1 (10pts)
Let $A = \mathbb{N}$ and R be the equivalence relation defined on A given by:

$$\forall x, y, \in A, \ xRy \iff \lfloor x/10 \rfloor = \lfloor y/10 \rfloor.$$

Find the distinct equivalence classes of R.
2 (15pts) Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Find an equivalence relation R on A in which $[1] = \{1, 2\}$, $[5] = \{5, 6\}$, and $(3, 4), (3, 8) \in R$.

What is $[4]$ in your relation?
3. (20pts)

- Find, if possible, a simple connected graph with 36 edges in which all vertices have degree 7. If not possible, explain why not.

- Draw, if possible, a tree whose vertices have degrees

 1. (5,3,2,2,2,1,1,1,1,1)
 If not possible, explain why not.

 2. (5,3,3,3,2,1,1,1,1,1,1,1).
 If not possible, explain why not.

- Must every tree with 12 or more vertices have a vertex of degree two? Either prove or disprove with a counterexample.
4. (20pts)

1. Let $A = \{a, b, c, d\}$ and consider the relations R and S. Find

- R^s

- R^t

- RS

2. Let R be the relation on \mathbb{Z} given by

$$R = \{(x, y) \mid x + y \text{ is odd}\}.$$

Find R^2.
5 (20pts) Let \(A = \{1, 3, 9, 15, 27, 30, 45, 60\} \) and let \((A, R)\) be the poset given by the “divides” relation.

- Draw the Hasse diagram for \(R \).

- Find all maximal elements.

- Find all minimal elements.

- Partition the elements of \(A \) into the least number of sets, each of which is an antichain.
6 (15pts) Prove by induction: For all \(n \geq 1 \), if \(f \) is a 1–1 function from \(A \) to \(B \), with \(|A| = |B| = n \), then \(f \) is an onto function.

Hint 1: First outline the structure of the argument. Then worry about the details.

Hint 2: Let \(f(a) = b \) and consider the function \(f \) restricted to the set \(A - \{a\} \).