
EXAMPLE 6: Spring-Mass-damper system 

 

 

 

 

Find: state equations 

Note: On inspection, you could see that k, and k2 are in parallel, and equivalent to the system 
below where !∗ = !! + !!. In the notes below we will instead solve the equivalent system and 
substitute in the definition of !∗ at the end. Alternatively, one could not make the substitution 
and instead solve for the state equations using the same procedure as earlier. The only different 
here is that there are only two state variables in the system (and not three as one might have 
initially identified, since xs1 and xs2 are identical. 

EQUIVALENT SYSTEM 

 

                                                      !∗ = !! + !! 

 

Solving for the State Equations 

1. !! = !∗!!         !! = !!!! 

 

2. !! = !!            !! = −!! 

Note that as the damper expands the mass must be moving to the left, hence the negative 
sign 

 

3.                             !! = ! !! 

                               −!! + !! = !!! 

m1 b1 

k2 

k1 

k* m1 b1 

fb fs 



4. SVs:      !!        (note    !! = !!! = !!!) 

                 !! 

 

5. !!! = !! = !! 

    !!! = !! = !
!
−!! + !! = !

!
−!∗!! + !!! = !

!
−!∗!! − !!!  

 

As we did previously, we can combine the two first order state equations into a 
single order state equation in terms of xs: 

                            !!!! = !!′ =
1
! −!∗!! − !!!  

               !!!! = !!′ =
1
! −!∗!! − !!!!  

                                                    need in terms of  !! here   

    2nd order state equation →    !"!!! + !!!! + !! + !! !! = 0 

 

Note here we substituted in for !∗ =   !! + !! 

 

Now that we have our second order differential equation, the goal is to solve it; 
here we will solve it analytically. There are likely a few ways that you have 
learned to do this; one way is to use the Laplace transform approach. You are of 
course free to use your own favorite way to solve this equation; my personal 
favorite is the Method of Underdetermined Coefficients (which I like to call the 
“Guess” Method) that we have used previously in this class: 

  



 

To start, we guess that      !! ! = !!!" 

                                           !!! = !!!!" 

                                           !!!! =   !!!!!" 

 

If this is the solution, then these must satisfy DEQ… 

! !2!!!" + ! !!!!" + !1 + !2 !!!" = 0 

!!2 + !" + !1 + !2 = 0 

 

This important equation is referred to as the characteristic equation. To solve, need 
to find the values of ‘r’ that satisfy the characteristic equation. To find these, use 
quadratic formula.  

!!,! =
−! ± !! − 4 ! !! + !!

2!  

Which we can write in a slightly different form as 

!!,! = −
!
2! ±

!
2!

!

−
!! + !!
!  

 

Thus the value of r1, r2 are dependent on the system parameters. Depending on 
these values, we’ll get different system responses (see general vibrations book for 
more detail).  

It’s beyond the scope of this class, but the “damping ratio” ζ is derived as 

! =
!

2 !"
 



Depending on the values of the system parameters m, b, and k, there are there are 
four categories (or ‘types’ of responses) that we can get from the system, 
depending on the value of the damping ratio ζ: 

Case 1— undamped        b=0, ζ=0 

Case 2 — under-damped        0<ζ<1 

Case 3 — critically-damped    ζ=1 

Case 4 — over-damped     ζ>1 

An example of the different types of response for these different cases is shown 
below. 
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A few notes about the behavior shown in the figure: 



1. If the system is undamped, there is no energy loss in the system and 
theoretically the system would continue to vibrate. Real systems always 
have losses in the system 
 

2. If the system is underdamped, the system will vibrate but with increasingly 
smaller amplitude over time. Note that there is a (generally slight) decrease 
in the underdamped case (in comparison to the un-damped system; this is 
referred to as the damped frequency). The relationship between the 
damped frequency ωd and the undamped natural frequency ω0 can be 
written as 

!! = !! 1 − !! 

In a classical vibrations course this would be covered in more detail. 
 
Note: a good check would be to consider with the equation for damped frequency 
above is sensible. If we consider the four cases that were discussed above: 

• Case 1: Undamped: ζ=0, and ωd = ω0. This makes sense 
• Case 2: Underdamped: 0<ζ<1. ωd will be smaller than ω0 
• Case 3: Critically damped: ζ=1. Suggests no oscillation (and hence no 

frequency). Makes sense. 
• Case 4: Overdamped: ζ>1. This would result in the square root of a negative 

number; expression is no valid in this case 
 

3. Notice the difference between critically damped and overdamped. In both 
cases the system goes to zero with no oscillation, but the systems ‘gets’ to 
zero fast in the critically damped case. This is quite useful in a number of 
applications, for example vibration absorbers, where we want to ‘damp out’ 
the vibration as quickly as possible. (One common example is the shock 
absorbers in your car.) For a given value of k and m, there is a ‘perfect’ 
damping value that will result in the system being critically damped and 
resulting in optimal performance. 
 

4. For the overdamped case, there is too much damping in the system, and it 
cannot get to zero as quickly as the critically damped system can. I 
personally think of this system as “sluggish”.  


