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Abstract: Vibration based energy harvesting has been widely investigated to target ambient 
vibration sources as a means to generate small amounts of electrical energy. While cantilever-based 
geometries have been pursued frequently in the literature, here membrane-based geometries for the 
energy harvesting device is considered, with the effects of an added mass and tension on the effective 
resonant frequency of the membranes studied. An analytical model is developed to describe the 
vibration response for a circular membrane with added mass structure, with the results closely 
agreeing with finite element simulation in ANSYS. A complementary study of square membranes 
loaded with a central mass shows analogous behavior. The analytical model is then used to interpret 
the experimentally observed shift in resonance frequency of a circular membrane with a proof mass. 
The impact of membrane tension and central proof mass on the resonant frequency of the membrane 
suggests that this approach may be used as a tuning method to optimize the response of membrane-
based designs for maximum power output for vibration energy harvesting applications. 
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1. Introduction 

Energy harvesting is a rapidly expanding field which seeks to generate small but useful levels of 

electrical energy from mechanical vibrations omnipresent in most environments. Several recent 
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reviews discuss in detail the mechanisms, technologies, and potential applications of energy 

harvesting. For example, Beeby et al. [1] reviewed a variety of energy harvesting sources for 
microsystem applications, while Cook-Chennault et al. [2] covered the applications of piezoelectric 

energy harvesting systems and Dutoit et al. [3] presented the design considerations to be examined 

for the application of energy harvesting technology at the microscale. In addition, a recent study has 
summarized the energy harvesting market and identified potential applications including healthcare, 

e-books, electronics, and automotive applications [4]. Among the proposed energy harvesting 

applications, the (self) powering of wireless micro sensors is particularly attractive due to the 
potential of small size, flexibility, ease of implementation, and the ability to facilitate the placement 

of sensors in inaccessible locations. In addition, a comparison of the output power density suggests 

that mechanical vibration provides great potential as a high power density and long lifetime energy 
source [5] among the variety of ambient source candidates for energy harvesting sources. It is this 

vibration-based energy source that is the focus of the work described within. 

Normally, it is desired to ensure that the resonant frequencies of the energy harvesting device 
match the ambient vibration frequencies to maximize the energy harvested, and several frequency 

tuning approaches have been proposed. For example, Scheibner et al. [6] reported a vibration 

detector consisting of an array of eight comb resonators with eight different base resonant 
frequencies, while Peters et al. [7] designed a tunable resonator by applying an electrical potential to 

change the shape of the structure in order to alter mechanical stiffening. Leland et al. [8] designed a 

tunable-resonance vibration energy scavenger by using an axial compressive preload on a 
piezoelectric bimorph with a tuning rage from 200 Hz to 250 Hz. Challa et al. [9] presented a 

resonance frequency tunable energy harvesting device by applying a magnetic force perpendicular to 

the cantilever beam. The vertical tuning mechanism employs magnetic force/stiffness to increase or 
decrease the frequencies based on the mode (attractive, repulsive) of the magnetic force. In addition, 

Zhu et al. [10] designed a horizontal tunable electromagnetic vibration-based micro-generator, where 

an effective resonant frequency range from 67.6 Hz to 98 Hz was obtained using an axial tensile 
force. Here the distance between the fixed and tuned magnets is adjusted by the actuator, and the 

horizontal magnetic force induces variable axial loads on the cantilever beam.  

In addition to the cantilever-based energy harvesting approaches described above, a membrane-
based energy harvester could be implemented. For example, Rezaeisaray et al. [11] designed and 

analyzed an SU-8 membrane and a frequency bandwidth of 146 Hz was obtained, which they 

suggested could be used to design polymer membrane based micro-structures with large deflections 
and small size energy harvesters with low resonant frequencies. Mo et al. [12] presented a theoretical 

model of a piezoelectric circular membrane subjected to pressure fluctuations for predicting the 

energy harvested, and they concluded that the optimization of energy generating performance is 
highly dependent on the ratio between the thickness and radius of the membrane. In addition, a 

piezoelectric circular membrane array for energy harvesting was analyzed by Wang et al. [13], with 

series and parallel connections investigated.  
In this work we focus on pursuing both analytical and computational (finite element) 

approaches to determine the vibration response of a membrane-with-added-mass structure, with the 

proof mass added to further decrease the resonant frequency of the membrane. A generic model of 
vibration based energy harvesting is presented in Section 2. Section 3.1 describes the free vibration 
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of the circular membrane, with the vibration response for a centrally-loaded circular membrane is 

discussed in Section 3.2. The analytical solution for the resonant frequency of a square membrane 
and its relationship to a finite element analysis of a centrally-loaded square mass on a square 

membrane is presented in Section 3.3. Experimental verification of the resonant frequency of a 

circular centrally-loaded mass membrane is discussed in Section 3.4. The manuscript concludes with 
some thoughts regarding the use of membrane tension and applied mass for the resonant frequency 

tuning of membranes for energy harvesting applications. 

2. Materials and Model 

In this section the theoretical modeling and analysis of a generic (geometry and structure 
independent) energy harvesting device are discussed. In general, an energy harvesting device can be 

modeled as a spring-mass-damper system as shown in Figure 1, which consists of a spring of 

stiffness ݇௦௧௥௨௖ , a mass of ݉௦௧௥௨௖ , and dampers denoted as mechanical dashpot ݀௠  and electrical 
dashpot ݀௘. Here the mechanical dashpot accounts for the energy losses due to structural and viscous 
damping, while the electrical damping corresponds to the energy harvested through the energy 

conversion mechanism [14].  

 

Figure 1. Schematic model of generic vibration energy harvesting. 

Given a sinusoidal excitation vibration ݕሺݐሻ ൌ Ysin߱௦ݐ  (where Y  and ߱௦  are the source 
vibration amplitude and frequency, respectively) the net electrical power generated can be  

written [14] as  
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where ߞ௧ is the total damping ratio (ߞ௧ ൌ ௠ߞ ൅  ௠ߞ ௘ሻ which is the sum of mechanical damping ratioߞ

and electrical damping ratio ߞ௘  and ߱௦௧௥௨௖  is the undamped natural frequency of the vibrating 
structure, which can be written as 
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When the energy harvesting device is in resonance such that ߱௦ ൌ ߱௦௧௥௨௖, the power output at 
resonance ௥ܲ௘௦ can be simplified as 
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According to equation (3), when the device is vibrating in resonance, the power output is 
dependent on the mass of structure, the amplitude and frequency of the source vibration, and the 
damping characteristics of the system. As the vibration amplitude and frequency are a function of the 
environmental vibration source and thus not design variables, the vibrating structure and damping 
parameters can be optimized to maximize the power output of the energy harvesting device. Figure 2 
gives the power output of the energy harvesting device with respect to the ratio of structure 
frequency to source frequency at various damping values for the case where the electrical damping 
௘ߞ) ௠ of the systemߞ ௘ matches the mechanical dampingߞ ൌ  ௠ሻ. It is clear that the maximum powerߞ
output can be archived when the structure frequency matches the source frequency (߱௦௧௥௨௖ ൌ ߱௦). 
For this reason there is in general a desire for an energy harvesting device to have an adjustable 
resonant frequency that can be tuned to match a varying vibration source frequency to maximize the 
power output of the device. For a membrane-based geometry, changes in both the membrane tension 
and the addition of a mass on the membrane can adjust the resonant frequency of the membrane as 
described below. 

 

Figure 2. Generic power output as a function of the ratio of structure frequency to 

source frequency for the case where the electrical damping matches the mechanical 

damping of the system. 
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3. Results and Discussion 

3.1. Free vibration of circular membrane 

In this section, the free vibration of circular membrane is discussed. Theoretical calculations 
performed by MATLAB and finite element simulations based on ANSYS are conducted to study the 

impact of the initial tension of the membrane and the geometric properties (thickness and radius) of 

the membrane on the fundamental frequencies of vibration of circular membrane.  
By definition, membranes are always stretched in tension. In addition, here only the first 

fundamental mode, with maximum amplitude at the center, is considered. For a perfectly clamped 

homogeneous circular membrane, the resonant frequency can be written as [15] 

  
t

T

R
f ij

ij 

2

          for i, j = 0, 1, 2, 3, … (4) 

where ߙ೔ೕ is a dimensionless parameter, ܴ is the radius of the membrane, and ܶ, ߩ, and ݐ are the 

tension, density, and thickness of the membrane, respectively. Here we are most interested in the first 
fundamental frequency, which we assume is the target frequency for the device. For this first 

fundamental (0,1) mode, ߙబభ ൌ 2.405 [15]. 

 

Figure 3. A schematic model of membrane with central loaded mass in ANSYS: (left) 

square membrane, (right) circular membrane. 

For the finite element simulation, modal analysis of the clamped circular membrane (without 

mass) is performed using ANSYS with Shell 41 elements. An axisymmetric model with a 30° sector 
with cyclic symmetry in cylinder coordinates is used (see Figure 3(right)). A static analysis is first 
performed to apply a desired initial tension (pre-stress) to the membrane. Specifically, the pre-stress 

of the membrane is induced by the method of uniform cooling, where the temperature difference 
∆ ௧ܶ௘௠௣  is calculated from ∆ ௧ܶ௘௠௣ ൌ ܶ/ሺݐߙܧሻ [16], where ܶ  is membrane initial tension, ܧ  is the 

Young’s modulus of membrane, and ߙ is the thermal expansion coefficient of membrane. Details of 
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the parameters used in the ANSYS study are given in Table 1, where a membrane radius of 
19.05 ݉݉ is used to correspond to the experimental data discussed in Section 3.4. Once the static 
analysis for the pre-stress has been completed in ANSYS, this result is then used as the basis for the 
modal analysis simulation to determine the resonant frequencies of the membrane. 

Table 1. The parameters of the membrane and added-mass used for the analysis. 

Symbol Description Value Units 
Membrane 

R  Diameter (circular) 1.38 mm 
L  Side length (square) 1.38 mm 
t  Thickness 10       m  
  Density 960 kg/m3 

  E  Young’s modulus 1 MPa 

T  Initial tension 10 N/m 

    Thermal expansion 
coefficient 

4108.1  m/m-  C 

Added-mass 
r  Radius 1167.2 mm 
  Density 2330 kg/m3 

The theoretical calculations for the first fundamental resonant frequency of a circular membrane 
from Equation (4) are compared with the FEM simulation results from ANSYS in Figure 4, where 
the natural frequency of the membrane as a function of thickness and radius for different initial 
membrane tensions are shown. According to the analytical expressions in Equation (4), there are 
three factors that affect the resonance frequency including the initial (unloaded) membrane tension, 
the membrane thickness, and the radius of the membrane. Figure 4 (left) shows that the fundamental 
frequency of the membrane decreases with increasing thickness of membrane, while Figure 4 (right) 
confirms that increasing the radius of the membrane can significantly decrease the effective 
fundamental frequency of the membrane. Also clear from Figure 4 is that the FEM results from 
ANSYS (symbol) agree with the theoretical results (solid line) very well. In addition, the results from 
Figure 4 also indicate that a decrease in membrane tension could significantly decrease the resonant 
frequency of the membrane. 

3.2. Vibration of central mass-loaded circular membrane 

Here the frequency response of a central mass-loaded membrane is further discussed. When an 
additional mass is added to the membrane, the natural frequencies of membrane could be lowered in 
order to target ambient vibration sources. Both theoretical calculations and simulations results from 
ANSYS give very similar solutions for the frequencies of the central mass-loaded membrane. 
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Figure 4. Natural frequency of membrane (without mass) for different initial 

membrane tension: (left) Natural frequency as a function of membrane thickness 

(constant membrane radius of ૚ૢ. ૙૞ ࢓࢓); (right) Natural frequency as a function 
of membrane radius (constant thickness of ૚૙ ࢓ࣆ). 

3.2.1. Analytical modeling approach 

In order to lower the frequencies for the membrane geometry, it is possible to add an additional 
mass to the membrane. Here we assume that the added mass m is spread over a contact circle of 
radius ܾ at the center of the membrane with a radius of ܽ. Compared to the circular membrane 
without mass, this mechanical load (added mass) to the membrane will significantly affect its 
vibration behavior. The frequency of the first fundamental frequency for the membrane with central 
mass-loaded is given [15] as 

 
)ln(2

b

a
m

T
f


  (5) 

where the mass of the membrane ܯ is assumed small compared to the added mass ݉ and hence 
neglected. Note that in the derivation of Equation (5) b must not be significantly smaller than a, as 
this concentrated “point load” would result in significant stretch in the center of the membrane [15]. 
Based on Equation (5), three factors that affect the mass-loaded circular membrane frequency 
include the initial (unloaded) membrane tension, the mass of the added mass, and the radius ratio of 
the membrane and the added mass. Because the mass of the membrane is much smaller than the mass 
of the additional added mass, the added mass can have a large effect on the frequency of the mass-
loaded membrane. 

3.2.2. Finite element modeling approach and results 

A finite element model using ANSYS was developed to verify the theoretical calculations 
shown in Equation (5). As shown in Figure 3 (right), the membrane with central loaded mass is 
modeled asymmetrically with an opening angle of thirty degrees and symmetric boundary conditions. 
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The modal analysis of the clamped membrane with the additional added central mass is performed 
using ANSYS with Shell 41 elements. In this ANSYS model, the added mass attached to the central 
section of the membrane is modeled as two sets of overlapping elements. The first set of elements 
representing the membrane (lower layer) has its nodal plane located on the ‘top’ face, whereas the set 
of elements corresponding to the added mass (top layer) has its nodal plane located on the ‘bottom’ 
face. The combination of overlapping elements thus defines the attachment of this layered membrane 
with its nodal plane at the interface between the layers. The parameters of the membrane with added 
mass used in the model are given in Table 1. In addition, the initial tension of membrane is induced 
by the uniform cooling method in ANSYS as discussed in Section 3.1. 

Given that the mass of the membrane is a very small compared to the added mass, the mass ratio 
between the membrane and the added mass will the focus in the following analysis. Figure 5 (left) 
shows that increasing the mass ratio (i.e. a larger centrally-loaded mass in comparison to the mass of 
the membrane) can significantly decrease the first natural frequency of the loaded membrane, with 
FEM results from ANSYS (denoted as symbols) agreeing with the theoretical results very well. This 
lowering of the resonant frequency is dramatic and could be potentially leveraged in the future 
design of energy harvesters seeking to target the lower source excitations commonly found in 
ambient environments. Figure 5 (right) shows that the first natural frequency of the loaded membrane 
decreases with the increasing of the radius ratio (i.e. a larger radius of membrane in comparison to 
the radius of the central load). Again, the results shown in Figure 5 indicate that lowering the 
membrane tension could significantly decrease the frequency of the membrane. 

 

Figure 5. Natural frequency of membrane with centrally added mass for different 
initial membrane tensions: (left) Natural frequency as a function of mass ratio 

(constant radius ratio (a/b) of 9); (right) Natural frequency as a function of radius 

ratio (constant mass ratio (m/M) of 50).  

3.3. First fundamental frequency for mass-loaded square membranes 

Expanding upon the analysis of a circular membrane discussed above, the first fundamental 
frequency for a mass-loaded square membrane is further presented in this section. Similar to 
Equation (4), an analytical expression for the first fundamental frequency for a square membrane 
without added mass is shown in Equation (6) [15]. Here the first fundamental frequency of the square 
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membrane is also a function of the square root of the tension T, membrane thickness ݐ and density ߩ, 
and is inversely proportional to the side length ܮ of the square membrane. The parameters used in the 
model for calculations and simulations of the square membrane and its additional added mass (as will 
be discussed below) are shown in Table 1.  

 
t

T

L
f square 2

2
  (6) 

Two separate FEM simulations from ANSYS were performed for the cases of a square 
membrane with and without additional added mass, respectively, using a one-fourth model with 
symmetrical boundary conditions and Shell 41 elements as shown in Figure 3 (left). A comparison of 
the analytical frequency predictions based on Equation (6) and the ANSYS FEM simulations for the 
free vibration of a square membrane (with no added mass) are shown in Figure 6. It is clear that 
ANSYS results (symbol) agree well with theoretical results (solid line). Compared to the plot of the 
free vibration of the circular membrane respectively in Figure 4, the frequency of the square 
membrane follows the same general trend of curves as circular membrane.  

 

Figure 6. Natural frequency of square membrane (without added mass) for 

different initial membrane tensions: (left) Natural frequency as a function of 
membrane thickness (constant membrane side length of ૚ૢ. ૙૞࢓࢓ ); (right) 

Natural frequency as a function of membrane side length (constant thickness of 

૚૙࢓ࣆ). 

For a square membrane subjected to a centrally loaded cubic mass, an ANSYS finite element 
model is developed using the same approach of two sets of overlapping elements as discussed in 
Section 3.2.2. The ANSYS simulation results are plotted as symbols in Figure 7, and of interest here 
is the fact that are very well approximated by the analytical expression for a centrally-loaded circular 
membrane based on Equation (5) (shown using dashed lines in the Figure 7).  
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Figure 7. Natural frequency of square membrane with centrally added mass for 

different initial membrane tension: (left) Natural frequency as a function of mass 
ratio (constant side length ratio (a/b) = 9); (right) Natural frequency as a function of 

side length ratio (constant mass ratio (m/M) of 10). Predicated calculations based on 

Equation 5 are shown as dashed lines. 

Recall that for a centrally loaded circular membrane, according to Equation (5), only the  
initial (unloaded) membrane tension, the mass of added mass, and the radius ratio of the membrane 
can affect the frequencies. While a complete derivation of the analytical expression for a centrally-
loaded square membrane is outside the scope of the current work, it appears that the factors 
corresponding to the effective frequency of the mass-loaded square membrane are similar to those 
for the circular membrane. As shown in Figure 7, these results indicate that increasing the mass ratio 
and side length ratio (i.e. a larger centrally-loaded mass in comparison to the mass of the membrane, 
and a larger side length of membrane in comparison to the side length of the central load, 
respectively) can significantly decrease frequency of the loaded square membrane. The membrane 
frequency can also be decreased by lowering the membrane tension. 

 

Figure 8. Comparison of theoretical calculations and FEM simulations for the first 

fundamental frequencies of circular and square membranes with centrally added 

mass. The membrane is stretched at a constant tension of 100 N/m.  
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Furthermore, the effects of radius ratio for a circular membrane and side length ratio for a 
square membrane on the first fundamental frequency are compared in Figure 8. It shows that the first 
fundamental frequency of the loaded membrane (circular and square) decreases with increasing of 
the radius (side) ratio the membrane. When the radius (side) ratio is less than 100 (a/b < 100), Figure 
8 shows that the FEM simulations closely match the theoretical calculations based on Equation 5 for 
both the circular and the square membrane (even though Equation 5 is derived for the specific case of 
a circular membrane). While the derivation of the expression for the mass-loaded square membrane 
is outside the scope of the current work, Figure 8 suggests that ultimately the derivation will simplify 
to Equation 5 due to the thin-membrane assumptions that would be shared with both derivations. 
However, as shown in Figure 8, for values of a/b > 100, the simplified theoretical expression in 
Equation 5 does not capture the results from the FEM simulation for either the circular or square 
mass-loaded membrane and a more detailed theoretical derivation would be required. 

3.4. Experimental verification for mass-loaded circular membrane 

A preliminary experimental study measuring the resonant frequency of a mass-loaded circular 
membrane was conducted to confirm the results from the analytical and computational models 
described above. The membrane material used was a high performance electroactive polymer (3M 
VHB 4910 acrylic) [17]. Parameters described the properties of the EAP material are shown in Table 
1. For the two sets of data for the experimental membranes, initial films with thicknesses of 500 µm 
and 1000 µm, respectively, where stretched to membrane thicknesses of 20 µm and 111 µm, 
respectively, via the application of an unknown initial tension.  

The tests to determine the resonant frequencies of the membranes were performed by mounting 
a prototype on a small shaker to evaluate the frequency of the mechanism as shown in Figure 9. The 
prototype consisted of a membrane, a central magnet/mass, and a coil fixed to the frame which is 
mounted on a shaker to provide a given vibration of known amplitude and frequency. The mass at 
the center of the membrane was varied by adding 14 gram ferrous masses to the central magnet. The 
resonance for the mass-membrane system was evaluated by measuring the frequency response 
function of the voltage induced in the coil relative to the input force measured by a dynamic load cell 
(PCB 208A02) mounted between the shaker and the prototype using a high impedance measurement 
device (NI-9215). The peak of the frequency response functions is recorded as an estimate of the 
resonance of the system.   

Figure 10 compares the analytical predictions for the effective resonant frequency of a mass-
loaded circular membrane as a function of different mass ratios using the expression provided in 
Equation (5) with two small sets of experimental data for an EAP membrane. For the mass loaded 
membranes, masses of 14, 28 (only for the thinner film), and 42 g, respectively, were applied to the 
center of the film. A radius ratio of a/b = 9 was used for the analytical predictions. Because the 
applied initial tensions used to generate the membranes of the stated thickness are unknown, three 
representative values of membrane tension ranging from 50 to 200 N/m were used in the analytical 
model. As can be observed in Figure 10, the experimental data points appear to indicate that the 
experimental data sets are both well described using an initial (unloaded) membrane tension of 100 
N/m for each sample. However, we note that previous work for EAP films has found that 
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experimental factors such as temperature during measurement, time of purchase, storage time, and 
preparation and history of test samples, method of extraction of data can greatly influence the 
effective properties, and hence the resulting membrane tension [18, 19]. In addition, the (somewhat) 
complicated hyperelastic constitutive models necessary to describe the EAP material behavior, 
particularly at these large values of stretch [20], suggest that a necessary component of future work 
in this area is to experimentally determine the effective membrane tension of the samples as a 
function of material and processing parameters. 

 

Figure 9. Schematic of the resonant frequency test for a circular EAP membrane 

with a centrally-loaded (magnetic) mass.  

 

Figure 10. Comparison of analytical predictions and experimental data for the 

effective first mode natural frequency of a circular mass-loaded membrane. The 

membrane diameters were 1.5 inches, and the membrane thicknesses were 20 µm 
(stretched from 500 µm film) and 111 µm (stretched from 1000 µm), respectively.  

3.5. Membrane frequency tuning for energy harvesting applications 

As discussed in Section 2, a typical vibration-based energy harvester achieves optimal power 
output only when it is vibrating at resonance. Therefore, it is desirable to tune the resonant frequency 
of the device to match the source environmental frequency. A comprehensive review of different 
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strategies for tuning the frequency range of vibration-based energy harvesters to match the ambient 
vibration frequency or to widen the operation bandwidth of the generator has been described 
previously [21]. Here, an approach of resonant frequencies tuning by lowering the membrane 
tensions is presented.  

For a membrane-based energy harvesting device (with/without added mass), the tension of the 
membrane could be used to tune the resonant frequency of vibrating membrane structure in order to 
target a particular ambient vibration source frequency. According to Equations (4) and (5), the 
frequencies of the unloaded and centrally-loaded membrane are proportional to the square root of the 

tension, which means that the square of the new effective frequency ݂ଶ is simply proportional to the 
membrane tension ܶ such that 

 C
f

T

f

T


22
0

0  (7) 

where ଴ܶ and ଴݂ are the initial membrane tension and resonant frequency, respectively, and ܥ is a 
constant. For a circular membrane without an added mass, the constant ܥ ൌ  ೔ೕ൯, while theߙ/ܴߨ൫2ݐߩ
constant is ܥ ൌ ଶ݉ߨ4 lnሺa/bሻ for a mass-loaded circular membrane (which appears to also fit the 
ANSYS FEM results for a centrally-loaded square membrane as shown in Figure 7). The change in 
membrane tension can be written as 

 0TTT   (8) 

Substituting Equation (8) into Equation (7), one can show that 
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f

f 
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Thus from Equation (9) the ratio of the effective membrane frequency to the original frequency 
is a function of the change in membrane tension. This relationship is shown in Figure 11, where the 
theoretical calculations (Equation (9)) agree well with the FEM simulation results in ANSYS. 
Therefore, tuning the membrane tension could significantly alter the resonant frequency of the device, 
which would be useful in the development of small footprint energy harvesting devices which are 
able to target lower environmental source frequencies.  

4. Conclusion 

In this paper, the vibration responses of circular and square membranes with and without a 
centrally-loaded mass are theoretically and computationally determined. The FEM simulation is 
performed in ANSYS by modeling added mass and membrane as two sets of overlapping elements. 
The results show that the FEM results well agree with the theoretical results under the assumption 
that mass of the membrane is small compared to the added mass. The results indicate that increasing 
the mass ratio or the radius ratio can significantly decrease the effective first fundamental frequency  
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Figure 11. Example of membrane resonance frequency as a function of change in 

applied tension. 

of centrally loaded membrane. In addition, the results also show that lowering the membrane tension 
can effectively decrease the first resonant frequency of the loaded membrane. We note that a 
limitation of the proposed tuning approach is that such a technique may be difficult to practically 
implement while the device is in operation (i.e. adaptive, real-time tuning of the membrane resonant 
frequency [22]). Nonetheless, such results may find use as a means of tuning the resonant frequency 
of membrane-based energy harvesting devices. 
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