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I-1. Carbon Nanotube: 
Quantum Dots

• Nanoelectronics: Working at the length scale of 1-100 nm, in order 

to create materials, devices and systems with fundamentally new 

properties and functions because of their nanoscale size. 

(www.nano.gov)

• Low dimensional materials such as Carbon Nanotube (CNT) and 

Graphene are considered strong candidates.

• Single Electron Device controls the movement of individual 

electrons; comprise quantum dot (QD) and tunnel junctions. 



EH Yang, Stevens Institute of Technology

Why CNT SET?

• For practical room-temperature operation 

(~10kT = 259 meV), d should be ~1nm for Si. 

• Core of the problem: Charge and island size 

fluctuation  The larger the island AND the 

larger the charging energy, the more effectively 

will spurious charges be suppressed. 

• In CNT, confinement effects occur 

effectively at much large feature sizes 

(<30nm).
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CNT QDs

SiO2

Si 

Tunnel barrierCNT quantum dot

SiO2

Si 

Catalyst tip

CNT quantum dots

• Near-term goal: CNT-based single electron transistor, stable up to 

room temperature by creating CNT quantum dots via a controlled 

growth followed by nanosegmentation process. 
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CNT-QD Fabrication Process

SiO2/Si
(a)

CNT

V-grooved trench

Nanosegmentation 

In-plane growth of CNT

Segmented CNT (CNT-QDs)

Oxide

(b)

(c) (d)

Catalyst tip

(a) The V-grooved nano-trench generated. Catalyst patterns defined

(b) CNT grown from the catalyst tip along the trench

(c) CNT segmented by VAFM
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Au/Cr electrode

Growth of In-Plane CNTs

• Substrate: 200 nm SIO2/Si

• Growth conditions:

- Pressure: 10 mTorr, Gas mixture: CH4/Ar2 (1:4)

- Temperature: 850oC, Growth time: 10 min
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Semiconducting SWNTs
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 1st step towards  

exploiting CNT quantum 
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realize single electron 
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CNT Segmentation

• Voltage-applied AFM (VAFM) process 

– Application of an electric field causes dissociation of the H2O 

molecules into H+ and OH-. 

– Material can be either removed

(volatile carbon oxide) or 

deposited (trapped oxygen in 

the carbon lattice) depending 

on process parameters: 

voltage, tip height, humidity, scan speed

Voltage input: -5 to -10V

CNT

AUX1-DAC

Water Meniscus

(100ms)
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Segmented CNT (>100nm)

Applied Voltage: -10 V
Scan Speed: 0.05 μm/s
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Applied Voltage: -10 V
Scan Speed: 0.01 μm/s

A few nanometers Cut?

Cut
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Now and Future: Exploring 
Strong Confinement Region

Low-temperature (4-300K) vacuum setup
Strauf, Stevens (Physics)

• Create ~10nm CNT-QDs with <5nm tunnel 

barriers

• (For semiconducting CNTs), the band gap 

plays a strong role in the transport current. 

• Perform a systematic study to understand 

the single electron transport and storage 

properties  Differential conductance 

measurements and scanning probe 

spectroscopy under optical excitation.
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I-2: CNT Nanoactuator

Choi C. H. et al, 
Biomaterials, Vol. 
28, p1672 (2006)

 Bimorph: piezoelectric, magnetic, 

thermal (optical, RF….)

 Low thermal expansion compared 

to metals: 

- αCNT = < 3x10-6 /K

- αAl = 23x10-6 /K

 Vertical nanoactuator arrays 

 Individual nanoactuator

Falvo M. et al, 
“Mechanics and 
friction at 
nanometer scale”, 
Journal of 
nanoparticle 
research, Vol. 2, 
p237
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Thermally evaporated Al films

• Thermal evaporation on MWNT at RT and 150 K.

• Metal grains in various morphology

• Inconsistent deflection behaviors: do not follow the prediction well.

Actuation inside an SEM chamber

MWNT-Al Bimorph?
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• Deposition Rate: 0.6 Å per min @ 160 mJ/pulse in 10 Hz

• Precisely formed metal film on only one side of a MWNT

2 μm

Pulsed Laser Deposition (PLD)

Al 70 nm

MWNT-Al Bimorph PLD
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• From calculation, Δ = 430 nm. 

• Measurement, Δ = 500 ± 200 nm at T ~100K.

CNT Bimorph Actuation
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Quad-Photodiode

MWNT Al

No Actuation:

Reactive response only

at room temperature

Actuation:

Reactive response + 
thermal response

at high temperature

LFM Measurement



EH Yang, Stevens Institute of Technology

22

The picture can't be displayed.

The picture can't be displayed.

Force Measurement

O. Sul ad E. H. Yang, “A Multi-Walled Carbon Nanotube-Aluminum Bimorph Nanoactuator,” Nanotechnology, vol. 20, 095502, 2009.
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MWNT used

• L = 2.0 ± 0.2 mm long

• f = 200 ± 20 nm

Measured force up to 1 mN.

Actuation Force
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Ni-Al2O3 Bimorph Actuation  

O. Sul, S. Jang and E. H. Yang, “Fabrication and Characterization of a Ni-Al2O3 Bimorph Nanoactuator”, Journal of Vacuum Science and Technology 
B; in review
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Vertical Nanoactuator Arrays

On-demand control of surface features  wetting behaviors 

(Example: Change in water contact angle)

On-demand control of surface features  cell behaviors 

(Example: Adhesion, cell morphology, surface antigen display, 

gene expression…)

ZnO

+ Nanoantenna?
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II-1: Graphene Gyroscope?

Graphene is a single-atom-thick 
planar 2-D layer of carbon atoms in 
a honey-combed lattice composed 
of two superposed triangular 
sublattices with superior electronic 
properties. 

• Conduction and valence bands 

touch at two nodal zero-gap

points in the first Brillouin zone. 

• Electron mobility as high as 

200,000 cm2/Vs at RT, with 

carrier density of 1013/cm2 and 

mean free path ~ 1 mm.

• Stable up to 3,000 K and has a 

quantum hall effect at RT. 
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Matter Wave Gyroscopes?

 No moving parts

 0.01 degree/hr bias stability

 Costs > $ 250K

 50 cm3, 19 lb, 30W

 Sensitivity: 60 mdegree/hr bias stability

 Operation at ~100nK, high vacuum, high 

magnetic fields 

 Very heavy: several hundred kilograms

Atom gyroscopes

http://scpnt.stanford.edu/downloads/14.%20Kasevich

_PNT-Symposium.pdf • Rotational motion can be detected via a phase 

shift between two arms of an interferometer. 

Optical gyroscopes

A

CW beamCCW beam
W

r b
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Electron Interferometer
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Concept and calculation 
by Prof. Search, Stevens (Physics)

M. Zivkovic, M. Jaaskelainen, C. P. Search, and I. 
Djuric, “Sagnac Rotational Phase Shifts in a Mesoscopic 
Electron Interferometer with Spin-Orbit Interactions,” 
PACS, February 1, 2008

 Electron interferometer: Only 

experiments were done with 

electron beam in vacuum.  

• Using electron Sagnac effect, the 

measured signal would be larger 

than an optical interferometer by, 

Mc2 / ћω ~ 105
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Graphene Ring Design

• Solid-state electron interferometer

• Electron scattering lengths 

• Sagnac phase shift proportional to 

both the enclosed area of the 

interferometer and the rotation 

rate. 

• Cascaded linear array  

enhances the sensitivity by N1/2. 
M. Zivkovic, M. Jaaskelainen, C. P. Search, and I. Djuric., Phys. 
Rev. B 77, 115306 (2008)

Provisional patent filed

Consisting of a ballistic ring 
connected to two leads with 
an applied bias voltage 

Concept and calculation 
by Prof. Search, Stevens (Physics)
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Graphene Synthesis

2 nm thick

1 mm

6 nm thick
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Nanopatterning (VAFM)

K. Kumar, Y. T. Tsai, O. Sul and E. H. Yang, “Nanoscale Graphene and Carbon Nanotube Lithography using an Atomic Force Microscope,” ASME 
International Mechanical Engineering Congress and Exposition, Lake Buena Vista, FL, Nov 2009 

Graphene oxide 

bumps on highly 

pyrolyzed ordered 

graphite. 

1 2

27 nm Appl. Phys. Lett. 93, 
093107 2008
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Performance Testing

• The electron wave interference changes the conductance across the

rings.

• Modulation of the path length using a gate electrode close to one arm to 

simulate the rotation (interferometer detuning)

• The fully developed device with thousands times smaller

area of graphene would measure equivalent rotations as 

optical gyroscopes. 

CNT

PRL 98, 246803 (2007)

Conductance depends on phase shift 

)(cos)/(/ 22 f heVIG

Phase shift depends on rotation rate 

/2 W mAf
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II-2: Graphene Filed Emission

• CNT’s field emission properties: turn-on voltage 1~3 V/mm and 

emission current as high as 100 mA from a single CNT

– attractive as cold-cathode field emission sources and lightweight 

packages

• FE characteristics from graphene? 

• Planar form of graphene  CMOS compatible process, an 

advantage for potential industrial fabrication 
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Previous Study on 
Graphene Filed Emission

• Randomly oriented oxidized graphene 

sheets protruding from the film: Applied 

Physics Letters 93, 233502 2008

• There is no report on the field 

emission 

– from high-quality (highly 

ordered pyrolyzed) graphene 

sheets ,

– in planar geometry, or

– in device applications.
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Experimental Setup

Keithley semiconductor measurement 

system through feed-troughs in the 

vacuum chamber
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Graphene Prepared for 
Field Emission Testing

SiO2

d

DC

One tip placed on the 

sample directly as a cathode 

and the other placed apart 

from the edge of graphene 

sheet as an anode. 
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Field Emission Characteristics

• Electron emission current exponentially increased up to 170 nA following the behavior 

of the Fowler-Nordheim relationship. 

• For the exponentially increasing region (of current), the F-N curve shows linear 

relationship (confirming the field emission characteristic). 

S. W. Lee, S. S. Lee and E. H. Yang, “Field Emission from Graphene Structures for Vacuum Transistor Applications,” ASME 
International Mechanical Engineering Congress and Exposition, Lake Buena Vista, FL, Nov 2009
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Near term goal: Graphene Triode

• Crystal orientation, number of layers, suspended structures…

• A graphene electrodes (source, drain, gate….) can be fabricated in-

plane along with other components (e.g. precisely patterned 

graphene triode based on high-quality graphene sheets)
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Conclusions

• We are exploiting carbon nanotube and graphene nanostructures. 

• Overcoming the technical challenges will enable one to leverage the 

outstanding properties of CNT and graphene in the development of 

next-generation devices with unrivaled functionality. 

• Such capabilities show potential widespread application in areas 

such as sensors, actuators and nanoelectronc systems.
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Project Overview

CNT and Graphene 
nanoelectronics

Large-stroke deformable 
mirror

Leak-tight piezoelectric 
microvalve

Nanoactuators and nano-
antenna arrays

Multi-functionalized 
nanowires

CNTs

Graphene 

Cell manipulation

CNT

Linear microactuator
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