1. (6pts)

Use a truth table to check if the following is a tautology.

\[((p \rightarrow q) \rightarrow r) \leftrightarrow (p \rightarrow (q \rightarrow r)) \]
2 (10pts) Find the negation without using the negation symbol.

- $\exists x \left[\forall y(xy = y) \right]$

- $\forall x (x \text{ is prime} \rightarrow x^2 + 1 \text{ is even})$.

Are the following true or false? Explain.

- $U = \mathbb{R}, \; \forall x \; \exists y \left[x \cdot y = 1 \right]$

- $U = \mathbb{R}^+, \; \forall x \; \exists y \left[y^2 = x \right]$

- $U = \mathbb{Z}, \; \exists x \; \forall y \left[\frac{y}{x} \in \mathbb{Z} \right]$
3 (8pts) Let a be any rational number and b be any irrational number. Prove that $a + b$ is irrational.
4 (10pts)

1. Define: A is a \textbf{countably infinite set}.

2. Prove that the integers form a countably infinite set.

3. Let A and B be a countably infinite sets. Suppose $A \cap B = \emptyset$.

 Prove: $A \cup B$ is a countably infinite set.
5 (12pts) Let A, B, C be subsets of a universe U. Prove using the **element method** or disprove with a **counterexample**.

1. $A \times (B - C) \subseteq (A \times B) - (A \times C)$
2. $(A \cap B) \cap (A - B) = \emptyset$
3. $A - (B - C) = (A \cap B) - C$
6 (8pts) **Use the Pigeonhole Principle** to find the smallest number of integers between 200 and 999 that must be chosen so that at least 2 of them have a digit in common.
1. Are the following functions injections (1-1)? surjections (onto)? If not, explain.

1. \(f : \mathbb{Q} - \{1\} \rightarrow \mathbb{Q} \)
 \[r \rightarrow \frac{r}{1-r} \]

2. \(f : \mathbb{Z} \rightarrow \mathbb{N} \)
 \[n \rightarrow |n| + 1 \]

3. \(f : \mathbb{R} \rightarrow \mathbb{R} \)
 \[x \rightarrow 4 - 2x \]
8 (8pts)
Let $X = \{1, 2, 3, 4\}$.

1. Find a function $g : X \to X$ with $g(3) = 4$ and such that $g^2 = g^{-1}$.

2. Find an equivalence relation on X with 2 equivalence classes.
9 (12pts)

Let \(X = \{1, 2\}, Y = \{1, 2, 3\}, Z = \{1, 2, 3, 4\} \)

1. How many relations are there on \(X \)?

2. How many functions are there from \(Z \) to \(Z \)?

3. How many onto functions are there from \(Y \) to \(Z - \{3\} \)?

4. List all 1 – 1 functions from \(X \) to \(Y \).
1. Let $f : \mathbb{Z} \rightarrow \mathbb{Z}$ be given by $f(m) = m + 1$ and $h : \mathbb{Z} \rightarrow \mathbb{Z}$ be given by

$$h(m) = \begin{cases}
0 & \text{if } m \text{ is even} \\
1 & \text{if } m \text{ is odd}.
\end{cases}$$

Find

- $h \circ f$
- $f \circ h$
- All solutions to $f \circ h = h \circ f$

2. Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be onto functions. Prove that $g \circ f : A \rightarrow C$ is an onto function.

Hint: Get the first step right and the last step right!
11 (12pts) Let R_1 and R_2 be transitive relations on a set A and S_1 and S_2 be antisymmetric relations on A. Either prove or disprove with a counterexample.

1. $R_1 \cup R_2$ is transitive

2. $R_1 - R_2$ is transitive

3. $S_1 \cup S_2$ is antisymmetric

4. $S_1 - S_2$ is antisymmetric
12 (12pts) Decide if each relation on the given set A is reflexive, symmetric, antisymmetric and/or transitive. If not, explain.

1. $A = R$. $R_1 : \{(x, y) \mid x^3 + y^2 \geq 4\}$.

2. $A = \mathbb{Z}$. $R_2 : \{(m, n) \mid m = |n|\}$.

3. $A = \Sigma^*$, where $\Sigma = \{0, 1\}$. $R_3 : \{(w_1, w_2) \mid \text{the number of 0's in } w_1 = \text{twice the number of 1's in } w_2\}$.
13 (12pts)

1. Let $f : X \to Y$ and R be a relation on X given by $R : \{(x_1, x_2) \mid f(x_1) = f(x_2)\}$.

 - Prove that R is an equivalence relation on X.
 - Describe the equivalence classes of R.

2. Let $A = \{1, 2, 3, 4, 5, 6\}$. Define two equivalence relations on A, R_1 and R_2, for which the following 3 properties simultaneously hold:

 - $(1, 2) \in R_1$, and $(4, 5) \not\in R_1$
 - $(1, 2) \not\in R_2$
 - $R_1 \cup R_2$ is not an equivalence relation.
Let $A = \{-3, -2, -1, 0, 1, 2, 3\}$ and consider the relation R on A given by $R = \{(m, n) \mid n = m + 1\}$.

Find

- the reflexive closure R^r.

- the symmetric closure R^s.

- the transitive closure R^t.

- R^2

- R^{-1}
15 (8pts) Let $A = \{1, 2, 3, 4\}$ and $B \subseteq P(A)$, where
$B = \{\emptyset, \{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 4\}, \{1, 2, 3\}, \{1, 2, 4\}\}$. Let R be the poset on B given by subset inclusion.

1. Draw the Hasse diagram for (B, R).

2. Find all maximal elements.

3. Partition B into the smallest possible number of antichains.
16 (8pts) A chessboard is called **defective** if one square is missing.

Prove **by induction**: For all $n \geq 1$, a 2^n by 2^n defective chessboard can be tiled using the “L” shaped figures below.
17 (8pts) Prove by induction: \(\forall n \geq 1, 9 \mid n^3 + (n + 1)^3 + (n + 2)^3 \).
18 (8pts) Prove by induction: \(\forall n \geq 1, \)

\[
\sum_{i=1}^{n} \frac{1}{i^2} \leq 2 - \frac{1}{n}.
\]
19 (12pts)
Find, if possible, a connected graph with the following properties.

1. a tree that is not bipartite.

2. nonhamiltonian with 10 vertices and 25 edges.

3. eulerian with an odd number of edges.

4. planar, nonhamiltonian, and bipartite with 5 vertices.
1. Define: Graphs G_1 and G_2 are isomorphic.

2. Find all nonisomorphic trees having 5 vertices.

3. Prove or disprove: $f(n) = 1 + 2 + 3 + \cdots n$ is $O(n^2)$.

4. Prove or disprove: $g(n) = (n^2 + 8)(n + 1)$ is $O(n^3)$.