1. (6pts)

Use a truth table to determine if the following is a tautology.

\[p \rightarrow (q \lor r) \leftrightarrow [(p \rightarrow q) \lor (p \rightarrow r)] \]
2 (10pts) Let $U = \mathbb{Z}$. Are the following true or false? If false, explain.

1. \begin{itemize}
 \item $\forall x \exists! y [x - y = 0]$
 \item $\forall x \exists y \left[\frac{x}{y} = 1 \right]$
\end{itemize}

2. **Prove** that $\sqrt{2}$ is irrational.

 Hint: Assume $\sqrt{2}$ is rational and reach a contradiction.
1. Define what it means for a set to be **countably infinite**.

2. Let A be the set of all positive integers n with the property that all of the digits of n are different. Prove that A is a countably infinite set.
4 (9pts) Either prove or disprove with a counterexample.

1. \(\forall n \geq 1, 7n + 2\) is a perfect square.

2. The square of any odd integer \(m \geq 1\) has the form \(8m + 1\) for some integer \(m\).

3. \(2^{66} - 1\) is a prime number.
5 (12pts) Let A, B, C, D be subsets of a universe U. Prove using the element method or disprove with a counterexample.

1. $(A \cap B) \cup C = (A \cup C) \cap B$

2. $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$

3. $(A \cup B) \cap (C \cup D) = (A \cap C) \cup (B \cap D)$
6 (10pts)

Use the Pigeonhole Principle to show that if S is any set of 12 natural numbers, some two distinct numbers in S will differ by a multiple of 11.

Show how you are using the Pigeonhole Principle.
1. Let \(f : A \to B \) and \(g : B \to C \) be onto functions. Prove that \(gof : A \to C \) is an onto function.

\[\text{Hint: Get the first step right and the last step right!} \]

2. Let \(X = \{1, 2, 3, 4, 5\} \). Find a function \(f : X \to X \) such that \(f(2) = 2, f(4) = 4, f(5) = 3 \) and

(a) \(f^2(x) = f(x) \)

(b) \(f(x) \) is \textbf{not} onto.
• Find a set \(A \) and an onto function \(f : A \to A \) that is **not** a 1–1 function.

• Are the following functions 1-1? onto? If not, explain.

1. \(f : \mathbb{R} \to \mathbb{R} \)
 \[x \to x + |x| \]

2. \(f : \mathbb{Z} \to \mathbb{Z} \)
 \[n \to n^2 + 3 \]
1. Suppose $f(x)$ and $g(x)$ are real-valued functions defined on the same set of real numbers. Define

f is of order g, i.e., $f(x)$ is $O(g(x))$.

2. Find a function $g(n)$ of the form A^B such that $f(n)$ is $O(g(n))$ if

- $f(n) = \frac{5n^3 + 6}{n + 2}$
- $f(n) = n!$

Prove your results
1. Consider the function

\[g : \mathbb{R} \rightarrow \mathbb{R} \]
\[x \rightarrow x^3 \]

- Find \(g^{-1}\{\{-8, 27\}\} \).
- Find \(g^2(2) \)

2. Let \(X \) be a set. Find a \(1-1 \) function \(f : X \rightarrow X \) that is not onto. Is \(f^{-1} : X \rightarrow X \) a function? Explain.
11 (10pts)

1. Let $R \subseteq A \times A$ be a transitive relation on a set A. Prove that R^{-1} is a transitive relation on A.

 \textit{Hint:} Get the first step right and the last step right!

2. Let S be an equivalence relation on a set A. \textbf{Prove or disprove:} S^{-1} is an equivalence relation on A.

12 (12pts) Decide if each of the following relations on the given set \(A \) is reflexive, symmetric, antisymmetric and/or transitive. If not, explain.

1. \(A = \{0, 1, 2\} \). \(R_1 = \{(0, 1), (1, 0), (2, 0), (2, 1)\} \).

2. \(A = R \). \(R_2 : \{(x, y) \mid x^2y^2 \geq 1\} \).

3. \(A = \Sigma^* \), where \(\Sigma = \{a, b\} \). \(R_3 : \{(w_1, w_2) \mid w_1^R = w_2\} \).

Note: \(w^R \) is the reverse of \(w \), e.g., \(aaba^R = abaa \).
13 (12pts) Let \(A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \). Define a relation \(R \) on \(A \) as follows:

\[
m R n \text{ if and only if } m \cdot n \text{ is a perfect square.}
\]

- Explain why \(R \) is an equivalence relation. In particular, prove that \(R \) is transitive.

- Find all equivalence classes of \(R \).
Let $A = \{0, 1, 2, 3\}$. Consider the relation $R = \{(0, 0), (0, 1), (1, 0), (1, 2), (2, 0), (3, 0), (3, 2)\}$ on A. Sketch the relation R and then find

- the symmetric closure R^s.
- the transitive closure R^t.
- R^{-1}
- R^2
15 (10pts) Let A be the set of all positive integers n, $1 < n < 48$, that divide 48 evenly and R be the relation on A with $x \ R \ y$ if and only if x divides evenly into y.

- Draw the Hasse diagram H for the poset (A, R).

- Find all maximal elements.

- Find all minimal elements.

- Partition A into the smallest possible number of disjoint antichains.
16 (8pts) Let $b, c \in \mathbb{Z}$. Suppose $\sum_{r=1}^{n}(br + c) = f(n, b, c)$. Find $f(n, b, c)$ and prove your result by induction.

Prove your answer is correct by induction.
17 (8pts) Prove by induction: \(\forall n \geq 1, \sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}. \)
18 (8pts) Prove by induction: $\forall n \geq 1, 6 \mid n^3 + 5n$.
19 (18pts) Find, if possible, a simple graph with the following properties. If not possible, explain why not.

1. A planar bipartite graph in which each vertex has degree 4.

2. A graph with 8 vertices having degrees (4, 3, 2, 1, 1, 1, 1, 1). One vertex of degree 4.

3. A graph with 15 vertices, each with degree 5.

4. A connected non-eulerian, non-hamiltonian graph on 8 vertices in which no vertex has degree 3.

5. A graph with 11 vertices which is eulerian but not hamiltonian.

6. A graph with 20 vertices and 25 edges that is both hamiltonian and eulerian.
1. Find, if possible, a positive integer $t \geq 1$ such that the graph $K_{2,t}$ is not planar. Explain your answer.

2. Let T be a tree with $n \geq 2$ vertices. Prove that T has at least 2 vertices of degree 1.