1 (12pts) Consider each of the following relations on the given set A. Is it reflexive, symmetric, antisymmetric, transitive? If it is any of these, simply note this by putting the corresponding letter(s) R, S, A, T next to the relation. Then for each property that does not hold, explain why not.

1. $A = \{1, 2, 3, 4\}$. $R_1 = \{(1, 1), (1, 2), (1, 3), (1, 4), (3, 4), (2, 2), (2, 3), (4, 4), (4, 3)\}$.

2. $A = \mathbb{Z}$. $R_2 : \{(x, y) \mid x^2 = y^2 + 4\}$.

3. $A = \mathbb{R}$. $R_3 : \{(x, y) \mid |y| = x\}$.
Let $A = \{a, b, c, d\}$. Find 5 distinct equivalence relations on A in which a is related to c. For each relation

- What is $[b]$?
- Find the partition of A associated with the relation.
3 (16pts) Consider the relations R and S below. Find

- RS
- R^t
- R^2
- S^s
Consider the relation R of subset inclusion on the following sets in A:

$$A = \{\{2\}, \{3\}, \{2, 3\}, \{4, 5\}, \{2, 3, 5\}, \{3, 4, 5, 6\}, \{1, 2, 3, 5\}\}.$$

- Draw the Hasse diagram H for the relation R.
- Find all maximal elements.
- Find all minimal elements.
- Find a longest chain in H.
- Partition the elements of A into the smallest possible number of antichains.
5 (12pts) Let R be a symmetric relation on a set A. Prove that R^{-1} is symmetric.
Consider the 4 functions below.

- $f_1 : R - \{0\} \rightarrow R^+$, where $f_1(x) = 1/x^4$.
- $f_2 : Z \rightarrow Z$, where $f_2(n) = 3n + 5$.
- $f_3 : R \rightarrow R$, where $f_3(x) = e^x$.
- $f_4 : R - \{-1\} \rightarrow R$, where $f_4(x) = x/x + 1$.

Answer the following.

1. Is f_1 1-1, onto? If not, explain.
2. Is f_2 1-1, onto? If not, explain.
3. Is f_3 1-1, onto? If not, explain.
4. Is f_4 1-1, onto? If not, explain.
7 (12pts) Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{x, y\}$.

1. How many different functions f have domain A and codomain B with $f(4) = x$?

2. How many different onto functions have domain A and codomain B?

3. How many different 1-1 functions have domain A and codomain B?