −(PF1o − PF2o) and a slope
equal to surface tension, γ. If the relation is linear, then γ is constant along the interface.
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Figure 2. Regression-based surface tension determination algorithm. (A) Images of a constrained sessile droplet (CSD; left, 0.004 mm/pixel) and a
captive bubble (right, 0.01 mm/pixel) with dipalmitoyl phosphatidylcholine (DPPC) monolayers, for which axisymmetric drop shape analysis
(ASDA)-determined surface tension, γADSA, is listed. In the CSD image, the red asterisk marks the elevation of the pedestal surface. (B)
Pseudocolor versions of images from (A) following the normalization of intensity values to range of 0−1 and Gaussian smoothing. In insets, red
asterisks mark pixels detected by subsequent Canny edge detection. Central color scale, ranging from 0 to 1, applies to images of (B−D) for
intensity and gradient. (C) Maximal gradient magnitude images with blue background and yellow candidate-edge pixels identified by Canny edge
detection plus thresholding. (Yellow edge pixels are faintly visible on left sides of the droplet/bubble interfaces. Edge pixels are continuous around
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which may alternatively be written as

P P P k k( 1 2 )i o o i i= + + (6)

Determining ΔPi − ΔPo and k1i + k2i at different depths, hi, along the
interface and plotting the former versus the latter will yield a relation
with an intercept equal to −ΔPo = −(PF1o − PF2o) and a slope equal to
γ. A linear relation would demonstrate that γ was constant along the
interface (Figure 1B).
Algorithm. Our algorithm for determining γ by linear regression

(for Matlab code, see Web site of corresponding author) may be
applied to a grayscale intensity image of a droplet or bubble (Figure
2A).

Overview. We image a droplet or bubble, identify interfacial pixels
by Canny edge detection, sequentially order the edge pixels to
generate an edge line, and, to reduce the effect of pixelation, spatially
filter the line to obtain a smoothed edge curve. From the set of all
filtered edge points, we identify a subset as analysis points at which to
determine ΔPi − ΔPo and summed curvature. To determine the
summed curvature at a given analysis point, we identify two

supporting points before the analysis point and two supporting
points after the analysis point with specified arc length interval dsK/2
between sequential points. We use the supporting points to construct
tangents to the interface. We determine tangent angles with respect to
the horizontal, determine how tangent angle varies in the arc length
direction, and use that information to calculate the summed curvature
according to eqs 3 and 4. To further reduce the effect of pixelation, at
each analysis point, we use as the summed curvature the average of
individual summed curvature values calculated using a range of dsK
values. We plot ΔPi − ΔPo versus average summed curvature and
observe whether the slope, γ, is constant.

Grayscale Intensity Image and Preliminary Steps. One begins by
specifying in the code the variables in Table 1. In the case of a droplet,
it is necessary to specify the elevation of the supporting surface and
one has two options for doing so. First, one can set the variable
ClickAtDropletBottom to 1 and will be prompted to click in the
droplet image with a mouse at the elevation of the supporting surface
(lateral position not important). Alternatively, one can set
ClickAtDropletBottom to 0 and, in the code, set the variable zBottom

Figure 2. continued

the CSD and around most of the captive bubble, though not continuous at the bottom of the bubble. However, continuity of single-pixel-wide edge
is not apparent due to the resolution of figures.) Inset of bubble image shows that edge detection alone, without thresholding, fails to isolate the
bubble interface (white arrow). Colored boxes indicate areas selected with the mouse around top (green), left (cyan), right (pink), and bottom
(red, bubble only) edge pixels. Program automatically finds extreme edge pixels (yellow circles) within boxes and averages extreme left and right
edge pixels to obtain the central pixel (additional yellow circle). Edge pixels are sequenced, starting to left of center at top of the droplet or below
agarose on right side of bubble and continuing to droplet-supporting surface or to left of center at bottom of bubble. Then, cyan line connects
sequenced edge pixels. (D) Gradient images of (C) overlaid with truncated, filtered edge curves (red curves) that extend nearly but not all the way
to the ends of cyan lines. Location of lowest curvature is at top of droplet, bottom of bubble. In an analysis region ranging from 5 or 10% to 60% of
the vertical elevation away from location of lowest curvature, analysis points (red circles) are added atop red edge curve, and a tangent line
(orange) is drawn at each analysis point. Density of analysis points and tangent lines is greater along the droplet than the bubble edge as the droplet
is imaged at a higher resolution. (E) Regressions used to determine surface tension values γRegression. For droplet, ΔP increases with depth; thus, top
is the location of the lowest ΔP − ΔPo. For bubble, ΔP decreases with depth; thus, top is the location of the highest ΔP − ΔPo.

Table 1. Parameters Input to Program

parameters specified in first section of code that should be tailored to image being analyzed

System 1�Droplet; 2�bubble
InputImageFileName Text string with image file name including extension, e.g. 'input file.tif' or 'input file.jpg'
OutputTextFileName Text string with output file name including extension, e.g. 'output file.txt'
PrinterHeaderToOutputFile 0�No, do not write column headers before writing data; 1�yes, write column headers
PrintDataToOutputFile 0�No, do not write data to file; 1�yes, write data to file
SaveFigures 0�No, do not save figure files; 1�yes, save figure files
GradThresh Gradient threshold must be >0 and <1, is typically 0.2−0.6. Should be set to value greater than that of bright subphase pixels in

gradient image and less than that of interface pixels in gradient image so that no structures in subphase connect to interface.
Should also be set so that interfacial pixels are continuous in region of maximal diameter. In contrast, continuity of pixels in top
region of droplet/bottom region of bubble is not essential.

CommentsPrevRun Text string�add comments re. previous run, to be added to end of previous line in output file
CommentsCurrentRun Text string�add comments re. run about to be performed, to be added to start of new line in output file
Wpix Pixel width, in mm
ClickAtDropletBottom For droplet: 0�no (must enter row number of droplet supporting surface in subsequent zBottom variable); 1�yes, be prompted to

locate droplet bottom with mouse click in image. For bubble: N/A, parameter not used.
zBottom For droplet, if ClickAtDropletBottom = 0, enter pixel row number (top row is row #1) of supporting surface in image. Should use

row number from grayscale image, not pseudocolor image, as latter is cropped during smoothing by Gaussian convolution.
rhoL Density of the less dense fluid, in kg/m3

rhoH Density of the denser fluid, in kg/m3

parameters specified in second section of code that do not normally need to be modified

dsFilter 0.1�Arc length over which to spatially filter edge line, in mm
f1 0.05 �For droplet; 0.1 for bubble. Fraction of total interfacial elevation below top of droplet or above bottom of bubble at which to begin

analysis region
f 2 0.6�Fraction of total interfacial elevation below top of droplet or above bottom of bubble at which to end analysis region.
EnableCropping 0�Not provided option of cropping regression curve; 1�provided option. Should set to 1 when using high f 2 > 0.6, such that may encounter

instability in curvature k1 near end of edge curve
dsKcap 0.6�Maximum value of arc length dsK over which to determine curvature, in mm
dsKrange 0.05�Range of dsK values, in mm, over which to obtain individual summed curvature values that will be averaged to obtain the employed

summed curvature value for a given analysis point
g 9.81�Gravitational constant, in m/s2
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to the row number (top row is row #1) of the supporting surface. In
this case, the row number is best determined by imaging the
supporting surface prior to droplet deposition, determining surface
elevation in the original grayscale version of that image and then
keeping supporting surface elevation constant relative to camera
elevation during subsequent droplet imaging. The latter option must
be employed for a constrained sessile droplet (CSD) when there is no
discontinuity in slope between the fluid−fluid interface and the angled
pedestal edge.

Pseudocolor Intensity Image. Intensity values are normalized to
span from 0 to 1. To reduce noise, Gaussian convolution is applied to
the normalized intensity image.4 A pseudocolor intensity image is
then generated (Figure 2B, main images), along with a color scale.

Gradient Image. Canny edge detection is used to locate pixels at
the interface. In a scheme adapted from Rachmawan,4 the smoothed
pseudocolor image is convolved separately with x- and y-Sobel filters
to produce x- and y-gradient component matrices. From the gradient
component matrices, resultants and arc tangents are calculated to
determine gradient magnitude and direction, respectively, for each
pixel. Gradient directions are binned into 45° categories. Then, the
gradient magnitude of each pixel is compared with those before and
after it in the local gradient direction. Gradient magnitudes that are
not local maxima are suppressed. Gradient magnitude values are
normalized from 0 to 1 and a pseudocolor gradient image depicting
candidate edge pixels is generated (Figure 2C).

In the case of a turbid subphase, the gradient image contains bright
pixels at the fluid−fluid interface and also often at the edges of
structures in the subphase. Any such extraneous bright pixels that abut
the interface (Figure 2C inset, white arrow) will cause problems with
edge identification. Thus, the gradient image is thresholded at the
level of the GradThresh parameter (Table 1), which should be set
between the normalized gradient values of bright subphase pixels and
brighter edge pixels. The result is a gradient image with a single-pixel-
wide interfacial edge (faint yellow pixels on the left sides of interfaces
in main Figure 2C images) surrounded by blue pixels with low/zero
normalized gradient values. The yellow edge pixels need not be
continuous over the full edge, for example, they may be discontinuous
at the tops of droplets/bottoms of bubbles. To obtain an accurate
result for γ, however, it is important that the edge pixels be continuous
in the region of maximum diameter. Thus, with a turbid subphase, the
GradThresh parameter should be specified at a low enough value that
the edge pixels in this region are continuous. For interfaces that are
surrounded by uniform-intensity fluids, the value of the GradThresh
parameter is not critical but must be greater than zero because it is
used in additional steps below.

Identification of Extreme Edge Pixel Locations. After detection of
the interface, the user is asked to identify the locations of the extreme
top, left, right, and bottom edge pixels. Identification of these
extremes serves two purposes. First, they are used to locate the central
axis, which is required for determining k2 (Figure 1A and eq 4).
Second, as in the schematics of Figure 1, we use the right side of the
interface for γ determination. When sequencing right-side edge pixels,
as detailed below, the extreme top, right, and bottom edge pixels are
used as landmarks.

The user is asked to use the mouse to select boxes around the
locations of the extreme interfacial edge pixels (Figure 2C). For a
droplet, the user, having already identified the elevation of the
supporting surface, selects the locations of the extreme top, left, and
right pixels. Captive bubbles float against a dome of agarose, or
alternative material, that obscures the location of the upper interface.
Thus, for a captive bubble, the user selects a location around a portion
of the interface just below the dome and on the right side of the
bubble, where the first analysis pixel will be identified, and selects the
locations of the extreme left, right, and bottom pixels. All selected
regions should be wide enough to capture the extreme top, bottom, or
side pixel as well as less extreme pixels before and after it along the
interface. Once a particular region is selected, the extreme edge pixel
in the region is automatically identified by an algorithm that makes
use of the GradThresh parameter.

The extreme edge pixels are marked with open yellow circles in the
gradient image (Figure 2C). The average of the extreme left and right
edge pixels, the x-position of which is used as the location of the
central axis, is also marked with a yellow circle. Correct positioning of
the yellow circles should be verified visually. If the yellow circles are
not appropriately located on, for example, a bubble interface, then the
GradThresh parameter may need to be adjusted to separate the edge
pixels from any bright pixels in the subphase. To obtain accurate
surface area and volume values for a droplet (detailed below), the top
circle should be visually verified to align with the central circle. To
determine γRegression, perfect alignment of the top droplet circle or
bottom bubble circle with the central circle is not essential. That said,
significant misalignment may indicate that the interface is not
axisymmetric, for example due to the supporting surface for a droplet
not being level, or that the camera is not properly aligned.

Repeated analysis of the same image yields consistent γRegression
values. On repeated analysis of an image, the same automatically-
detected extreme edge pixels are identified. Manual selection of a
different droplet supporting-surface elevation or bubble top-pixel
location causes a slightly different γRegression value to be obtained. For
example, four replicate analyses of a γADSA = 44.25 mN/m constrained
sessile droplet image in which the identified supporting surface
elevation is varied over a 15 pixel elevation range yield γRegression of
44.18 ± 0.20 (standard deviation, SD) mN/m. Similarly, six replicate
analyses of a γADSA = 52.60 mN/m captive bubble image with slightly
varied top-pixel locating-box positions yield γRegression of 54.14 ± 0.36
mN/m. The variance of such repeated γRegression determinations is less
than the error of the γRegression method. Nevertheless, if one wishes to
reproduce exactly the results of a prior run, then one can, at the end of
the code section for extreme edge pixel identification, manually enter
the extreme edge pixel coordinates that were found and written to an
output data file in the previous run.

Edge Pixel Sequencing and Edge Curve Generation. We
sequence edge pixels along the right side of the interface from the
extreme top pixel to the supporting surface (droplet) or from the first
edge pixel to the extreme bottom pixel (bubble) as follows. We
identify the next-nearest edge pixel that has a gradient value exceeding
the value of the GradThresh parameter. And then we proceed to
sequence subsequent edge pixels. From the top pixel to the right-most
pixel, the edge progresses rightward and downward, and we use the
following search algorithm. With an initial search radius of one pixel,
the next edge pixel is identified by searching first to the upper right of
the current pixel and then proceeding downward along the right side
of the current pixel, followed by leftward along the bottom of the
current pixel. If necessary, the search radius is increased, one pixel at a
time, until the next edge pixel is found. Beyond the right-most pixel,
the edge changes direction to progress downward and leftward. Thus,
between the right-most pixel and supporting surface elevation
(droplet) or extreme bottom pixel (bubble), we change the search
algorithm to the following. With an initial search radius of one pixel
and again increasing the search radius as necessary, the next edge pixel
is identified by searching first to the lower right of the current pixel
and then proceeding leftward along the bottom of the current pixel,
followed by upward along the left side of the current pixel.

To analyze as much of the vertical range of the interface as possible,
it is desirable to locate analysis points near the top central point of a
droplet and the bottom central point of a bubble. Doing so requires
supporting points to be located to the left of the central axis. Thus, we
use similar algorithms to start the edge curve to the left of the central
axis for droplets and to extend the edge curve to the left of the central
axis for bubbles.

Once all edge pixels have been sequenced, they are connected by a
cyan line (right-hand side of interfaces in Figure 2C images). The
edge pixels are also marked with red asterisks on the pseudocolor
intensity image (Figure 2B, insets), enabling verification of
appropriate edge location.

Edge Curve Filtering. The cyan connecting line of Figure 2C is
jagged (visible in the enlarged images of Figure 4, below). To smooth
the line, we filter the line with a window of constant differential arc
length dsFilter. That is, we replace the x value of each edge pixel with
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the average of the x values of the edge pixels within a window
stretching by the distance dsFilter/2 in each direction along the edge.
We do the same for the y values. As linear pixel density varies along
the edge, the number of pixels in the window is variable. As half of the
dsFilter window is located to each side of the pixel being filtered, it is
not possible at the start and end of the series of edge pixels to average
over the full dsFilter window. To determine γRegression, the filtered edge
curve is truncated by dsFilter/2 at each end to avoid averaging over a
window smaller than dsFilter. The truncated filtered edge curve is
plotted in red atop the gradient image (Figure 2D, red curves along
the right sides of interfaces). The red edge curves largely obscure the
cyan connecting lines of Figure 2C except that, due to the truncation,
the red curves do not extend all the way to the ends of the cyan lines.

For droplets, an alternative nontruncated filtered edge curve is also
generated by retaining all edge pixels and filtering over as much of
dsFilter as possible. Differential arc lengths along the nontruncated
filtered edge curve between the top central point and the supporting
surface elevation are then used to determine surface area and volume
by integration. For constrained sessile droplets with interfaces that
end at a contact line at the pedestal rim, the determined surface area is
the droplet surface area. For (unconstrained) sessile droplets with
closed interfaces, which are continuous along and closely apposed to
the supporting surface, the program does not currently determine
complete surface area. For captive bubbles, given the disappearance of
the top of the interface into the dome above, the present approach
cannot be used to calculate surface area or volume. One could,
however, use γRegression and bubble width to find bubble height
according to the method of Malcolm and Elliott and then, from
bubble width and height, determine area and volume according to the
method of Schoel et al.2,5,6

Regression Analysis to Determine γ. To determine γRegression, we
use as analysis points edge curve points that are located within a
specified fraction of the available vertical elevation of the interface
(Figure 2D, red circles atop portions of the red edge curves). For
droplets, the total vertical elevation between the top central point and
the supporting surface is available. Relative to the top central point,
which is the location of lowest summed curvature, we analyze edge
curve points located between fractions f1 = 0.05 and f 2 = 0.60 of the
vertical distance to the supporting surface. For bubbles, the total
available vertical elevation is that between the first edge curve point
(selected below the dome material) and the bottom central point.
And it is the bottom central point that is the location of lowest
summed curvature. Because the total available bubble elevation is
cropped at the level of the dome material, fractional elevations
correspond to reduced absolute elevations. Thus, for bubbles,
compared with droplets, we start the analysis region at a greater
fractional distance away from the location of lowest summed
curvature at the bottom central point. Relative to the bottom central
point, we analyze bubble edge curve points located between fractions
f1 = 0.10 and f 2 = 0.60 of the vertical distance to the top point. The
full rationale for these choices of analysis regions is discussed below.

At each analysis point, we must determine ΔP − ΔPo and summed
curvature. We set depth h equal to zero at the top/first pixel and, at
each analysis point, calculate ΔP − ΔPo as (ρH − ρL)gh for a droplet
or (ρL − ρH)gh for a bubble, where ρL and ρH are the densities of the
lower and higher density fluids, respectively.

We determine the summed curvature as follows. Around each
analysis point, to determine k1 + k2, we locate four supporting points
at arc length intervals dsK/2 (Figure 3). We use the supporting points
to construct lines tangential to the interface (Figures 2D and 3). From
the orientation of the tangent at an analysis point�i.e., the angle
between the tangent and the horizontal�and the way that tangent
orientation changes along the interface, we determine k1 and k2
according to eqs 3 and 4, respectively, as depicted in Figure 3.

Image pixelation introduces error into curvature determination by
the above method. Thus, at each analysis point, to minimize error, we
use a range of dsK values to determine the local summed curvature
and then average the individual summed curvature values. In
particular, for each of 100 equally spaced dsK values across the
range, we identify the four supporting points at intervals dsK/2 before

Figure 3. Determination of curvature. Principal curvatures k1 and k2
at an example analysis point (red) determined with the assistance of
four supporting points (light green, green, cyan, and light blue)
identified at arc length intervals dsk and dsk/2 before and after the
analysis point. (A) Curvature k1 is determined, according to eq 3, as
dθ/ds = (θ2 − θ1)/dsk, where θ1 is the angle with respect to horizontal
of the green line that is tangent to green point #2 and that is
constructed between light green point #1 and the red analysis point,
which are separated by arc length dsk; θ2 is the angle with respect to
horizontal of the cyan line that is tangent to cyan point #3 and that is
constructed between the red analysis point and light blue point #4,
which are separated by arc length dsk; and dsk is also the arc length
between green point #2 and cyan point #3. (B) Curvature k2 is
determined, according to eq 4, as sin θ/R2H, where θ is the angle with
respect to horizontal of the red line that is tangent to the red analysis
point and that is constructed between green point #2 and cyan point
#3, which are separated by arc length dsk; and R2H is the horizontal
distance between the red analysis point and the central axis. (C)
Supporting points for dsK = 0.6 mm shown about an example red
analysis point on the interface of a CSD for which γADSA = 62.7
mN/m. Given the close packing of analysis points (Figure 2D), the
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and after the analysis point and calculate k1 and k2. Because only
discrete points are available along the edge curve for use as supporting
points, however, the 100 dsK values yield a limited number of different
sets of supporting points. (At least one of the four supporting points
must differ between two different sets of supporting points.) For each
set of supporting points, we obtain a value for the summed curvature.
We use the average of all individual summed curvature values for a
given analysis point as the summed curvature value at that analysis
point.

Empirically, we identify the following choices for the dsK values to
be used. We determine summed curvature using a dsK range of 0.55−
0.60 mm and 100 dsK values within the range. Near the ends of
droplet edge curves and the starts of bubble edge curves, however,
there is not sufficient room to locate supporting points at dsK = 0.60
mm before and after each analysis point. Therefore, we decrease dsK
as necessary but still use a dsK range of 0.05 mm and 100 dsK values
within the range. Further algorithmic details for analysis points
located near the ends of edge curves are discussed below.

Across all analysis points, we plot ΔP − ΔPo versus k1 + k2 and
perform a linear regression to determine surface tension (Figure 2E).
Parameters used and results obtained can be written to a data output
file.
Experimental Methods. For droplet experiments, we image a

constrained sessile droplet with a DPPC monolayer atop a pedestal.
Similar to a published design,7 we use a 0.132 in diameter pedestal
surface with a 60° edge angle and a 0.021 in diameter central hole
(Columbus Machine Works, Columbus, OH) through which we add
or remove subphase liquid with a connected syringe. We illuminate
with a collimated LED light source (BL2 × 2-CL-B-24-ILD-BC-PS,
Metaphase Lighting Technologies, Bristol, PA) located 20 cm behind
the pedestal. We image with a monochromatic camera (EO-50232M,
2456 × 2054 pixels, 3.45 μm pixel size, Edmund Optics, Barrington,
NJ), a telecentric lens with an 11 cm focal distance (62-901, 0.9X LF
PlatinumTL Telecentric, Edmund Optics), and uEye image capture
software (IDS, Stoneham, MA). We establish a 40 μL droplet of
normal saline on the pedestal at room temperature, 20 ± 1 °C, and
capture an image. We deposit 37 ng of DPPC in 3 μL of chloroform
and wait for the chloroform to evaporate. We use the syringe to alter
subphase volume/interfacial surface area, and thus surface tension.
And we image the droplet over a range of surface tensions.

For bubble experiments, we image a captive bubble with a DPPC
monolayer using previously described methods.6,8,9 We establish a
bubble in buffered normal saline at room temperature, 23 ± 1 °C, and
capture an image. We spread a solution of DPPC in chloroform on
the surface of the bubble and the DPPC forms a monomolecular film.
Exhaustive exchange of the subphase removes the chloroform.8 We
inject saline into the subphase to decrease the bubble to different
volumes/surface areas and thus compress the monolayer to lower
surface tensions. And we image the bubble over a range of surface
tensions.

In an alternative series of bubble experiments, we establish a bubble
in water at room temperature of 23 ± 1 °C and do not spread lipid.
We compress the clean bubble so that the surface area decreases by
54%. We image the bubble over the range of surface areas.
Tuning and Statistical Methods. We initially analyze two

droplet and three bubble images (identified in Figure 7A, below) and,
by comparison of γRegression to γADSA, identify appropriate regression-
algorithm parameters (Table 1, bottom section). Then, for additional
droplet and bubble images, we use the identified parameters to
determine γRegression and we also determine γADSA.

We assess the correlation between regression-method results and
those of ADSA, reporting intercept and slope [95% confidence
intervals], as well as coefficient of determination, R2. We determine
the accuracy of the regression method by calculating

Error
(regression determined value) (ADSA determined value)=

(7)
e.g., γRegression − γADSA, and

% Error
Error

ADSA determined value
100= ×

(8)

e.g., [(γRegression − γADSA)/γADSA] × 100. We present plots for ΔError
and % ΔError. And we report mean ± SD for the absolute values of
the two error metrics, |ΔError| and |% ΔError|.

■ RESULTS AND DISCUSSION
We first consider aspects of the methodology for determining
γRegression. Next, we compare regression-determined surface
tension values to those determined by ADSA. Finally, we
discuss ramifications of the new approach.
Methodologic Considerations. Two methodologic

topics merit consideration: those of pixelation and of curvature
determination near the top and bottom of the edge curve. The
topics are interrelated.

Pixelation Effects. Working with pixelated images intro-
duces inaccuracies into the γRegression method. Due to image
pixelation, the cyan line that connects yellow edge pixels is
jagged (Figure 4). Smoothing the edge line reduces but does

not eliminate the effect of pixelation, and an appropriate
smoothing approach must be identified. With a low dsFilter of
0.01 mm, the filtered red edge curve is not smooth. With a
high dsFilter of 0.3 mm, the filtered red edge curve is smooth
but, instead of overlying the yellow edge pixels and cyan
connecting line, is displaced toward the center of the curvature.
With an intermediate dsFilter of 0.1 mm, the filtered red curve is
relatively smooth and overlies the yellow edge pixels and the
cyan connecting line. In Figure 2, the droplet and bubble are
imaged with different cameras. The droplet has a width of 5
mm, pixel width of 0.004 mm (1250 pixels across the droplet
width), and γADSA of 63 mN/m. The bubble has a width of 4
mm, pixel width of 0.01 mm (400 pixels across the droplet
width), and γADSA of 5 mN/m. Across these varied conditions,
setting dsFilter to 0.1 mm provides an edge curve comparable to
that in the central panel of Figure 4. We set dsFilter to 0.1 mm
for all analyses.

Figure 3. continued

supporting points for different analysis points (other red points, not
shown on this figure), overlap.

Figure 4. Edge line filter width. Three images are of the same edge
pixels (yellow) from the same gradient image of the same γADSA = 13.4
mN/m captive bubble with a DPPC monolayer. Pixels in each version
of the image are connected by the same cyan line. The cyan line is
spatially filtered with three different values of arc length window dsFilter
to produce three alternative, smoothed red edge lines.
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We calculate curvatures over an arc length interval of dsK
(Figure 3). This process is also affected by pixelation. As the
pixelated edge line traverses the image field, the line
periodically jumps back and forth across the true edge
position. Smoothing the pixelated edge line reduces but does
not eliminate such jumps. Using a small dsK value leads to
curvature calculation from local pixel locations that, at periodic
positions along the edge and despite smoothing, are biased
toward the inside (toward the center of curvature) or outside
of the true edge curve, which should result in overestimation or
underestimation, respectively, of curvature. This periodic
overestimation/underestimation of curvature causes k1 to
oscillate along the interface and, in turn, the plot of ΔP − ΔPo
vs k1 + k2 to oscillate about the average, linear slope (Figure
5A). Using a larger dsK value essentially eliminates such
oscillations (Figure 5B).

Further, using a single dsK value subjects curvature
determination to local pixelation patterns. To minimize the
effect of such local patterns, we use an average of individual
summed-curvature values, each determined using a slightly
varied dsK value. For a given analysis point, each dsK value used
must correspond to a different set of supporting points. The
number of different sets of supporting points available is
limited by image resolution and thus local edge point density
along the interface. For droplets imaged with a 0.004 mm pixel
width, the number of different sets of supporting points used is
typically about 30 but can be as low as 22. For bubbles imaged

with a 0.01 mm pixel width, the number of different sets of
supporting points used is typically about 10 but can be as low
as 3 for select analysis points under low-γ conditions. Despite
these differences, we find error to be comparable for the two
sets of experiments (see Algorithm Evaluation section, below).
Both the use of relatively large dsK values and averaging
individual summed curvatures determined from slightly varied
dsK values improve the accuracy of curvature determination,
thus improving the accuracy of surface tension determination.

Curvature Determination at Top and Bottom of Edge
Curve. We typically determine γRegression using the analysis
points located between 5 or 10% and 60% of the elevation
range (Figure 2D), but the range can be modified by altering
parameters f1 and f 2 (Table 1). Beyond the typical analysis
range, the summed curvature can become unstable near the
top and bottom of the vertical range. Figure 6 shows an
example in which regression analysis is performed over 0−96%
of the elevation range of a droplet. As ΔP increases downward
for droplets but upward for bubbles, the analysis points in the
lower left of the regression plots, at low ΔP and low summed
curvature, are near the top centers of droplets and near the
bottom centers of bubbles (Figures 2E and 6A). Figure 6A,B
(yellow box) shows that using too low of a fraction f1 reduces
the accuracy of γRegression due to the inclusion of analysis points
that are very close to the central axis, for which computational
determination of k2 is unreliable. On encountering this

Figure 5. Curvature. Data are for γADSA = 44.3 mN/m captive sessile droplet. (A) When dsK is small, curvature k1 oscillates with position along the
edge curve for reasons detailed in text. Consequently, the plot of ΔP − ΔPo vs k1 + k2 oscillates about the regression line. (B) When dsK is larger,
oscillation disappears. For the droplets and bubbles analyzed, the relation between either k1 or k2 and hydrostatic pressure offset from top of
droplet, ΔP − ΔPo, can be nonlinear. However, the relation between the sum k1 + k2 and ΔP − ΔPo is linear. In the plots of this figure, the values
for k1, k2, and the sum k1 + k2 are each the average of the different values determined from the different sets of supporting points identified over
the utilized dsK range. As the hydrostatic pressure offset is a multiple of elevation, the relation between k1 + k2 and elevation is linear.
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problem, one should increase the value of f1 to, e.g., 0.05 for
droplet images or 0.10 for bubble images.

At the upper right of the regression plots, at high ΔP and
high summed curvature, the analysis points are near the end of
the edge curve by the supporting surface for droplets or the
dome material for bubbles. As the analysis points approach the
end of the edge curve, there is no room to locate a supporting
point at dsK = 0.6 mm beyond each analysis point. Thus, as
analysis points near the end of the edge curve, dsK is
progressively reduced (Figure 6C). The reduction in dsK affects
several parameters, as seen to the right of the dashed green line
in Figure 6C. It alters the relations between θ1 and θ2 (Figure
3A) and elevation, though not that between θ (Figure 3B) and

elevation. This difference is because, as dsK decreases for
successive analysis points along the edge curve, the interval
over which θ1 (or θ2) is determined is shortened asymmetri-
cally, with supporting point 1 (or supporting point 4) always
moving closer to the analysis point. In contrast, the interval
over which θ is determined is shortened symmetrically, with
supporting points 2 and 3 both moving the same distance
closer to the analysis point. The changes in slopes of the θ1-
and θ2-elevation relations reduce the difference θ2 − θ1 (Figure
6C), but they do so proportionately to the decrease in dsK such
that the ratio of eq 3 remains constant and k1 is not initially
affected (Figure 6B, k1 in section between the green line and
blue box).

As the analysis points get closer to the end of the edge curve,
k1 becomes unstable. For the droplets we analyze, the k1 vs
ΔP − ΔPo and regression plots often exhibit oscillations that
we attribute to the pixelation effect with low dsK value in the
region of greatest summed curvature (Figures 5A and 6A,B,
blue boxes). For the bubbles we analyze, the regression, rather
than oscillating, tends to veer toward a lower slope (Figure 6A
inset). While a lower slope at the top of the regression for a
bubble could indicate a lower γ in the region, the decrease in
slope is dramatic, to ∼20% of that of the rest of the interface.
This difference is not supported by ADSA of subregions of
bubble interfaces, which shows no marked difference in γ
between the top portions of interfaces and the remaining
portions of interfaces. We interpret that the difference between
the droplets and bubbles that we analyze is attributable to the
different pixel resolutions of the images with which we capture
each. The coarser resolution of bubble images should reduce
the oscillation frequency, and the drift of the bubble regression
slope may comprise the initial portion of an oscillation.

Typically, oscillations/nonlinearity develop only in the last
∼20% of the vertical elevation range before the end of the edge
curve. However, occasionally, they develop in the last 40% of
the range. And, in the cases for which there are no oscillations
in the last 40% of the range, ending the analysis region at 60%
of the vertical range (omitting the last 40%) generates as
accurate γRegression values as ending the analysis region at 80% of
the vertical range (omitting the last 20%). Thus, for simplicity
and reliability, we end the analysis region at 60% of the vertical
range. However, the range can be extended as desired.
Additionally, one can optionally set parameter Crop (Table
1) to 1 and increase parameter f 2, which specifies the end of
the analysis range (e.g., f 2 = 0.96 for the analysis of Figure 6).
In this case, the program initially performs the regression for
the specified vertical range. Then, the user is given the option
of drawing a box around analysis points at the upper right end
of the regression plot (Figure 6A, blue box) that should be
omitted (enter “y” to elect to crop) or of accepting the
regression as is (enter “n” to elect not to crop). If cropping is
elected, then analysis points above the lower boundary of the
selected region are omitted, the regression is rerun, and a new
γRegression value is determined. In the case that cropping is
employed, data are not written to the output file until after the
analysis region is cropped. So long as the final analysis region
does not include points within unstable regions near the end
points of the edge curve, the γRegression value obtained is reliable.

We note that the difference between ending the analysis
region at 60 vs 80% of the elevation range coincides with
ending it before vs after the elevation of maximal diameter. As
detailed above, accurate computational summed curvature
determination requires the presence of continuous edge pixels

Figure 6. Curvature determination effects at top and bottom of edge
curve. Results shown for regression analysis performed over 0−96% of
vertical elevation range of γADSA = 22.9 mN/m CSD. (A) Regression
curve. Inset is a regression curve for analysis performed over 3−96%
of vertical elevation range of γADSA = 4.7 mN/m captive bubble. (B)
Curvatures plotted vs hydrostatic offset in ΔP from that at the top of
the droplet. (C) Tangent angles and dsK plotted vs hydrostatic offset
in ΔP from that at the top of the droplet. Additional details provided
in text.
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in this region. (This condition is necessary even when the
analysis region ends before the elevation of maximal diameter,
as supporting points are still generally located at and beyond
the elevation of maximal diameter.) So long as this condition is
met, the regression is linear and stable up to f 2 of 0.80 in the
majority of cases, e.g., Figure 6A. This result demonstrates that
the algorithm remains accurate around the reversal of the edge
curve at the elevation of maximal diameter.
Algorithm Evaluation Results. For the droplets and

bubbles that we analyze, we find that the sum k1 + k2 varies
linearly with ΔP − ΔPo (Figure 5B); as ΔP − ΔPo varies

linearly with elevation, so does k1 + k2 vary linearly with
elevation. Consequently, the assumption that γ is constant is
valid for these interfaces, and γ can be determined by linear
regression (Figure 2E).

We plot γRegression vs γADSA (Figure 7A). Considering just the
droplet and bubble with DPPC monolayers (blue and red
groups, each of which includes a single clean-interface data
point), linear regression yields an intercept of −0.01, a slope of
1.0, and an R2 value of 1.0 (Figure 7A and Table 2). The
|ΔError| for γRegression is almost always ≤1 mN/m and the
|% ΔError| is on the order of 2% (Figure 7B,C and Table 3).

Figure 7. Accuracy of γRegression method. (A) Correlation between γ determined by regression method and ADSA. Appropriate parameters for
γRegression analysis identified by initial analysis of two droplet and three bubble images. Data points for those images are outlined in black. Droplet
group includes single data point for which γRegression is determined with use of the ElectToCrop option to reduce f 2 below 0.60. Purple line is fit to
combined data for droplet and bubble with DPPC monolayers (blue and red groups). Green line is fit to combined data from all three groups. (B)
Error metric plotted vs γADSA. (C) % Error metric plotted vs γADSA. (D) For compression of a bubble with a clean interface, γ determined by the
regression method or ADSA plotted vs interfacial area determined by ADSA.

Table 2. Correlations for Surface Tension Error Analysisa

γRegression vs γADSA |ΔError| vs γADSA |% ΔError| vs γADSA

droplet and bubble with DPPC monolayers, combined
intercept −0.01 [−0.36, 0.33], N.S. 0.13 [−0.13, 0.38], N.S. 2.7 [1.5, 3.8], p < 0.001
coefficient 1.0 [0.99, 1.0], p < 0.001 0.01 [0.01, 0.01], N.S. −0.04 [−0.07, −0.01], p < 0.05
R2 1.0 0.10 0.18

droplet with DPPC monolayer, bubble with DPPC monolayer and clean bubble, all combined
intercept 0.41 [-0.29, 1.1], N.S. −0.28 [-0.76, 0.20], N.S. 1.9 [0.71, 3.0], p < 0.005
coefficient 0.98 [0.97, 1.0], p < 0.001 0.03 [0.02, 0.04], p < 0.001 0.00 [-0.02, 0.03], N.S.
R2 1.0 0.42 0.00

aLinear regression metrics reported with [95% confidence intervals]. Abbreviations: N.S.�not significant; R2�coefficient of determination.
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The |ΔError| does not correlate with γADSA (Table 2).
Consequently, the |% ΔError|, in which |ΔError| is normalized
by γADSA, correlates inversely with γADSA (Figure 7C and Table
2).

For the compressed bubble with a clean interface, γRegression
varies more than γADSA and increasingly so at a lower surface
area (Figure 7D). Reducing the surface area with a fixed pixel
size effectively reduces imaging resolution. For the images of
the interfaces with DPPC monolayers, there are at least 400
pixels across the width of the droplet or bubble; for the
smallest compressed, clean bubble, there are 260 pixels across
the width. The |ΔError| for the clean bubble is ∼1 mN/m with
at least 360 pixels across the bubble width, increases to ∼2
mN/m for 300−360 pixels across the bubble width, and
increases to ∼4 mN/m for 260−300 pixels across the bubble
width. Given the relatively low image resolution in this data
group, the |ΔError| and |% ΔError| are relatively high (Figure
7B,C and Table 3). Thus, when these data are combined with
those of the groups with DPPC monolayers, correlations are
altered (Figure 7A and Table 2). Imaging compressed clean
interfaces with a higher-resolution camera should improve
accuracy at low surface area.

For the constrained sessile droplet with a DPPC monolayer,
we also assess the correlation between the surface area, A,
determined by the regression method and by ADSA (Figure
8). Linear regression yields an intercept of 0.14 [−0.01, 0.29]
(N.S.), a slope of 0.96 [0.95 to 0.96] (p < 0.001), and an R2

value of 1.00. The |ΔError| and |% ΔError| values for A are
1.12 ± 0.58 mm2 and 3.5 ± 0.9%, respectively.
Implications of Regression Method. We compare the

new regression method to existing virtual methods, consider
the physical meaning of γ being constant along the interface,

and consider potential extension of the new method to more
complex scenarios.

Comparison to Existing Virtual Methods. Analysis of the
variation in curvature with elevation along an interface is a
virtual approach that does not require physical contact with the
interface. The lack of contact is a strength of such methods.
Approaches that require physical contact can be challenging to
implement, particularly under extreme conditions such as low
γ, high temperature, or high hydrostatic pressure.10 For
example, barriers used to compress surfactant monolayers
often nucleate monolayer collapse. Further, as low γ is
frequently assessed by the analysis of closed droplets or
bubbles,3,10,11 the ability to analyze closed interfaces is
important. Thus, we consider our new regression-based
method in relation to other virtual γ-determination methods
that can be applied to closed interfaces�the method of
Malcolm and Elliott and ADSA.

The method of Malcolm and Elliott enables γ determination
from only two parameters, height and maximal diameter.2 The
approach is sufficiently fast computationally that it has been
used to determine γ in real time during rapid compression.11

However, the approach can be applied only to closed
interfaces, requires visualization of the complete interface for
the determination of height and diameter, and assumes
constant γ. For bubbles floating against a dome that obscures
the upper interface, visualization of the complete interface is
challenging.6

ADSA comprises numerical integration of parametric
equations and optimization of the fitting of a theoretical
curve to an experimentally-captured interfacial contour.1,3 Due
to the optimization, ADSA is the most accurate of the virtual
approaches. The method is also more flexible than that of
Malcolm and Elliott in that it can be applied to all or a portion
of axisymmetric interfaces that are closed or that have a contact
line. That said, ADSA is complex to implement and assumes γ
to be constant.

The present regression method, like ADSA, can be applied
to all or a portion of axisymmetric interfaces that are closed or
that have a contact line. Beyond that similarity, the regression
method is less precise than ADSA but has its own advantages.
The regression method does not assume constant γ. Further,
the regression method is simple in concept; conveys physical
understanding, as detailed below; and has the potential to be
extended to nonaxisymmetric interfaces, as also detailed below.

Physical Interpretation. Regression-based analysis is
uniquely aligned with the direction of the physical influence
of gravity. It is implicit in the Young−Laplace relation that if γ
is constant, then the summed curvature must vary linearly with
elevation. Our results show that, for the interfaces we analyze,
the summed curvature varies linearly with ΔP − ΔPo and thus
with elevation. That is, gravity-induced variation in ΔP is
balanced by a proportionate variation in curvature.

This physical understanding of how the summed curvature
varies with elevation cannot be inferred visually from meridian
images, in which only one of the two principal curvatures is
apparent. Further, it is obscured by the Malcolm and Elliott
and ADSA approaches, as curvature is subsumed into the
differential equations of those approaches. The relation
between summed curvature and elevation has not previously,
to our knowledge, been elucidated.

For the droplets and bubbles that we analyze, the relation
between ΔP − ΔPo and summed curvature is linear and γ is
constant. For alternative interfaces, the relation might be

Table 3. Error valuesa

|ΔError| |% ΔError|
droplet with DPPC monolayer 0.31 ± 0.45 1.1 ± 1.4%
bubble with DPPC monolayer 0.30 ± 0.29 2.0 ± 2.0%
droplet and bubble with DPPC monolayers,

combined
0.30 ± 0.37 1.5 ± 1.8%

bubble with clean interface 2.05 ± 1.07 2.9 ± 1.5%
all data, combined 0.76 ± 0.99 1.9 ± 1.8%
aValues presented as mean ± standard deviation.

Figure 8. Accuracy of surface area determination by regression
method. Correlation between the surface area, A, determined by
regression method and ADSA for a CSD with a DPPC monolayer
compressed to different degrees.
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nonlinear. A nonlinear relation would mean that γ varied along
the interface.

Potential for Extension to Nonaxisymmetric Interfaces.
The present method utilizes axisymmetry for the determi-
nation of the out-of-plane curvature k2, according to eq 4. A
different method of curvature determination, however, could
enable regression-based γ determination to be extended to
nonaxisymmetric interfaces. If the interface could be mapped
locally around each of a series of vertically-spaced analysis
points by an explicit surface z = f(x,y), then the summed
curvature at each analysis point could alternatively be
determined as

k k
f f f f f f f

f f
1 2

(1 ) 2 (1 )

(1 )
x yy x y xy y xx

x y

2 2

2 2 3/2+ =
+ + +

+ + (9)

where subscripts indicate partial derivatives, e.g., f x = z
x

and f xy

= z
x y

2
.12 Our approach of eq 6 could then be applied to

determine surface tension from the variations in ΔP − ΔPo and
summed curvature across the analysis points.

Examples of nonaxisymmetric interfaces are those of
droplets or bubbles at noncircular orifices; inside of porous
media or irregularly shaped cavities; on inclined surfaces; or
spanning between wires.13−17 The geometry of such interfaces
could be captured with a three-dimensional imaging method
such as optical sectioning microscopy, (micro)computed
tomography, or magnetic resonance imaging.

Potential for Dynamic Analysis. The present approach to γ
determination from interfacial contour, like previous ap-
proaches, is derived from a static analysis and applies to static
droplets and bubbles. Characterization of viscous forces and
acceleration, if present, could enable dynamic analysis
analogous to that for fluid entrance into a tube.18 However,
such dynamic analysis would be complex for the geometry of a
droplet or bubble and even more so in the presence of
surfactant. Given this complexity, dynamic conditions are
frequently analyzed with a quasi-static approach, in which
static analysis is applied to images obtained during expansion
or contraction. Much has been learned from quasi-static
analyses.7,10,19 The regression method for γ determination
could likewise be employed in quasi-static analyses.

■ CONCLUSIONS
Along small droplet and bubble interfaces with spread DPPC
films, we show that the summed curvature, like ΔP, varies
linearly with elevation. Consequently, γ is constant and can be
determined by linear regression. In doing so, we support an
intuitive understanding of how gravity deforms fluid−fluid
interfaces and present a new method for determining γ.
Accuracy of the regression method is limited by the accuracy
with which curvature can be determined from pixelated images.
Nonetheless, agreement between the regression method and
ADSA is high, and the accuracy of the regression method will
be acceptable for many applications. Finally, the regression
method has the potential to be extended to nonaxisymmetric
interfaces.
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