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Abstract

Nanotube-reinforced polymers offer significant potential improvements over the pure polymer with regard to mechanical, elec-
trical and thermal properties. This article investigates the degree to which the characteristic waviness of nanotubes embedded in
polymers can impact the effective stiffness of these materials. A 3D finite element model of a single infinitely long sinusoidal fiber

within an infinite matrix is used to numerically compute the dilute strain concentration tensor. A Mori–Tanaka model utilizes this
tensor to predict the effective modulus of the material with aligned or randomly oriented inclusions. This hybrid finite element-
micromechanical modeling technique is a powerful extension of general micromechanics modeling and can be applied to any com-

posite microstructure containing non-ellipsoidal inclusions. The results demonstrate that nanotube waviness results in a reduction
of the effective modulus of the composite relative to straight nanotube reinforcement. The degree of reduction is dependent on the
ratio of the sinusoidal wavelength to the nanotube diameter. As this wavelength ratio increases, the effective stiffness of a composite
with randomly oriented wavy nanotubes converges to the result obtained with straight nanotube inclusions. The approach devel-

oped in this paper can also be utilized in the analysis of other problems involving nanotube-reinforced polymers, including alternate
nanotube representations, viscoelastic response, assessing the effect of low matrix-NT bond strength and in the determination of
thermal and electrical conductivity.
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1. Introduction and background

Composite materials offer the material designer the
opportunity to combine two (or more) materials to
optimize material properties. Many material properties
and features can be modified, including stiffness,
strength, toughness, durability, appearance, electrical
behavior and thermal behavior. The proper choice and
amount of the filler phase material is vital to achieving
the desired properties. For applications where weight,
stiffness and strength are critical, polymers reinforced
with carbon nanotubes (NTs) offer the potential for
significant improvement over systems such as graphite
fiber reinforced polymers. For example, graphite fibers
have modulus and strength values that range from 200
to 600 GPa and 2.5 to 6.5 GPa, respectively [1,2]. Car-
bon nanotubes are predicted to have modulus values on
the order of 1 TPa, with strengths several times that of
graphite fibers [3–8].
One area of current research interest is low volume

fraction carbon nanotube-reinforced polymers (NRPs).
Often the goal of creating such materials is to take
advantage of the extraordinary electrical and thermal
conductivity of NTs to create multifunctional NRPs
with improved electrical and thermal properties [9].
Several investigators have demonstrated that such
materials also have significant improvements in mod-
ulus and strength relative to the pure polymer matrix
material [10–12]. However, the mechanical property
enhancements which are currently realized with these
materials are often significantly less than those suggested
0266-3538/03/$ - see front matter # 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S0266-3538(03)00070-8
Composites Science and Technology 63 (2003) 1705–1722

www.elsevier.com/locate/compscitech
* Corresponding author. Tel.: +1-847-2347; fax: +1-847-491-3915.

E-mail address: cbrinson@northwestern.edu (L.C. Brinson).
1 Current address: Department of Mechanical Engineering, Uni-

versity of Louisville, Louisville, KY 40292, USA.

http://www.sciencedirect.com
http://www.sciencedirect.com
http://www.sciencedirect.com
http://www.elsevier.com/locate/compscitech/a4.3d
mailto:cbrinson@northwestern.edu


by simple micromechanics models [13]. This may be
caused by a variety of factors, including NT dispersion
within the polymer, the nature of the interaction
between the polymer and the NT, the size, shape and
orientation of the NT, and the type of NT used (single
wall, multi-wall, bundles, etc.).
One feature characteristic of NRPs is that the

embedded NTs are not straight but rather have sig-
nificant curvature or waviness that varies throughout
the composite [11,14]. While it is reasonable to surmise
that this waviness reduces the effectiveness of the NT
reinforcement of the polymer, the degree to which this is
the case is unclear. The goal of this work is to develop a
micromechanics-based model that can be used to assess
the effect of nanotube waviness on the properties of
NRPs. The critical item that must be determined in such
a micromechanics approach is the dilute strain concen-
tration tensor, which for a single inclusion embedded in
an infinite matrix material relates the average inclusion
strain to the applied farfield strain. In a previous study
[13] and in the companion article of this work [15], the
problem was simplified by modeling the wavy NTs as
infinitely long straight NTs; the effect of waviness was
incorporated using a reduced effective nanotube mod-
ulus determined via finite element modeling. Since the
wavy NT was modeled as a straight NT with a reduced
modulus, the dilute strain concentration tensor could be
determined analytically via Eshelby’s solution for an
ellipsoidal inclusion in an infinite matrix.
In the current work, an alternate approach is used.

The NT is modeled as an infinitely long sinusoidal fiber
and the dilute strain concentration tensor is obtained
directly from a finite element solution. This approx-
imates the NT and the surrounding matrix as a con-
tinuum; the nature of this assumption and its
justification and limitations are discussed in the compa-
nion paper of this work [15]2 This Numerical Strain
Concentration Tensor (NSCT) method is more compli-
cated than the approach in the companion article, as six
finite element solutions must be performed to determine
Nomenclature

a Amplitude of sinusoidal NT
a/l Waviness ratio of sinusoidal NT
Ar; dil Dilute strain concentration tensor/matrix

for the rth phase
A Dilute strain concentration tensor/matrix

for phase 1
Â Dilute strain concentration tensor/matrix

from the Eshelby solution
AALW Dilute strain concentration tensor/matrix

from the analytical long wavelength model
Cr Modulus tensor/matrix for the rth phase
C� Composite effective modulus tensor/matrix
d Diameter of sinusoidal NT
Ecell Young’s modulus in NT direction for

parallelepiped unit cell
EERM Effective reinforcing modulus for single

wavy NT
EM Modulus of matrix material (phase 0)
ENT Modulus of NT material (phase 1)
ENT/EM Modulus ratio of sinusoidal NT
ERM Effective Reinforcing Modulus (model)
fcell Volume fraction of NT in parallelepiped

unit cell
fr Volume fraction for the rth phase
NT Carbon nanotube
NRP Nanotube-reinforced polymer
NSCT Numerical Strain Concentration Tensor

(model)
p Constant used to define transformation
matrix Tð�Þ

Tð�Þ Transformation matrix for ALW model
ui Displacement function for specifying finite

element model boundary conditions
vq Volume of qth NT element
V1 Domain of NT (phase 1)
�ðzÞ Angle between axis of NT segment and

global z axis
"~ Farfield applied strain
"~uvw Farfield applied strain in local coordinate

system of NT segment
"~123 Farfield applied strain in global coordinate

system
"r Strain tensor function for the rth phase
"h i Average strain for the NRP composite
"qi j"~p Centroidal strain for qth NT element due

to farfield applied strain "~p
l Wavelength of sinusoidal NT
l/d Wavelength ratio of sinusoidal NT
z Constant accounting for use of engineering

shear strain
h i Volumetric averaging operation
�fg Orientational averaging operation
�fgTI Orientational averaging operation for

randomization about the z axis
�fg3D Orientational averaging operation for

randomization in all directions
2 Once the NT and surrounding matrix are modeled as a con-

tinuum, the length scale of the NT is no longer material to the analy-

sis. Thus, the model developed in this article applies equally well to

larger inclusions such as graphite fibers. As such, in this article the

term fiber is used interchangeably with the term nanotube when

speaking of the reinforcement phase of the composite material.
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the 12 independent terms of the strain concentration
tensor (versus 1 finite element solution to determine a
single parameter in the companion article). However,
this approach is more accurate and thus enables closer
study of any composite with non-ellipsoidal inclusions.
It will be shown that for an NRP with unidirectional
wavy NTs, the predicted modulus in the NT direction is
very similar for the two approaches. However, the
modulus predicted in the plane of waviness in the
direction normal to the NT axis is significantly higher in
the current model, particularly as waviness increases.
This difference impacts the prediction of the modulus of
NRPs with randomly orientated inclusions; specifically,
the current model predicts a higher NRP effective mod-
ulus than the model presented in the companion paper.
In addition to the finite element approach, an analy-

tical method is presented which is applicable when the
wavelength of a sinusoidal NT is long relative to its
diameter. It is demonstrated that the finite element
approach converges to this analytical solution as wave-
length is increased. This analytical model has implica-
tions regarding the degree to which NT waviness
reduces the effective reinforcement of NRPs.

1.1. Dilute strain concentration tensor

In this section, a brief outline of several underlying
concepts used in standard micromechanical analysis is
presented [16]. This description should provide a clear
understanding of the use of the dilute strain concen-
tration tensor in micromechanics. The numerical tech-
nique presented in this paper is geared towards
determining this tensor for non-ellipsoidal inclusions
(e.g. wavy nanotubes).
Consider a 2 phase composite consisting of a single,

arbitrarily shaped inclusion (phase 1) perfectly bonded
inside a matrix material (phase 0). For the purposes of
this discussion, assume that the matrix is large enough
to appear infinite to the inclusion and that this compo-
site is initially in a stress-free state such that the stress at
every point in the body is zero.3 Under the application
of a homogeneous strain "~ at the matrix boundary, the
volumetric average of the strain in phase 1 (the inclu-
sion) is given by

"1
� �

¼

Ð
V1
"1 dVÐ
V1
dV

ð1Þ

where �1 and V1 are the strain tensor function and
domain of the inclusion, respectively, and the h i sym-
bol denotes a volumetrically averaged quantity. If the
matrix and inclusion are both linear elastic, and no
separation occurs at their interface, there must be a lin-
ear relationship between the farfield strain tensor "~ and
the average inclusion strain tensor "~1

D E
. This relation-

ship is expressed by the dilute strain concentration ten-
sor A1; dil as

"1
� �

¼ A1; dil"~ ð2Þ

Suppose that the dilute strain concentration tensor
A1; dil in Eq. (2) has been determined for a single inclu-
sion of the type to be considered. For a 2 phase com-
posite consisting of a number of identical inclusions, the
effective elastic modulus tensor C� can be determined. If
the inclusions are well-dispersed and their volume frac-
tion f1 is small, the dilute approximation is employed
and C� is obtained algebraically as

C� ¼ C0 þ f1 C1 � C0
� �

A1; dil ð3Þ

where C0 and C1 are the elastic moduli of the matrix
and inclusion phases, respectively.
As the inclusion volume fraction increases, interaction

between the inclusions reduces the accuracy of the dilute
approximation. In this case, the Mori–Tanaka theory
provides an approach to determine the effective mod-
ulus C� that includes the effect of particle interaction as

C� ¼ C0

þ f1 C1 � C0
� �

A1; dil 1� f1ð Þ I þ f1 A
1; dil

� 	�1
ð4Þ

where I is the identity tensor. Note that this expression
yields the dilute approximation of Eq. (3) as the inclu-
sion volume fraction f1 approaches 0.
The Mori–Tanaka approach described in Eq. (4) pro-

vides a method for determining the elastic modulus of a 2
phase composite. It consists of a number of items that
can be easily obtained (C0, C1, f1) and one item that
needs to be determined for the inclusion geometry under
consideration (A1; dil). In standard micromechanics, the
Eshelby equivalent inclusion method is typically used to
provide an analytical expression for A1; dil in the case of
ellipsoidal inclusion shapes. The companion paper uses
this approach and determines A1; dil by modeling the
wavy nanotube as an infinitely long straight nanotube
with an effective (reduced) modulus C1 obtained via
3 The analysis performed in this article is based on small deforma-

tion linear elasticity. For this reason, the presence of residual stress/

strain in the unloaded state (due to differential thermal expansion fol-

lowing cure, bending stress in the fibers due to configuration in the

cured state, etc.) does not significantly affect the model developed in

this article. In such a case, the effects of residual stress/strain are first

determined in the absence of load. In the subsequent case when both

load and residual stress/strain are present, the effect due to load alone

is determined by subtracting the load-free result in an appropriate

manner. The net result will be identical to that obtained by assuming

an initially stress-free state; thus, the apparent modulus of such a

material is not affected by the presence of residual strains. This

approach does not apply to large deformation behavior that leads to

fiber reorientation; models developed by other researchers can be used

in such cases [17,18].
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finite element analysis. In this paper, a method is devel-
oped to retain the NT shape and determine the strain
concentration tensor A1; dil by evaluating the average
nanotube strain as shown in Eq. (1) directly from a 3D
finite element model. By solving a sufficient number of
cases, A1; dil can be determined from the fundamental
relationship provided in Eq. (2). This hybrid numerical-
analytical micromechanics approach will be useful to
help understand the properties and behavior of any
multiphase material with non-ellipsoidal inclusions.
The expression contained in Eq. (4) is derived for

inclusions with identical shape, properties and orienta-
tion (i.e. equivalent A1; dil in the global coordinate sys-
tem). For NRPs, however, the nanotubes are typically
oriented in random directions. There are several
approaches that can be used to analyze such materials
[19,20]. This paper will use the Mori–Tanaka approach
presented by Weng [21], which demonstrated that an N
phase composite with variably oriented inclusions has
an effective modulus C� given by

C� ¼
XN�1

r¼0

fr Cr Ar; dil
� �" # XN�1

r¼0

fr Ar; dil
� �" #�1

ð5Þ

where fr, C
r and Ar; dil are the volume fraction, modulus

tensor and dilute strain concentration tensor for the rth
phase, respectively, and operation Xf g designates the
orientational average of tensor X, discussed in more
detail in a later section.4 Any distribution of inclusion
orientations can be considered by specifying the appro-
priate �fg form. Two common orientational operations
are randomness in a single plane (2D random compo-
site) or randomness in all directions (3D random com-
posite). The case of identically aligned inclusions [as in
Eq. (4)] corresponds to Xf g ¼ X. Thus, the effective
elastic properties for an NRP with N phases of wavy
randomly oriented nanotubes can be easily obtained
once the dilute strain concentration tensor Ar; dil has
been determined for each inclusion phase using the
approach described below. In this paper, NRPs with 2
phases are studied (i.e. N=2), consisting of a single type
of nanotube inclusion (r=1) embedded in a matrix
phase (r=0); see the companion article for an analysis
of an NRP consisting of several nanotube inclusion
phases (i.e. N > 2) [15].
2. Finite element model

As described in the previous section, the item to be
determined for a micromechanical analysis of the
modulus of an NRP with wavy NTs is the strain con-
centration tensor A1; dil. This article develops a new
method, called the Numerical Strain Concentration
Tensor (NSCT) model, to determine A1; dil for a non-
ellipsoidal inclusion using a finite element model. This
section will describe the geometry, mesh, boundary
conditions and solution of the finite element model.
This section will also describe how a slightly modified
model is used to determine the key parameter for the
Effective Reinforcing Modulus (ERM) model devel-
oped in the companion paper. Analysis of NRPs with
aligned and randomly oriented wavy NTs utilizing the
finite element results will be described in a subsequent
section.

2.1. Assumed wavy fiber characteristics

In an NRP composite, the NTs exhibit a great deal of
variation, including the length of individual NTs rela-
tive to their diameter, the shape of the embedded NTs,
and their orientation relative to one another. In order to
perform a finite element analysis of an NRP with wavy
NTs, simplifications of the geometry must be made to
reduce the problem to one that can be computationally
solved in a reasonable time frame.
For this article, a single wavy NT of diameter d

embedded in a nearly-infinite matrix is analyzed. It is
assumed that the NT has a solid cross-section, is infi-
nitely long and its centerline path is sinusoidal in the
y�z plane at x=0 and is given by

y ¼ a cos
2� z

l

� �
ð6Þ

where a and l are the amplitude and wavelength of the
NT waviness, respectively. In the stress-free state, the
NT cross-section in all planes normal to the centerline
path given in Eq. (6) is a circle with diameter d equal to
the NT diameter. This representation of the NT is par-
ticularly useful as it introduces planes of symmetry at
x=0 and z=n l / 2, where n is an integer.
This geometry can be analyzed by a fairly compact

finite element model. This leads to a reasonable solution
time, which permits consideration of a number of vari-
ables. However, this approach also limits the types of
cases that can be considered. For example, NTs gen-
erally do not follow regular sinusoidal paths as
approximated here. Furthermore, although NTs are
typically long relative to their diameter (often on the
order of 103–104 d), they are clearly not infinite in
length; the effect of NT termination is not considered
in this model. Also, NTs are not solid but hollow; the
impact of using a hollow NT representation in the finite
element model has not yet been evaluated. Thus, this
work should be viewed as a beginning in the analysis of
NRPs with wavy NTs that will give a good first
4 Since the dilute case considers a single inclusion in an infinite

matrix, the average matrix strain is identical to the applied farfield

strain; thus, the dilute strain concentration tensor for the matrix,

A0; dil, is the identity tensor.
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approximation of the effective modulus. Future efforts
will be aimed at addressing other important issues, such
as the effect of finite NT length, hollow NT configur-
ations, or alternate NT paths on effective reinforcement.
An ideal model would permit predictions for a single
NT with an arbitrary path embedded in a matrix.

2.2. Finite element model mesh

The finite element analysis in this article is performed
using ANSYStm. Two types of models are used in the
analysis for this article and the companion paper; these
are shown in Fig. 1. For the analysis that determines the
strain concentration matrix, the shape of the matrix
boundary is irrelevant; the model in Fig. 1(a) is used in
this case. For the effective reinforcing modulus
approach in the companion paper, the model needs to
be a parallelepiped in order to calculate the effective
modulus of the model in the z direction; the model in
Fig. 1(b) is used in this case. Fig. 1(c) shows a close-up
of the elements that makeup the NT and the adjacent
matrix. For clarity, the models shown have fairly high
NT volume fractions (on the order of 0.5%); the models
used for actual analysis have volume fractions on the
order of 0.01% to ensure that the matrix appears infi-
nitely large to the NT.
The model is built from a series of 4 sided areas con-

structed at various points along the fiber path; those
that make up the fiber are constructed normal to the
fiber path while those that remain are either normal to
the global z axis or skewed as necessary. The volumes
of the model are then constructed by connecting these
area sets with a series of lines and arcs; arcs are used for
the NT volumes to reflect the curved surfaces of the NT
while straight lines are used for the remainder. The
volumes comprising the NT and matrix immediately
adjacent to it are meshed using 20 node bricks contain-
ing midside nodes. This allows element edges to be
parabolic in shape, which accurately captures the
curved NT surface. These higher order elements are
also well suited to modeling the high strain gradients
that exist close to the NT. The remaining volumes are
meshed with 8 node bricks to reduce the number of
degrees freedom while still providing sufficient detail to
capture the slowly varying strain fields closer to the
model exterior. The resulting model is quarter-sym-
metric; mirroring this model about x=0 and then z=0
will create a model of a single wavelength l: of a sinu-
soidal NT embedded in an apparently infinite matrix
material.

2.3. Boundary conditions—strain concentration matrix
determination

In order to determine the strain concentration matrix
A1; dil, six strain cases need to be applied to the model.
These consist of the three farfield extensional strains
("~11, "~22, "~33) and the three farfield shear strains ("~23, "~13,
Fig. 1. Examples of finite element models used in the analysis: (a) wavy matrix boundary; (b) parallelepiped matrix boundary; (c) close-up of ele-

ments that makeup NT and adjacent matrix; shading represents NT and three distinct matrix regions (representative xyz coordinate system and

geometry terms a, l and d also shown).
R.D. Bradshaw et al. / Composites Science and Technology 63 (2003) 1705–1722 1709



"~12).
5 For each case, one strain condition is applied to

the model while all other strains are specified to be 0.
An additional complication is that the quarter-sym-
metric model consists of a number of symmetry (and
anti-symmetry) planes that must be accounted for
appropriately. To clarify the definitions, Fig. 2 shows
the surfaces for which boundary conditions must be
specified. Plane 4 and surfaces 2 and 5 are model exter-
iors while planes 1, 3 and 6 are model interior planes of
symmetry.
The strains on the model exteriors are applied by

specifying the displacements at every node. The nodal
displacements u are obtained based upon the position of
the node in the global coordinate system as

u1 ¼ f x; y; zð Þ ; u2 ¼ g x; y; zð Þ ;

u3 ¼ h x; y; zð Þ
ð7Þ

These displacement functions are given in Table 1. By
inspection, these displacements cause the desired farfield
strain in each row of Table 1 while causing all other
strains to be 0 in accordance with the tensorial strain
relationship

"ij ¼
1

2
ui;j þ uj;i
� �

ð8Þ

The model interior planes are somewhat more com-
plicated. Each plane represents a plane of symmetry:
mirroring about plane 1 and then either plane 3 or plane
6 creates an entire cell representing a single wavelength
l of the sinusoidal NT. This captures the infinitely long
nature of the sinusoidal NT since the geometry repeats
with offsets of n l in the z direction, where n is an inte-
ger. However, it will be demonstrated that the quarter-
symmetric model shown in Fig. 1 is sufficient to capture
the behavior. Three types of symmetry are required to
specify the boundary conditions on the 3 symmetry
planes for the 6 strain cases:


 Symmetry: displacement normal to plane is fixed
at zero and the nodes are free to displace in the
plane


 Anti-symmetry: displacements in the plane are
fixed at zero and the nodes are free to displace
normal to the plane


 Modified Symmetry: displacement normal to
plane is fixed at a non-zero value and the nodes
are free to displace in the plane

The displacement conditions for these planes are lis-
ted in Table 2. For each case, visualization of the dis-
placements can be used to demonstrate the validity of
the specified boundary conditions. These conditions
were also validated by demonstrating the results from a
quarter-symmetric model (as above) were identical to
those from the solution of a full model (mirrored about
planes 1 and 6); this result will be discussed in the next
section.
Table 2

Specified displacements for interior model surfaces (displacements not

specified are free) (S)=symmetry, (M)=modified symmetry,

(A)=anti-symmetry
Plane 1 x=0
 Plane 3 z=l / 2
 Plane 6 z=0
Farfield strain "~11
 u1 ¼ 0 (S)
 u3 ¼ 0 (S)
 u3 ¼ 0 (S)
Farfield strain "~22
 u1 ¼ 0 (S)
 u3 ¼ 0 (S)
 u3 ¼ 0 (S)
Farfield strain "~33
 u1 ¼ 0 (S)
 u3 ¼ 1=2 "~33 l (M)
 u3 ¼ 0 (S)
Farfield strain "~23
 u1 ¼ 0 (S)
 u1 ¼ u2 ¼ 0 (A)
 u1 ¼ u2 ¼ 0 (A)
Farfield strain "~13
 u2 ¼ u3 ¼ 0 (A)
 u1 ¼ u2 ¼ 0 (A)
 u1 ¼ u2 ¼ 0 (A)
Farfield strain "~12
 u2 ¼ u3 ¼ 0 (A)
 u3 ¼ 0 (S)
 u3 ¼ 0 (S)
Fig. 2. Numbered planes and surfaces used for strain boundary con-

ditions (solid circles indicate visible planes, dashed circles indicate

planes hidden in the view).
Table 1

Displacement functions for exterior model surfaces (plane 4 and sur-

faces 2 and 5 in Fig. 2)
Displacement

u1fðx; y; zÞ
Displacement

u2gðx; y; zÞ
Displacement

u3hðx; y; zÞ
Farfield strain "~11
 "~11 x
 0
 0
Farfield strain "~22
 0
 "~22 y
 0
Farfield strain "~33
 0
 0
 "~33 z
Farfield strain "~23
 0
 0
 2 "~23 y

Farfield strain "~13
 0
 0
 2 "~13 x
Farfield strain "~12
 "~12 y
 "~12 x
 0
5 The boundary conditions are specified using tensorial shear

strains, which are indicated with an �. Later in the paper, engineering

shear strains will be used to be consistent with previous work; these

are indicated by a 	.
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2.4. Solution for strain concentration matrix

Once the boundary conditions are applied for any of
the six strain cases to be considered, ANSYS is used to
determine the solution and perform all post-processing.
The goal is to determine the relationship between the
average NT strain and the farfield applied strain. Before
proceeding, it is useful to simplify the strain concen-
tration tensor from the A1; dil

ijkl notation of Eq. (2) to a
more compact 6 � 6 matrix form defined as

"1i
� �

¼Aij "~j

"111
� �
"122
� �
"133
� �
"123
� �
"113
� �
"112
� �

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66

2
666666664

3
777777775

"~11

"~22

"~33

"~23

"~13

"~12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
ð9Þ

For the remainder of the paper, the 1,dil superscript
is discarded for simplicity; it is implied that Aij refers
to the dilute strain concentration matrix for the NT
(phase 1).
Suppose that one of the farfield strain conditions

"~p p 2 1; 6½ �ð Þ from Tables 1 and 2 are applied to the
finite element model. After model solution, the volume-
trically averaged strain "1i

� �
j"~p in the Q elements that

make up the NT is given as

"1i
� �

j"~p¼

Ð
V1
"1i j"~p dVÐ
V1
dV

�

PQ
q¼1

"
_q
i j"~p vq

PQ
q¼1

vq

; i 2 1; 6½ � ð10Þ

where vq and "qi j"~p are the element volume and ith strain
component at the element centroid, respectively, for the
qth element that makes up the NT. Combining Eq. (9),
evaluated for the single non-zero farfield strain "~p, with
the average fiber strains from Eq. (10) allows 6 of the 36
strain concentration matrix terms to be evaluated as

Aip ¼
"1i
� �

j"~p
"~p

p 2 1; 6½ �ð Þ ð11Þ

This approach is repeated for all 6 components of
farfield strain and the strain concentration matrix is
fully determined.
The strain concentration matrix was determined via

Eqs. (10) and (11) using a quarter-symmetric model (see
Fig. 2) with a variety of sinusoidal geometries and
material properties. The resulting strain concentration
matrix for the quarter-symmetric model has the form
A ¼

A11 A12 A13 A14 0 0
A21 A22 A23 A24 0 0
A31 A32 A33 A34 0 0
A41 A42 A43 A44 0 0
0 0 0 0 A55 A56

0 0 0 0 A65 A66

2
6666664

3
7777775

ð12Þ

In order to verify the correctness of the boundary con-
ditions on the planes of symmetry, the strain concentration
matrix was also determined using a full model (created by
mirroring the quarter-symmetric model in Fig. 2 about
plane 1 and then about plane 6). The resulting strain con-
centration matrix is numerically identical to that shown in
Eq. (12) with the exception that the full model finds the
terms A14; A24; A34; A41; A42; A43; A56 and A65 to
be zero. Consideration of the symmetry involved in the
problem indicates the reason for this finding. Specifi-
cally, the sign of various shear strain terms changes in the
four quadrants that make up the full model, causing the
average NT shear strains to cancel. By only considering
one-quarter of the full model, these associated terms do
not cancel. This oversight can be corrected by book-
keeping, and the strain concentration matrix is
determined from the quarter-symmetric model with the
terms A14, A24, A34, A41, A42, A43, A56 and A65 discarded.
With this, the final form of the strain concentration
matrix6 becomes

A ¼

A11 A12 A13 0 0 0
A21 A22 A23 0 0 0
A31 A32 A33 0 0 0
0 0 0 A44 0 0
0 0 0 0 A55 0
0 0 0 0 0 A66

2
6666664

3
7777775

ð13Þ

The finite element modeling technique described
above produces the dilute strain concentration tensor
for an infinitely long sinusoidal NT embedded in an
infinite matrix. This approach can also be used to
obtain the dilute strain concentration tensor for other
inclusion types. Once a finite element model is created
and solved with appropriate boundary conditions for
the inclusion type to be considered, the average inclu-
sion strain is analyzed via Eqs. (10) and (11) which
again leads to the associated dilute strain concentration
tensor. Thus, the approach described in this paper can
be used in the study of any multiphase composite con-
sisting of non-ellipsoidal inclusions.
6 It should be noted that there is no coupling of shear and exten-

sion strains in Eq. (13). Thus, this strain concentration matrix can be

used to relate farfield and average NT strain vectors consisting of

either tensorial shear strains (e23, e13, e12) or engineering shear strains

(g23=2e23, g13=2e13, g12=2e12).
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2.5. Boundary conditions and solution—effective
reinforcing modulus

The companion article to this work uses a similar
finite element procedure to determine an effective rein-
forcing modulus for the NT that accounts for NT
waviness. This is accomplished by first determining the
effective modulus of the parallelepiped cell containing
the wavy NT (Ecell) as shown in shown in Fig. 1(b). This
case is analogous to a unidirectional tension test in the z
direction. Since the problem is symmetric about planes 3
and 6, the strain "33 is constant at all points in those
planes. Denoting the value of this strain as "033, the
boundary conditions for the model interior planes are
identical to those in Table 2 for the "~33 case. The model
exterior surfaces (planes 2, 4 and 5) are left traction free
(no displacements specified). Such a model is unrest-
rained in the y direction; to prevent rigid body motion,
a single (arbitrary) point is specified to have u2 ¼ 0.
To solve for the effective modulus of the cell, the total

force Fz required to cause the strain "~33 is calculated by
summing the forces in the z direction applied to the
nodes that make up Plane 3 (or, equivalently, Plane 6).
The cell modulus Ecell is then simply calculated by
dividing the average stress by the average strain as

Ecell ¼
Fz

APlane 3

1

"033
ð14Þ

where APlane 3 is the area of Plane 3. The relationship to
determine the effective reinforcing modulus EERM from
Ecell is described in the companion paper as

EERM ¼
Ecell � 1� fcellð ÞEM

fcell
ð15Þ

where fcell is the volume fraction of the NT in the unit cell.
2.6. Finite element model validation

In order to verify the accuracy of the preceding
sections, a number of validation studies were per-
formed. These ensure that the given boundary condi-
tions are correct, that the matrix used is sufficiently
large to approximate infinite matrix conditions and
that the number of elements used in a given cross-
section and in the direction of the NT are sufficient
to achieve stable, accurate results. These conditions
are satisfied for the models used in the remainder of
this paper. Additional details are available elsewhere
[22]
3. Models for NRP modulus

The numerical approach in the previous section is
used to determine the dilute strain concentration
matrix, A, for a sinusoidally shaped NT. Once A is
obtained, traditional micromechanics techniques are
employed to find the effective properties of composites
with non-dilute volume fractions of sinusoidal inclu-
sions. In this section, the Mori–Tanaka theory is used
to determine the effective modulus for two NRP com-
posites: the first has similarly oriented sinusoidal
inclusions (Fig. 3a) while the second has sinusoidal
inclusions randomly oriented in all directions (Fig. 3b);
this development follows the approach of Weng [21]
The combination of the numerically derived A and the
Mori–Tanaka theory is referred to as the NSCT
(numerical strain concentration tensor) model. An
analytical solution is also developed for the limit case
of long wavelength fibers, which is useful for model
validation. This work is motivated by the need to
understand and model the effects of carbon nanotubes
in polymer composites; as such, all examples and
Fig. 3. Wavy NT orientations modeled: (a) similarly oriented wavy NTs with common axis directions and waviness planes; (b) wavy NTs randomly

oriented in all directions with randomly oriented planes of waviness.
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results are limited to these materials. However, this
hybrid numerical-analytical micromechanics method is
valid for any composite containing non-ellipsoidal
inclusions.

3.1. Governing parameters

The finite element model in the previous section
provides the ability to calculate either the strain con-
centration matrix A or the effective reinforcing mod-
ulus EERM for a single infinitely long sinusoidal NT
embedded in an apparently infinite matrix. In addition
to the mesh details described in the previous section,
there are seven geometry and property values that must
be specified: (1) the NT diameter d; (2) the sinusoidal
wavelength l; (3) the sinusoidal amplitude a; (4) the
NT modulus ENT; (5) the NT Poisson’s ratio �NT; (6)
the matrix modulus EM, (7) the matrix Poisson’s ratio
�M. This assumes that both the NT and the matrix are
isotropic materials; other material models could be
used as well with the associated additional material
parameters.
As described in the companion article, a dimensional

analysis demonstrates that only 5 of these values are
actually independent, with one dependent length term
and one dependent stress term. As discussed in the
companion paper, the Poisson’s ratios for both phases
are assumed to be 0.30 for all cases in this article; this
reduces the variable count while remaining repre-
sentative for structural polymers and consistent with
NT experimental findings [5,6]. Furthermore, the
companion article demonstrated that the effective
reinforcing modulus is fairly insensitive to either �NT

or �M; thus, a typical value is chosen to simplify the
analysis. This reduces the number of variables to
three, which for this study are chosen to be the wave-
length ratio l/d, the waviness ratio a/l and the mod-
ulus ratio ENT/EM. Since the focus of this article is on
polymers reinforced with NTs, the modulus ratio will
be limited to two fairly large values of 200 and 400.
Assuming a fairly typical polymer modulus of 2.5
GPa, these values correspond to a NT moduli of 500
and 1000 GPa.

3.2. Modulus of NRP with Similarly Oriented Wavy
NTs

The effective modulus C� for a 2 phase unidirectional
NRP consisting of similarly oriented wavy NTs
(Fig. 3a) with identical properties (l/d, a/l, ENT/EM)
can be determined using Eq. (5) with the orientational
operation Xf g ¼ X. The only unknown in this equa-
tion, A ¼ A1;dil

� �
, is first determined using the finite

element method previously described. The effective
modulus C� can also be written in contracted 6 � 6
form [23] as
�ih i ¼ C
�

ij "j
� �

�11h i

�22h i

�33h i

�23h i

�13h i

�12h i

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

C
�

1111 C
�

1122 C
�

1133 0 0 0

C
�

1122 C
�

2222 C
�

2233 0 0 0

C
�

1133 C
�

2233 C
�

3333 0 0 0

0 0 0 C
�

2323 0 0

0 0 0 0 C
�

1313 0

0 0 0 0 0 C
�

1212

2
666666664

3
777777775

"11h i

"22h i

"33h i

2 "23h i

2 "13h i

2 "12h i

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð16Þ

Once the modulus of the individual phases (Cr) are
cast in 6�6 form, Eq. (5) is used to determine C�. The
resulting material will be orthotropic as expressed in
Eq. (16).

3.3. Modulus of NRP with randomly oriented wavy NTs

The preceding section determined the effective mod-
ulus C� for a unidirectional NRP. However, typical
NRPs have NTs randomly oriented in the matrix
(Fig. 3b). The effective modulus for a 2 phase composite
consisting of NTs with common values of l/d, a/l and
ENT/EM but randomly oriented in all directions in a
matrix can also be determined using Weng’s approach
as presented in Eq. (5) [21]. The strain concentration
matrix A is determined as in the unidirectional case. The
orientational operation for 3D randomization is most
easily envisioned in two steps. In the first, the �fg oper-
ation accounts for a random rotation of the NT about
its z axis; when performed on the matrix X, this oper-
ation, denoted �fgTI, results in the transversely isotropic
matrix XTI given by7

XTI ¼ Xf gTI

XTI
11 ¼ XTI

22 ¼
3X11 þ X12 þ X21 þ 3X22 þ 2 
X66

8

XTI
33 ¼ X33 ; XTI

44 ¼ XTI
55 ¼

X44 þ X55

2

XTI
66 ¼

X11 � X12 � X21 þ X22 þ 2 
X66

4 


XTI
12 ¼ XTI

21 ¼
X11 þ 3X12 þ 3X21 þ X22 � 2 
X66

8

XTI
13 ¼ XTI

23 ¼
X13 þ X23

2
; XTI

31 ¼ XTI
32 ¼

X31 þ X32

2
ð17Þ
7 The orientational average of a fourth-order tensor is given by

Xijkl
� �

¼ 1
�

Ð
!aipajqakraisXpqrsd! where ! represents the orientational

space, a is the appropriate transformation matrix relating local to

global coordinates, Xpqrs is the fourth-order tensor in the local coor-

dinate system, Xijkl
� �

is the resulting orientational average in the

global coordinate system and � is an integration factor. In the cases

given, the fourth order tensor was subsequently converted to 6�6

matrix form.
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where 
 accounts for the use of engineering shear strains
in the matrix definitions associated with Eq. (5): for
X ¼ CrAr; dil, 
=1; for X ¼ Ar; dil, 
=2. For NRPs
with wavy NTs randomly oriented in all directions,
these matrices must then be randomized using the �fg3D
operation given by

X3D ¼ XTI
� �

3D
¼ Xf gTI
� �

3D

X3D
11 ¼ X3D

22 ¼ X3D
33 ¼

8X11þ2X13þ2X31þ3X33þ4 
X44

15

X3D
12 ¼ X3D

21 ¼ X3D
13 ¼ X3D

31 ¼ X3D
23 ¼ X3D

32

¼
X11 þ 5X12 þ 4X13 þ 4X31 þ X33 � 2 
X44

15

X3D
44 ¼ X3D

55 ¼ X3D
66 ¼

X3D
11 � X 3D

12



ð18Þ

The resulting isotropic matrices are then used to
determine the effective modulus C� for an NRP with 3D
randomly aligned inclusions via Eq. (5). Note that in the
companion paper, the randomization about the z axis
provided by �fgTI is not necessary since the inclusions are
spheroidal; the resulting matrices are transversely iso-
tropic in the x–y plane and do not change under arbi-
trary rotation about the z axis.
The similarly oriented and 3D random NRP effective

moduli described above are for 2 phase composites,
which is sufficient for the purposes of investigating the
effect of waviness on NRP modulus in this article. In an
actual NRP, however, the NTs will likely have different
waviness characteristics (l/d, a/l) and perhaps different
moduli as well (ENT/EM). Such a system can also be
analyzed using Weng’s approach [21] by discretizing the
distribution of parameters (l/d, a/l, ENT/EM) into indi-
vidual phases. The effective modulus is then obtained by
considering the material as a multiphase composite
using Eq. (5), where the strain concentration matrix
A ¼ Ar;dil
� �

is determined for each of the N�1 inclusion
phases utilizing the finite element solution approach
described above.

3.4. Analytical long wavelength model

Although the finite element model approach devel-
oped to this point is quite powerful, it would be prefer-
able to have an analytical model to calculate the strain
concentration matrix. The analytical long wavelength
(ALW) model developed below allows such an analy-
tical approach for a nanotube with a very large wave-
length ratio l/d. Consider an infinitesimal slice of the
sinusoidal NT embedded in an infinite matrix as shown
in Fig. 4. The central hypothesis of the ALW model is
that as the NT wavelength l becomes very large with
respect to its diameter d, the average strain in this NT
section approaches that of an infinitely long straight
NT oriented at the same angle a and embedded in an
infinite matrix. If this is the case, the average strain
"uvwh idz in the slice dz in the local coordinate system
(uvw) is given by

"uvwh i
dz
¼ Â "~uvw ð19Þ

where "~uvw is the applied farfield strain rotated to the
uvw coordinate system and Â is the strain concentration
matrix for an infinitely long straight fiber developed
using Eshelby’s equivalent inclusion method (see com-
panion article [15] for details in calculating Â). All terms
above reflect the reduced 6 � 6 matrix notation [for
example, see Eq. (13)]. For simplicity, assume that the
strain vectors in Eq. (19) consist of tensorial strains; a
similar derivation using engineering shear strains yields
identical results.
The transformation matrix T to rotate strains from

the global xyz coordinate system to local uvw coordi-
nate system is easily derived using tensor transforma-
tion laws. When converted to the matrix form, this
relationship becomes

"uvw ¼ T �ð Þ "xyz

"uvw11

"uvw22

"uvw33

"uvw23

"uvw13

"uvw12

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

1 0 0 0 0 0

0 cos2� sin2� 2psin�cos� 0 0

0 sin2� cos2� � 2psin�cos� 0 0

0 � psin�cos� psin�cos� cos2�� sin2� 0 0

0 0 0 0 cos� psin�

0 0 0 0 � psin� cos�

2
666666666664

3
777777777775

�

"xyz11

"xyz22

"xyz33

"xyz23

"xyz13

"xyz12

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>; ð20Þ

where Tð�Þ is the transformation matrix for the angle �
(see Fig. 4) and the constant p is defined as 1. The
matrix T�1ð�Þ is defined as the transformation from the
uvw coordinate system to 123 coordinate system; it is
identical to Tð�Þ above except with p=�1. Substituting
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the transformation in Eq. (20) for both strain terms in
Eq. (19) and rearranging leads to the relationship

"123
� �dz

¼ T�1 �ð Þ Â T �ð Þ "~123 ð21Þ

The average volumetric strain for the entire NT is
then obtained by integrating this expression over a sin-
gle NT wavelength. The angle a at any point along the
NT can be obtained by differentiating Eq. (6) to find

� zð Þ ¼ tan�1 �
2� a

l
sin

2� z

l

� ��  
ð22Þ

The volume occupied by the infinitesimal slice of NT
is given by

dV ¼
�d2

4
ds ¼

�d2

4

dz

cos� zð Þ
ð23Þ

Thus, the average strain in the entire NT is given by

"h i ¼

Ð
V "123
� �dz

dVÐ
VdV

¼

Ð L
0

T�1 �ðzÞ½ � Â T �ðzÞ½ � "~123

cos� zð Þ
dz

Ð L
0

dz

cos� zð Þ

ð24Þ

Since "~123 is the constant farfield strain, it can be
pulled outside of the integral. The final ALW expression
for the strain concentration matrix AALW is thus
obtained as

AALW ¼

Ð L
0

T�1 � zð Þ½ � Â T � zð Þ½ �

cos� zð Þ
dz

Ð L
0

dz

cos� zð Þ

ð25Þ

This expression must be solved numerically. The
resulting strain concentration matrix has the same form
as Eq. (13). It will be demonstrated in the results section
that the strain concentration matrix from the finite ele-
ment model does indeed approach the ALW model with
as the wavelength ratio l/d becomes large.
4. Results

This section utilizes the relationships developed in the
previous two sections to predict the effective stiffness of
NRPs consisting of wavy NTs via the NSCT model.
Specifically, NRPs with 2 phases are studied (i.e. N=2),
which consist of a single type of nanotube inclusion
(with all NTs having common stiffness and waviness
properties l/d, a/l and ENT/EM) embedded in a matrix
phase. Analysis of an NRP consisting of several nano-
tube inclusion phases can also be performed (N > 2);
see the companion article for such a presentation [15].
This section begins with an analysis of the terms of

the strain concentration matrix obtained from the finite
element model. Then, a composite where all wavy NTs
have a similar orientation is considered; the results will
be compared to the effective reinforcing modulus model
in the companion paper as well as the ALW model.
Finally, a composite consisting of randomly oriented
NTs with identical properties (l/d, a/l, ENT/EM) is
examined. It will be demonstrated that for such a com-
posite, the ALW model predicts properties identical to a
composite consisting of randomly oriented, infinitely
long straight NTs. Furthermore, it will be shown that as
l/d increases, the prediction using the finite element
model case approaches the ALW model as initially
hypothesized. The implications of this finding for wavy
NT composites will be discussed.

4.1. Strain concentration matrix terms

The strain concentration matrix was obtained for the
following cases:


 modulus ratio ENT/EM (2 values): 200, 400

 wavelength ratio l/d (12 values): 10, 17.78, 31.62,

56.23, 100, 177.8, 316.2, 562.3, 749.9, 1000, 1334,
1778


 waviness ratio a/l (11 values): 0, 0.01, 0.01778,
0.03162, 0.05623, 0.10, 0.1334, 0.1778, 0.2371,
0.3162, 0.4217

For each combination (264 total), the 12 independent
terms of the strain concentration matrix were deter-
mined [see Eq. (13)]. The values for l/d and a/l are
spaced logarithmically with the exception of a/l=0; this
is the straight NT case and it was verified to give iden-
tical results as the Eshelby dilute solution strain con-
centration matrix.
As a starting point, consider the two strain concen-

tration matrices shown in Fig. 5. The first case (a) is
from the Eshelby solution for straight fibers (a/l=0);
Fig. 4. Small section of sinusoidal NT embedded in an infinite matrix

(global axis system xyz, local axis system uvw).
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see the companion article [15] for the equations to cal-
culate the Eshelby strain concentration matrix. The
second is from the finite element method run for mod-
erate waviness (a/l=0.3162). Several items are of inter-
est. First, the terms A11; A21; A31; A55 and A66 are
small and virtually identical in both cases; these have
been highlighted with italics. As these terms relate to far
field strains in the x direction (strains "~11, "~13, "~12), this
indicates that the NT response to strains normal to the
plane of waviness (y�z) is affected little by NT wavi-
ness. By comparison, the remaining seven terms that are
related to loading in the waviness plane ("~22, "~33 "~23) are
affected dramatically. Of greatest interest is A33, which
relates the NT strain in the 3 direction to an applied
farfield strain in the same direction. For a straight NT
composite, this is the key reinforcement term. With the
introduction of significant waviness, this value has
decreased by a factor of seven indicating a significant
reduction in stiffness in the 3 direction relative to the
straight NT case.
While it is useful to consider the entire strain concen-

tration matrix as in Fig. 5, it is easier to visualize the
effect of the variables by plotting a single term; A33 is
chosen for this case and the results are shown in Fig. 6.
The prediction from the ALW model is also shown.
Recall that the ALW model was developed with the idea
that it would apply to wavy NT composites with long
wavelength. Fig. 6 validates this hypothesis, as the
independently developed finite element model results do
indeed tend to the ALW model as l/d increases. The
Fig. 5. Two strain concentration matrix solutions with l/d=100 and ratio ENT/EM=400 (a) a/l=0 and (b) a/l=0.3162; similar values highlighted

in the text are italicized.
Fig. 6. Strain concentration matrix term A33 versus a/l for the finite element model with various l/d values and analytical long wavelength (ALW)

model.
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result for l/d of 1000 is virtually identical to the ALW
model result. It should be noted that this finding is not
due to a ‘‘flattening out’’ of the wavy NTs for increasing
l/d (i.e. waviness amplitude a <<l so it appears to be a
nearly straight NT) since the independent axis is also a
ratio of the two (a/l).

4.2. Similarly oriented NRP modulus

This section considers a composite with similarly
oriented inclusions (common ENT/EM, l/d, a/l), all
aligned with the global axis as in Figs. 1 and 3a. The
effective modulus C* was calculated using the Mori–
Tanaka theory via Eq. (5). The NT volume fraction f1
was taken to be 10%. From the effective modulus C*,
the resulting orthotropic engineering properties of the
composite (E11, E22, E33, �12, �13, �23, G12, G13 and G23)
can be determined[24] The modulus terms were com-
pared to those from the effective reinforcing modulus
model developed in the companion paper [15]; the
results for the modulus terms E11, E22 and E33 are
shown in Figs. 7, 8 and 9, respectively, for a wavelength
ratio (l/d) of 100 as a function of waviness ratio (a/l).
One surprising result is the difference in the E33 term

(Fig. 9) between the NSCT and ERM models; since the
effective reinforcing modulus in the companion paper is
based on a finite element model modulus result in the 3
direction, one might expect that both models would
have nearly identical E33 results. At low volume frac-
tions (0.1% and lower), this is indeed the case.8 The
reason for the difference as the volume fraction increa-
ses is that the inclusion interaction provided for by the
Mori–Tanaka theory is more accurately modeled in the
NSCT approach. The effective reinforcing modulus
model considers the wavy NTs as straight inclusions
with a reduced modulus; the modulus in the inclusion
(NT) direction for such materials is nearly identical
when obtained using the Mori–Tanaka theory (inclu-
sion interaction) or a simple rule of mixtures (no inclu-
sion interaction). Thus, inclusion interaction plays a
small role in the fiber-direction modulus for an NRP
with straight NTs. For the NSCT model, however,
interaction between the wavy NTs affects the reinforce-
ment provided, resulting in a lower E33 modulus when
compared to the ERM model.
The E11 term (Fig. 7) shows little variation with

waviness ratio (a/l), with the two models leading to
Fig. 7. Variation of the modulus term E11 (in the x direction of Fig. 1) with increasing waviness ratio (a/l) for the ERM and NSCT models.
8 This finding points out an interesting feature of the model devel-

oped in this paper. Once the strain concentration matrix A is known

for a single wavy NT embedded in an infinite matrix (obtained via

analysis of the model in Fig. 1a), the Mori–Tanaka theory can be used

to predict the modulus Ecell (E33) of the cell shown in Fig. 1(b); this

leads [via Eq. (15)] to the effective reinforcing modulus (EERM) that is

the basis of the companion paper. Thus, it is not necessary to complete

a separate finite element solution to determine the effective fiber mod-

ulus if the strain concentration matrix A is already known. As pointed

out in the text, the NT volume fraction used in such an evaluation

(f1=fcell) should be set to an appropriately small value to satisfy the

dilute approximation (for example, 0.01% or lower).
R.D. Bradshaw et al. / Composites Science and Technology 63 (2003) 1705–1722 1717



Fig. 8. Variation of the modulus term E22 (in the y direction of Fig. 1) with increasing waviness ratio (a/l) for the ERM and NSCT models.
Fig. 9. Variation of the modulus term E33 (in the z direction of Fig. 1) with increasing waviness ratio (a/l) for the ERM and NSCT models.
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somewhat different results; this is consistent with the
earlier finding for the strain concentration matrix in
Fig. 5 that showed waviness has little effect for loading
in the direction normal to the plane of waviness. How-
ever, the E22 term is strikingly different for the two
models as shown in Fig. 8. This is explained by recalling
that the ERM model considers the wavy NT composite
as a straight NT composite with waviness effects
accounted for by an effective (reduced) NT modulus.
This results in a material that is transversely isotropic in
the x�y plane (E11=E22). Furthermore, since the effec-
tive reinforcing modulus decreases with increased wavi-
ness ratio (a/l), the associated model predicts E22 also
decreases with increasing a/l. Consideration of the geo-
metry, however, makes it clear that this result is not
correct; as the waviness ratio (a/l) increases, the NT
begins to reinforce the material in the 2 direction, caus-
ing an increase in E22. Indeed, in the limit case when the
waviness ratio a/l goes to infinity, the wavy NTs
approach straight NTs with their axis in the 2 direction;
this leads to a significant modulus increase relative to
the matrix material. This difference in E22 for the two
models will have ramifications in modulus predictions
for randomly oriented wavy NT composites.

4.3. Randomly oriented wavy NRP modulus

The strain concentration matrix determined from the
finite element solution presented in the previous section
is used to predict the modulus C� for a composite con-
sisting of randomly oriented wavy NTs (Fig. 3b) using
Eq. (5). For the ERM model, Eq. (5) is also used with
Cr calculated using the effective reinforcing modulus
EERM obtained from Eq. (15) and Ar; dil is determined
for a straight NT using Eshelby’s solution. Once the
modulus C� is known for the randomly oriented com-
posite, calculation of the isotropic Young’s modulus E
and Poisson’s ratio v is straightforward.
The Young’s modulus results for the two models with

l/d=10 and 100 are shown in Fig. 10. For the short
wavelength case (l/d=10), the results are fairly similar.
For the longer wavelength case (l/d=100), the NSCT
method predicts a stiffer composite response than the
ERM model, especially for waviness ratios a/l > 0.10.
This difference is due to the stiffer response in the 2
direction predicted by the current model for a similarly
oriented NT composite (see Fig. 8), which results in an
increased stiffness, relative to the ERM model, when the
NTs are randomly oriented in the composite. It should
also be noted that the NSCT modulus in Fig. 10 initially
decreases and then increases as a/l increases. As a/l
becomes large, the fibers begin to appear straight in the 2
direction (see the earlier discussion regarding Fig. 8).
Thus, in the asymptotic case of a/l ! 1, the modulus
of the randomly oriented composite must approach that
for the composite with randomly oriented straight fibers
(a/l=0). This causes the increase in modulus seen in
Fig. 10 once a/l becomes sufficiently large.
Fig. 10. Variation of the Young’s modulus for an NRP with randomly oriented wavy NTs.
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The modulus of elasticity result for the NSCT model
is shown for increasing values of l/d in Fig. 11. Also
shown is the prediction from the ALW model (derived
for large l/d), which is nearly constant. The reason that
the ALW model result is independent of the waviness
ratio a/l is easily explained. The hypothesis behind the
ALW model is that each segment of the sinusoidal NT
acts as though it is part of an infinitely long straight
NT with an identical orientation. Once these wavy NTs
are randomly oriented, each of these segments (with the
character of straight NTs) become randomly oriented as
well; thus, the overall behavior of the randomly oriented
wavy NT composite in the ALW model is equivalent to
that of a composite consisting of randomly oriented
straight NTs regardless of the waviness ratio a/l.
As with the similarly oriented wavy NT composite

result, the randomly oriented wavy NT composite mod-
ulus from the current model approaches the ALW
model as l/d increases. Therefore, if the NTs are ran-
domly oriented and the wavelengths l are sufficiently
large relative to the NT diameter d, the effect of wavi-
ness is likely to be minimal and the elastic material
behavior is the same as for an NRP with randomly
oriented straight NTs.

4.4. Modulus predictions for actual NRPs

For many NRPs, the randomly oriented NTs will be
wavy but with wavelengths such that the ALW model
does not apply. The effect that waviness plays in the
modulus of such materials can be assessed using the
numerical strain concentration tensor model developed
in this paper. The first step is to perform a survey of the
NT geometry to understand the nature of the NT wavi-
ness; this will take the form of a distribution of NTs
with various values of a/l, l/d and perhaps ENT/EM.
Once this distribution is determined, the NRP can be
modeled as a multiphase composite using Eq. (5) with
the strain concentration tensor for each phase deter-
mined using the finite element approach detailed in this
paper.
The companion article [15] performed a preliminary

assessment of waviness for several NTs using a trans-
mission electron microscope image reported by other
researchers[11]. For this single figure, the waviness ratio
a/l ranged from 0 to 0.25 (most at 0.10 or less) while the
wavelength ratio l/d ranged from 25 to 150. More
thorough assessments of this nature should be per-
formed to predict the effect of waviness in an actual
NRP. Although the NSCT model developed in this
paper and the ERM model developed in the companion
paper lead to strikingly different predictions for ran-
domly oriented composites (see Fig. 10), the differences
are fairly small for waviness ratios a/l in the range of 0–
0.10 with wavelength ratios l/d in the range of 10–100.
Thus, for moderately wavy NTs, either model should
give sufficiently accurate results. Beyond this range, the
NSCT model is preferable.
Fig. 11. Variation of the Young’s modulus for an NRP with randomly oriented wavy NTs calculated using the NSCT model for various l/d values.
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5. Conclusions

Polymer systems reinforced with carbon nanotubes
offer potential benefits over traditional reinforcement
methods in terms of mechanical, electrical and thermal
behavior. The degree of improvement for mechanical
stiffness (modulus) is dictated by a variety of factors,
including nanotube properties, bonding between the
nanotube and the matrix and nanotube dispersion in the
matrix. One factor that has received little attention to
date is the impact that nanotube waviness plays once
the nanotubes are embedded in the polymer. While one
expects non-straight NTs to perform less well as a rein-
forcing phase compared to straight NTs, the degree of
the difference has been unclear.
This article addresses this question by developing a

model that is a hybrid of finite element modeling and
classical micromechanics techniques. This model con-
siders the wavy nanotube as an infinitely long sinusoid
perfectly embedded in the matrix material. The
response of this system is a function of three governing
parameters: the sinusoidal wavelength-to-diameter
ratio l/d, the sinusoidal amplitude-to-wavelength ratio
a/l and the ratio of the nanotube and polymer moduli
ENT/EM. The model demonstrates that waviness will
indeed reduce the modulus in the nanotube direction of
a polymer reinforced with similarly oriented wavy
nanotubes when compared to a similar material con-
sisting of only straight nanotubes. However, when the
wavy nanotubes are randomly oriented in the polymer,
the degree of modulus reduction varies from significant
to minimal, depending on the sinusoidal wavelength
ratio l/d. As this ratio increases to large values, each
wavy nanotube begins to act as a collection of infinitely
long straight nanotube segments. This result agrees
with the analytical long wavelength model presented
here, which is applicable when l/d becomes sufficiently
large.
The novel finite element-micromechanics approach

used in this paper can be used to study other non-
ellipsoidal inclusion geometries. Future work will uti-
lize this feature to consider various items of interest
including anisotropic nanotube material properties,
investigation of effect of hollow nanotube representa-
tions, and the impact of finite nanotube lengths.
However, it should be noted that this model and its
results are based on the idea that continuum mechan-
ics can provide insight into the behavior of nanoscale
systems, which is a first approximation of the actual
system. Future work will also consider atomic scale
models to assess many of these same questions
regarding the nature of the nanotube embedded in a
polymer matrix. In the matrix material away from the
nanotube, traditional continuum mechanics will again
apply and a hybrid atomic-continuum approach can be
developed.
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