6 Relations

Let R be a relation on a set A, i.e., a subset of $A \times A$.

Notation: xRy iff $(x, y) \in R \subseteq A \times A$.

Recall: A relation need not be a function.

Example: The relation $R_1 = \{(x, y) \in R \times R \mid x^2 + y^2 = 1\}$ is not a function.

Some definitions

1. R is reflexive iff $xRx \ \forall x \in A$.
2. R is symmetric iff $xRy \Rightarrow yRx \ \forall x, y \in A$.
3. R is antisymmetric iff $xRy \land yRx \Rightarrow x = y \ \forall x, y \in A$.
4. R is transitive iff $xRy \land yRz \Rightarrow xRz \ \forall x, y, z \in A$.

We now give a number of examples.

1. $R = “<“$ on Z. \hspace{1cm} \overline{R}, \overline{S}, A, T.
2. $R = “\leq“$ on Z. \hspace{1cm} R, \overline{S}, A, T.
3. $R = “=“$ on Z. \hspace{1cm} R, S, A, T.
4. \(R, S, \overline{A}, T. \)

5. \(R, \overline{S}, A, T. \)

6. \(R, \overline{S}, A, T. \)

7. \(R, S, \overline{A}, T. \)

8. \(R, S, \overline{A}, T. \)

9. \(R, S, A, T. \)

10. \(\overline{R}, S, \overline{A}, T. \)
Note:

1. In a reflexive relation there is a loop at each vertex.

2. In a symmetric relation, there are either 2 arcs or no arcs between any two distinct nodes.

3. In an antisymmetric relation there is either 1 arc or no arcs between any two distinct nodes.

Definition: If R is a relation from X to Y, then the inverse of R is $R^{-1} = \{(y, x) \mid (x, y) \in R\}$.

Examples:

$R:$

$R^{-1}:$

$R:$

$R^{-1}:$

$R:$

$R^{-1}:$

Theorem 6.1 R is symmetric iff $R = R^{-1}$.

Theorem 6.2 The reflexive, symmetric, antisymmetric and transitive properties of relations are preserved by the inverse, i.e., if R has such a property then so does R^{-1}.
Equivalence Relations

Definition: A relation $R \subseteq A \times A$ is an equivalence relation if it is reflexive, symmetric and transitive.

Examples:

1. "$=\"$ on \mathbb{Z}.

2. The universal relation $U_A = A \times A$, i.e., the relation consisting of all elements of $A \times A$.

3. Let A be the set of all triangles in the plane. Then $T_1 RT_2$ iff T_1 and T_2 are similar triangles.

4. Let A be the set of all points in the plane. Then $p_1 Rp_2$ iff the distance from p_1 to the origin equals the distance from p_2 to the origin.

5. $A = \mathbb{Z}, m \in \mathbb{Z}, m > 0$. $aR_m b$ iff $m \mid a - b$, i.e., $\exists c \in \mathbb{Z}$ such that $m \cdot c = a - b$.

 (a) R_m is reflexive since $m \mid a - a$.

 (b) R_m is symmetric since $m \mid a - b \Rightarrow m \mid b - a$.

 (c) R_m is transitive since if $m \mid a - b$ and $m \mid b - c$, then $m \mid (a - b) + (b - c)$ or $m \mid a - c$.

 Notation: If $m \mid a - b$ we say a is congruent to b mod m, or $a \equiv b \pmod{m}$.
6. Let \(f : A \to B \). Then \(R_f \) given by \(a_1 R_f a_2 \) iff \(f(a_1) = f(a_2) \) is an equivalence relation.

7.

\textit{Definition:} Let \(R \) be an equivalence relation on \(A \) and \(b \in A \). Then \([b] = \{x \in A \mid xRb\}\) is the \textbf{equivalence class} generated by \(b \).

\textit{Example:} Let \(A = \mathbb{Z} \) and consider \(aR_3b \). Thus \(a \) and \(b \) are related iff \(3 \mid a - b \). Then

\[[0] = \{\ldots - 6, -3, 0, 3, 6, \ldots \} \]
\[[1] = \{\ldots - 5, -2, 1, 4, 7, \ldots \} \]
\[[2] = \{\ldots - 4, -1, 2, 5, 8, \ldots \} \]

\textit{Example:} In (7) above, \([1] = [2] = \{1, 2\}\) and \([3] = [4] = \{3, 4\}\).

\textit{Definition:} Let \(A = \bigcup_{\alpha \in \Lambda} A_\alpha \), where each \(A_\alpha \neq \emptyset \) and the \(A_\alpha \)'s are pairwise disjoint. Then \(\{A_\alpha \mid \alpha \in \Lambda\} \) is a \textbf{partition} of \(A \).

\textit{Example:} \(A_1, A_2, \ldots, A_7 \) is a partition of \(A \).
\textit{Note:} A partition of a set defines an equivalence relation in a very natural way.

\textit{Definition:} Let P be a partition of a set A. Then the equivalence relation $R(P)$ associated with P is given by: $aR(P)b$ iff a and b are in the same set in P.

\textit{Note:} $R(P)$ is clearly an equivalence relation.

\textit{Example:} The sets A_1, A_2, A_3 partition \mathbb{Z}.

\begin{align*}
A_1 &= \{ \ldots -6, -3, 0, 3, 6, \ldots \} \\
A_2 &= \{ \ldots -5, -2, 1, 4, 7, \ldots \} \\
A_3 &= \{ \ldots -4, -1, 2, 5, 8, \ldots \}
\end{align*}

Thus $1R(P)7$ and $-4R(P)8$.

We now wish to show that each equivalence relation on a set A defines a partition in a natural way.
Recall \([b] = \{x \in A \mid xRb\}\).

Theorem 6.3 Let \(R\) be an equivalence relation on a set \(A\). Then

1. \(b \in [b] \ \forall b \in A\).
2. \(\forall a, b \in A, [a] = [b] \Leftrightarrow aRb\).
3. \(\forall a, b \in A, \text{ either } [a] = [b] \text{ or } [a] \cap [b] = \emptyset\).

Note: Let \(\textbf{P}\) be the set of all partitions on a set \(A\) and \(\textbf{E}\) be the set of all equivalence relations on \(A\). There is a \(1 - 1\) onto function \(f : \textbf{P} \rightarrow \textbf{E}\) given by \(f(P) = R(P)\). The function is clearly \(1 - 1\). To see that it is onto, start with any equivalence relation \(E^*\) on \(A\). The partition that “maps” to it is the one obtained from the above Theorem, i.e., the partition obtained from the distinct equivalence classes of the elements of \(A\).

Example: Let’s define \(Q\).

First, let \(F = \{a/b \mid a, b \in \mathbb{Z}, b \neq 0\}\). Define \(R \subseteq FxF\) by \(a/b R c/d\) iff \(ad = bc\).

Hence \(2/3 R 6/9\). Also, \([1/2] = \{1/2, 2/4, 3/6, 4/8, \ldots\}\).

Thus each rational is an equivalence class in \(F\) under \(R\).
Posets

Let R be a relation on a set A. Then R is a **partial ordering** on A if R is

1. reflexive
2. antisymmetric
3. transitive

Examples:

1. R: “\leq” on \mathbb{Z}.
2. R: “\subseteq” on $\mathcal{P}(A)$, the power set of A.
3. R: “divides” on \mathbb{Z}^+.
 (a) $a | a$.
 (b) $a | b$ and $b | a \Rightarrow a = b$.
 (c) $a | b$ and $b | c \Rightarrow a | c$.
4. Let Σ be an alphabet with a partial ordering. Then the “lexicographic” (alphabetical) ordering R on Σ^* is a partial ordering (see definition on p.636).

Example: $\Sigma = \{a, b\}$.

- $aab R aabab$
- $baa R bab$
- $e R baab$
- $aabb R b$
Definition: If R is a partial ordering on A we call (A, R) a partially ordered set or **poset**.

Notation: When the relation is a partial ordering, we often use $a \leq b$ instead of aRb.

Definition: Suppose (A, R) is a poset. Elements a and b of A are said to be **comparable** if, and only if, either aRb or bRa. Otherwise they are noncomparable.

Definition: Let R be a partial order relation on a set A. If any two elements a and b in A are comparable, then R is a **total order** relation on A.
Examples:

1. \(R : \leq \) on \(\mathbb{Z} \) is a total order.

2. \(R : \subseteq \) on \(P(A) \) is not a total order if \(A \) has more than 1 element.

3. \(R : \) “divides” is not a total order on \(\mathbb{Z}^+ \), e.g., 3 does not divide 5 and 5 does not divide 3.

4. \(R : \) “lexicographic” (alphabetic) ordering on \(\Sigma^* \), where \(\Sigma \) is an alphabet with a partial ordering, is a total order.

(See definition on p. 636).

Definition: Let \((A, R)\) be a poset. A subset \(B \) of \(A \) is called a chain if, and only if, each pair of elements in \(B \) is comparable. The length of a chain is the number of elements in the chain.

Note: The book has a different definition of length.

Example: The set \(P(\{a, b, c\}) \) is partially ordered with respect to subset inclusion. The set \(S = \{\emptyset, \{a\}, \{a, b\}, \{a, b, c\}\} \) is a chain of length 4 in \(P(\{a, b, c\}) \).
Hasse Diagrams

Let $A = \{0, 1\}$ and consider the poset $(P(A), \subseteq)$.

Properties of Hasse Diagrams

- arrows are omitted - edges are directed upward
- self loops are omitted
- edges implied by transitivity are omitted

More examples:
Definition: Let \((A, \leq)\) be a poset. An element \(a \in A\) is a **maximal** element if there does not exist \(b \in A\) such that \(b \neq a\) and \(a \leq b\).

Note: minimal element is defined similarly.

In the examples above

- \(a\) is a maximal element
- \(g\) is a minimal element
- \(1, 2, 7\) are maximal elements
- \(8, 9, 10\) are minimal elements

Definition: A subset of a poset \((A, R)\) is an **antichain** if no two distinct elements of the subset are related.

Example: \(\{c, f, e\}\)

Theorem 6.4 Let \((A, \leq)\) be a poset. If \(n\) is the length of a longest chain in \((A, \leq)\), then \(A\) can be partitioned into \(n\) disjoint antichains.

Proof: Later, by induction.
Example: \(A = \{2, 3, 4, 6, 8, 12, 24, 30, 33, 60, 90, 120\} \).

\(R \): “divides” on \(A \).
Closure Operations on Relations

Example: Suppose we define a relation R on a set A of cities as follows: aRb iff there is a direct communication link from city a to city b for transmission of messages.

Problem: Find a relation that describes how messages can be transmitted from one city to another, either through a direct communication link, or through any number of intermediate cities.

Definition: Let R be a relation on a set A. The transitive closure of R is a relation R^t such that

1. R^t is transitive
2. $R \subseteq R^t$
3. If R_1 is transitive and $R \subseteq R_1$, then $R^t \subseteq R_1$.

Note: The transitive closure is unique. It can be found by noting that $(x, y) \in R^t$ iff there is a “directed path” from x to y in the graphical representation of R.

Note: The reflexive and symmetric closures are defined in an analogous way.

Example:

R:

R^t:

89
Example:

\[R: \quad R': \]

\[R: \quad R^s: \]

Theorem 6.5 Let \(\{ S_\alpha \mid \alpha \in \Lambda \} \) be the set of all transitive relations containing a relation \(R \). Then \(R' = \bigcap_{\alpha \in \Lambda} S_\alpha \).

Thus the transitive closure of a relation \(R \) is the “smallest” transitive relation containing \(R \). It is obtained by adding the least number of ordered pairs to ensure transitivity.

Note: A similar theorem holds for reflexive and symmetric closures.
Composition of Relations

Definition: Let R_1 be a relation from A to B and R_2 be a relation from B to C. The **composition** of R_1 and R_2 is a relation from A to C given by

$$R_1R_2 = \{(a,c) \mid a \in A, c \in C \land \exists b \in B \text{ such that } [(a,b) \in R_1 \land (b,c) \in R_2]\}.$$

Example:

Note: In general, $R_1R_2 \neq R_2R_1$.

In fact, if R_1 is a relation from A to B and R_2 is a relation from B to C, then R_2R_1 is not defined.

Example: Let $A = \{0,1,2,3\}$ and consider R_1 and R_2 on A.

91
Theorem 6.6 Let $R_1 \subseteq A \times B$, $R_2 \subseteq B \times C$ and $R_3 \subseteq C \times D$. Then $(R_1 R_2) R_3 = R_1 (R_2 R_3)$, i.e., the composition of relations is associative.

Proof: (⊆) Let $(a, d) \in (R_1 R_2) R_3$. Then $\exists c \in C$ such that $(a, c) \in R_1 R_2$ and $(c, d) \in R_3$. Since $(a, c) \in R_1 R_2 \exists b \in B$ such that $(a, b) \in R_1$ and $(b, c) \in R_2$. Now $(b, c) \in R_2$ and $(c, d) \in R_3 \Rightarrow (b, d) \in R_2 R_3$. But now $(a, b) \in R_1 \Rightarrow (a, d) \in R_1 (R_2 R_3)$.

⊇ Similar. □

Definition: Let R be a binary relation on a set A. Then for all integers $n \geq 0$, R^n is defined as follows:

1. $R^0 = \{(x, x) \mid x \in A\}$.
2. $R^{n+1} = R^n R$.

92
Example:

• \(R^0:\)

• \(R^1 = R:\)

• \(R^2 = R^1 R:\)

• \(R^3 = R^2 R:\)

• \(R^4 = R^3 R:\)

Note: In this example, \(R^4 = R^2.\)
Theorem 6.7 Let $|A| = n$ and $R \subseteq AxA$. Then $\exists s, t$, $0 \leq s < t \leq 2^{n^2}$, such that $R^s = R^t$.

Proof: First note that AxA has n^2 elements. Hence there are 2^{n^2} distinct relations on A. By the pigeonhole principle, at least two of them are equal. \square