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Abstract
Vibration-based energy harvesting seeks to convert ambient vibrations to electrical energy and is
of interest for, among other applications, powering the individual nodes of wireless sensor
networks. Generally it is desired to match the resonant frequencies of the device to the ambient
vibration source to optimize the energy harvested. This paper presents a two-dimensionally (2D)
tunable vibration-based energy harvesting device via the application of magnetic forces in two-
dimensional space. These forces are accounted for in the model separately, with the transverse
force contributing to the transverse stiffness of the system while the axial force contributes to a
change in axial stiffness of the beam. Simulation results from a COMSOL magnetostatic 3D
model agree well with the analytical model and are confirmed with a separate experimental
study. Furthermore, analysis of the three possible magnetization orientations between the fixed
and tuning magnets shows that the transverse parallel magnetization orientation is the most
effective with regards to the proposed 2D tuning approach. In all cases the transverse stiffness
term is in general significantly larger than the axial stiffness contribution, suggesting that from a
tuning perspective it may be possible to use these stiffness contributions for coarse and fine
frequency tuning, respectively. This 2D resonant frequency tuning approach extends earlier 1D
approaches and may be particularly useful in applications where space constraints impact the
available design space of the energy harvester.
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1. Introduction

Energy harvesting is a rapidly growing field with tremendous
envisioned impact when integrated with ubiquitous wireless
microsensors; for example, where embedded wireless micro-
sensors are used to provide continuous monitoring of machine
and structural health [1–3]. Although it is desirable to replace
wired sensors with wireless sensors, many wireless sensor
nodes are battery-powered [4], which means that there could
be hundreds or thousands of batteries that need to be replaced
during the anticipated lifetimes of the embedded nodes in a
large sensor network. To replace each battery is tedious and
expensive, especially when the device is in a remote location.
In addition, a sensor node generally consists a micro-

controller, transceiver, external memory, power source and
one or more sensors. With advances in MEMS technology,
the sizes of the microcontroller, transceiver, and external
memory are decreasing rapidly, although battery technology
is not allowing for the size of the batteries to decrease at the
same rate [4]. Hence batteries may restrict further decreases in
the total size and weight of the wireless sensor nodes. It is
thus desirable to provide the wireless sensors with alternative
types of power sources focusing on the characteristics of
small volume, long lifetime, and greater reliability. One
manner to provide this alternative power source is the field of
vibration energy harvesting, where one seeks to convert
ambient vibrations present in an environment to small but
useful levels of electrical energy which could sufficiently
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power the nodes of these wireless sensor networks. A sum-
mary of vibration based energy harvesting for wireless, self-
powered microsystems is well discussed in a review [5].

However, a clear need for a resonance-based vibration
energy harvesting approach is a means to tune the resonant
frequency of the device to match the source environmental
frequency in order to achieve maximum power output. A
comprehensive review of strategies for tuning the frequency
range of vibration based energy harvesting has been described
in the literature [6]. Several reported energy harvesters are
designed to enable the resonant frequencies to match the
possible ambient vibration frequencies based on applying
external forces in either the horizontal or vertical direction
with respect to the cantilever beam. For example, Yao et al
[7] proposed a tunable energy harvester where the frequency
can be tuned via the application of an electrostatic force. Their
experimental results showed that the resonant frequency may
increase or decrease with the applied tuning voltage
depending on where the tuning electrode is placed with
respect to the excitation electrode and the resonating rod, and
a linear tuning range of 60 kHz (for an untuned resonant
frequency of 960 kHz) was found with respect to the trans-
verse tuning force with a maximum required DC tuning
voltage of 35 V. Leland et al [8] designed a tunable-resonance
vibration energy scavenger by using a transverse compressive
preload on a piezoelectric bimorph with a tuning rage from
200 to 250 Hz. Challa et al [9] presented a resonance fre-
quency tunable energy harvesting approach which applied a
magnetic force perpendicular to the cantilever beam and was
able to achieve tuning to ±20% of the unturned frequency
based on the mode (attractive, repulsive) of the magnetic
force. In addition, Zhu’s group [10] designed a horizontal
tunable electromagnetic vibration-based micro-generator,
where the horizontal magnetic force induces variable axial
loads on the cantilever beam. The resonant frequency was
tuned from 67.6 to 98 Hz with the distance between the fixed
and tuned magnets adjusted by an actuator.

In previous work the tuning operations are performed in
one (transverse or axial) direction. In this paper, the tuning
methodology is further developed and extended to allow the
magnetic forces to be controlled by positioning of the mag-
nets in a two-dimensional (2D) space. This 2D tuning prin-
ciple is based on the effective stiffness theory. By applying
magnetic forces in 2D space, the resonant frequency is related
to two additional stiffnesses added to the system, which are
referred to as the transverse stiffness and axial stiffness. While
the expression for the transverse magnetic stiffness has been
described previously [9], for purposes of this approach it is
necessary to develop an analogous expression for the axial
stiffness as a function of magnet separation as described
below. Both theoretical calculations by MATLAB and
simulation results from a COMSOL magnetostatics 3D model
for the magnetic tuning forces of transverse force and axial
force are discussed. Furthermore, analysis of the three pos-
sible magnetization orientations (transverse parallel, axial
parallel, and cross magnetization direction) between the fixed
and tuning magnets shows that the transverse parallel mag-
netization orientation is the most effective with regards to the

proposed 2D tuning approach. Lastly, an experimental case
study is described which verifies the results of the 2D tuning
model.

2. 2D tuning mechanism

In the following sections, an overview of the 2D magnetic
resonant frequency tuning approach is first presented, fol-
lowed by a discussion of the considerations of the corresp-
onding transverse and axial tuning components, respectively.
Theoretical calculations of the magnetic transverse and axial
forces between two magnets as a function of their relative
positions in 2D space are discussed, with simulations based
on COMSOL magnetostatics 3D model conducted to verify
those magnetic forces obtained analytically. The effects of
these applied magnetic forces on the overall device stiffness
are then presented. Lastly, applicable constraints with respect
to the practical implementation of the design of this 2D tuning
method are briefly highlighted.

2.1. Tuning model

A schematic of the 2D resonant frequency magnetic tuning
approach is shown in figure 1. The energy harvester is based
on a two layer (PZT and Silicon layers) cantilever beam
configuration; a fixed magnet is attached to the tip mass, and
the tuning magnet moves in 2D space. Because the magnets
are separated in 2D space, the respective locations of the
magnets result in applied external transverse and axial forces
on the cantilever beam. The principle of this 2D magnetic
tuning approach is developed based on effective stiffness
theory, where the transverse magnetic force results in a
transverse magnetic stiffness and the axial magnetic force
contributes to the axial stiffness of the system. The resonant
frequency tuning operation is implemented by changing the
position of the tuning magnet.

Three different magnetization orientations (transverse
parallel, axial parallel and cross magnetization direction) as
shown in figures 1(a)–(c) are analyzed in this 2D tuning
approach. While in earlier 1D magnetic tuning work, the
direction of the magnetic orientation for optimal tuning was
clear (transverse magnetic orientation for the case of trans-
verse magnetic tuning [9] and axial magnetic orientation for
the case of axial magnetic tuning [10], respectively), for the
2D case the selection of which magnetic orientation to use is
not clear. The distance between the two vertical axes of the
magnets is da, while dt is the distance between the bottom of
the tuning magnet and top of the fixed magnet. The para-
meters of the cantilever beam and magnets in this research are
given in table 1.

2.2. Tuning mechanism

Based on the general model of a second-order spring-mass-
damper system for the conversion of mechanical vibration to
electrical power [11], the effective stiffness is schematically
shown in figure 2. Here the system is represented with three

2

Smart Mater. Struct. 25 (2016) 065019 L Dong et al



parallel springs, with the transverse stiffness kt and axial
stiffness ka denoted as variable springs which are a function of
the transverse and axial applied magnetic forces, respectively,
and the beam stiffness kbeam is a function of the material and

geometry of the beam. Dampers bm and be denote the
mechanical and electrical damping, respectively, in the
system.

Based on figure 2, the effective stiffness relating the
external magnetic forces and the effective tuned frequency
ω2D of the cantilever beam in a 2D space can be expressed as
shown in (1) and (2), where keff is the effective system
stiffness and meff is the effective mass of the cantilever beam
such that

( )= + +k k k k , 1eff beam t a

( )w =
k

m
. 22D

eff

eff

When a transverse magnetic force is used to tune the resonant
frequency of the cantilever beam [9], the transverse magnetic
force (applied transverse to the beam) will result in a change
in the transverse stiffness kt and can be written as

( )= -
¶
¶

k
F

d
. 3t

t

t

On the other hand, when an axial tensile load is applied
to the cantilever beam, it will increase the resonant frequency
of the cantilever, while an axial compressive load decreases
the resonant frequency. A formula for the resonant frequency

Figure 1. A schematic of the 2D resonant frequency tuning approach. (a) Transverse parallel magnetization orientation; (b) axial parallel
magnetization orientation; (c) cross magnetization orientation; (d) general model.

Table 1. The parameters of the multilayer laminated cantilever beam
and magnets used for the analysis.

Symbol Description Value Units

Cantilever beam

w Width 1×10−3 m
L Length 10×10−3 m
tp Thickness of PZT layer 50×10−6 m

ts Thickness of Si layer 100×10−6 m

Magnets

a2 Side length of cuboidal mag-
net ( )a2 3

´ -0.5 10 3 m

rmag Density (NdFeB) 7400 -kg m 3

m0 Air permeability ´ -1.257 10 6 -H m 1

M0 Magnetization ´0.796 106 -A m 1

Tip mass

at Side length of cuboidal tip
proof mass

´ -1.0 10 3 m

rt Density (Si) 2330 -kg m 3
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of a cantilever with an axial load Fa is given [12] as

( )w w= +
F

F
1 , 4a beam

a

b

where ωa is the resonance frequency with axial load, ωbeam is
the original natural frequency of the beam, and Fb is the axial
load required to buckle the beam (here we are neglecting the
eccentric nature of the axial loading). Equation (4) shows that
the frequency shift resulting from the axial force will be from
a magnitude of zero (for the case where Fa=−Fb) to 2
times ωbeam, given that the axial force Fa must be less than the
axial buckling load Fb. From (4), one can derive the
expression for the axial stiffness term to be used in the
calculation of the effective stiffness as shown in (1). Given an

axial buckling load for a cantilever beam of = pF EI

Lb 4

2

2 [12],
one can show that the axial stiffness ka can be written as

( )
p

=k
L

F
12

, 5a 2 a

where the axial stiffness ka is only a function of the geometric
parameters of the beam and the axial load Fa.

2.3. Magnetic tuning forces

According to (3) and (5), the transverse stiffness kt is a
function of magnetic transverse force Ft and the axial stiffness
ka is related to the axial load Fa, respectively. Here a three-

dimensional (3D) analytical calculation of the forces exerted
between two cuboidal magnets developed by Yonnet [13] is
utilized based on the gradient of interaction energy. From
[13], the magnetic forces between the fixed magnet and the
tuning magnet can be written as

( )

( ) ( )
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where

(( ) ( ) ) ( )= - - - ⋅u a1 1 7ij
j i

(( ) ( ) ) ( )= - - - ⋅ +v a d1 1 8kl
l k

a

(( ) ( ) ) ( )= - - - + ⋅ +w a d1 1 2 9pq
q p

t

( )= + +r u v w 10ij kl pq
2 2 2

and the function f is dependent on whether the transverse or
axial force is of interest, such that

( ) ( )
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Based on the expressions above, it is clear that in 2D
space, both the transverse force Ft and axial force Fa are
related to the separation distances between the magnets (dt
and da) as shown in figure 1, such that a single position (da,
dt) of the tuning magnet introduces both transverse force Ft

and axial force Fa in the system. The contact force between
two magnets is defined as the force of attraction with zero
axial and transverse gaps (i.e. da=2a, dt=−2a) and can be
calculated using the unwieldy equation provided in [14]. This
contact force F0 is used to normalize the transverse and axial
forces in the discussion below.

To verify the analytical results obtained using the
expressions above, COMSOL magnetostatics 3D model with
AC/DC module was used to simulate the magnetic forces
between the fixed magnet and the tuning magnet. Specifically,
the COMSOL simulation is based on the assumption of ideal
magnets with a relative permeability of 1 and a remanent
magnetization of μ0M0=1 T. The boundary conditions in
the model include air surrounding the two cuboidal magnets
with a permeability of 1.257×10−6 H m−1 as given in
table 1. In addition, a fine mesh is used in the domain of the
magnets to provide an accurate magnetic force computation.
Once the magnetic flux field is calculated, a stationary study
using COMSOL is then used to determine the transverse and
axial forces due to the relative locations of the magnets in 2D
space.

Figure 2. Lumped model of the 2D magnetic tuning approach, where
the transverse and axial stiffnesses are represented as variable
springs and are functions of the separation of the magnets in 2D
space.
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2.4. Constraints

In order to avoid damage to the cantilever beam in operation,
dynamic failure due to the yield, buckling, and fatigue,
respectively, must be avoided. The first limitation is that the
stress generated from the applied transverse and axial forces is
not greater than the yield stress of any component of the
beam. The dynamic stress is the stress caused by the vibration
of the beam and can be calculated by using the adapted static
analysis, where the stress in the beam is due to the application
of a force of magnitude Ftip at a distance L from the fixed end
of the beam [15]. On the other hand, buckling is a failure
mode that may result from an axial force applied by the
tuning magnet, such that the maximum applied axial force to
the cantilever beam is limited by the buckling force = pF EI

Lb 4

2

2

(here we neglect the eccentric offset nature of the applied
axial load in the case where the magnets are not aligned along
the axis of the cantilever beam).

Lastly, if one wishes to account for the long-term beha-
vior of the system, then one must also account for fatigue,
such that the fatigue stress (which is always less than or equal
to the failure stress) should more appropriately be used in the
analysis. The fatigue stress is the value of stress at which
failure occurs after Nf cycles of cyclic loading. For an energy
harvester, fatigue could result in a decrease in either the
piezoelectric properties or mechanical properties of the sys-
tem. For example, based on results from the literature [16],
the fatigue stress for PZT ceramics based on S–N curves
(stress amplitude versus number of cycles) at 105 cycles is
given as σfatigue=55MPa, whereas the failure stress at the
zero-cycle (not accounting for fatigue) given as σfailure=
80MPa.

Therefore, despite the simplified vision of a limitless
lifetime source of electrical energy, in actuality the long-term
fatigue performance of the continuously vibrating cantilever
beam will be a factor that must be considered under real-life
operating conditions for energy harvesting devices. For the
sake of simplicity, in the sections below the results obtained
for the normalized magnetic forces and the theoretical tuned
frequencies of the cantilever beam are shown for a wide range
of magnet positions; however, some of these positions may
result in damage to the cantilever based on the constraints
outlined above. For practical implementation, a more detailed
consideration of the impact of the stresses generated within
the vibrating beam as a function of these external applied
magnetic forces would need to be considered.

3. Results and discussion

Using the approach outlined above, one can examine the
resulting transverse and axial components of the magnetic
force, their contributions to the effective system stiffness, and
the overall change in resonant frequency of the cantilever
beam as a function of the location of the tuning magnet in 2D
space. In addition, as shown in figure 1, the 2D tuning
approach can be analyzed for three different cases of the
magnetization orientations (transverse parallel, axial parallel,

and cross magnetization direction) which will be discussed
separately below. The simulation results obtained for the
magnetic transverse and axial forces based on COMSOL
magnetostatics 3D model verified the theoretical calculations
performed by MATLAB. These magnetic forces can then be
related to the stiffness contributions and change in resonant
frequency based on the approach described in section 2.
Although there are three different possible magnetization
orientations with respect to the arrangement of the magnets,
the magnetic forces of the transverse and axial parallel
magnetizations are identical, with the only difference being
the manner that the force is applied to the cantilever beam
[13] as discussed in section 3.1.1. Section 3.1.2 discusses the
impact of these magnetic forces on the stiffness and resonant
frequency for the transverse parallel magnetization orienta-
tion, while sections 3.2 and 3.3 extend this analysis for the
axial parallel and cross magnetization orientations,
respectively.

3.1. Tuning with transverse parallel magnetization orientation

Here the results for the transverse parallel magnetization
orientation (figure 1(a)) are presented including both theor-
etical calculations and simulations for magnetic tuning forces.
In the following discussion, the tuning magnet is assumed to
always be to the right side of the fixed magnet such that
da>0. Based on the location of the tuning magnet, there are
three cases to be considered: case (1) when the tuning magnet
is above the tip magnet, i.e. dt>0; case (2) when the tuning
magnet and tip magnet are partially (or fully) overlapped in
the transverse direction such that −4a<dt<0, specifically
for this case the physical system requires that da>2a; and
case (3) when the tuning magnet is below the tip magnet on
the cantilever beam such that dt<−4a as shown in
figure 1(d). In addition to the magnetic forces observed as a
result of the relative magnet location, the effects of stiffness
(transverse stiffness and axial stiffness) and net tuning fre-
quency changes are further detailed below to illustrate this 2D
tuning method.

3.1.1. Tuning forces versus position. The analytical
calculations for the tuning magnetic transverse force Ft and
axial force Fa are implemented in MATLAB using (6) to (12)
assuming discrete movement of the magnet in 2D space such
that da=(0a: 0.5a: 5a) and dt=(0.5a: 0.5a: 5a), where a
refers to half edge the cuboidal magnet, which is assumed to
be equal for both magnets for simplicity. The analytical
calculations are verified using COMSOL as described
previously.

Figure 3(a) shows the normalized transverse force with
respect to the normalized transverse displacement, where
forces are normalized with respect to the contact force F0 and
displacements are normalized with respect to the magnet half
edge length a. It is clear that the theoretical results from
MATLAB match well with the COMSOL simulation results.
Based on the results from figure 3(a), when da=0 and
da=1a, the tuning transverse force is decreasing with
increasing transverse displacement dt, while if da is much

5

Smart Mater. Struct. 25 (2016) 065019 L Dong et al



greater than zero, for instance, da=2a and da=3a the
transverse force is very small and in some cases may be
slightly less than zero. This is due to the fact that for larger dt,
the larger separation distance alters the magnetic flux lines in
a manner which can impact the direction of the applied
magnetic force, although the magnitude of the force as these
separation distances increase is very small. As expected,
figure 3(b) shows that the transverse force is largest at zero
axial displacement (da=0) and decreases with increasing
axial displacement da. For the curve of dt =0.1a, the
transverse force decreases through a value of zero before
going slightly negative at larger axial displacements before
trending towards zero, again illustrating the complexity of the
magnetic field at larger separation distances. This is a
characteristic observed in both the analytical solution and
the COMSOL simulations, which show excellent agreement.
Clearly the transverse force in 2D space is a function of both
transverse and axial displacements.

The magnetically-induced axial forces with respect to
both the normalized transverse and axial displacements are
illustrated in figures 3(c) and (d) for the case where dt>0. In
figure 3(c), the axial magnetic force decreases to zero as the
transverse displacement dt increases, with a slight maximum
observed in the curve for da=3a. Figure 3(d) illustrates that
the axial force will increase to a maximum value at some axial
displacement, after which it decreases to zero for larger axial
displacements, with excellent agreement again observed for
the analytical and COMSOL results.

The second case to be analyzed is when the tuning and
tip magnets are partially (or fully) overlapped in the
transverse direction such that −4a<dt<0. The transverse
and axial magnetic forces obtained from the analytical and
COMSOL solutions are shown in figure 4. As discussed in
[17], when the transverse displacement = -d a2 ,t the
magnets are perfectly overlapped in the transverse direction
and the solution is not well-defined; thus, a transverse
displacement = -d a1.9t is used. As expected, figure 4
illustrates that both transverse and axial forces approach zero
for larger axial displacements.

The third case for analysis is when the tuning magnet is
fully below the fixed magnet such that < -d a4 .t Because the
magnetic field of an ideal cuboidal magnet is symmetric, the
induced magnetic forces are also symmetric. Both analytical
and simulation results show that the transverse and axial
forces can be expressed as ( ) ( )= - - -F d F a d4t t t t and

( ) ( )= - - -F d F a d4 .a t a t Therefore, compared to the trans-
verse and axial forces in the first case ( )>d 0 ,t those in the
third case ( )< -d a4t will have the same magnitude of the
force but in the opposite direction and thus are not
repeated here.

3.1.2. Impact of tuning forces on effective stiffness and
resonant frequency. As discussed in section 2, magnetic
forces which are a function of the position of the tuning
magnet contribute to changes in the transverse and axial
stiffness of the cantilever beam. These changes in stiffness

Figure 3. Transverse parallel magnetization orientation for dt>0: (a) transverse force versus transverse displacement; (b) transverse force
versus axial displacement; (c) axial force versus transverse displacement; (d) axial force versus axial displacement. Forces are normalized
with respect to the contact force F0 and displacements are normalized with respect to the magnet half edge size a.
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directly contribute to the effective frequency of the cantilever
beam as shown in (1) and (2). Given the determination of the
magnetic forces above, it is thus straightforward to determine
the transverse and axial stiffness terms as a function of tuning
magnet location using (3) and (5), respectively, as shown in
figures 5 and 6. It is clear from these figures that the
magnitude of the transverse stiffness is much larger than the
contribution of the axial stiffness for this transverse parallel
magnetic orientation. In addition, as shown in figure 5(a),

when =d 0a the magnets are aligned and the relative motion
of the tuning magnet is purely transverse to the cantilever,
which is equivalent to the tuning approach described
previously in the literature [9]. In addition, figure 5(b)
shows that the transverse stiffness is largest at zero axial
displacement =d 0a and decreases with increasing axial
displacement. A characteristic observed for the curves of

=d a0.5 ,t =d a1t and =d a2t is that the transverse stiffness
decreases through zero before again approaching zero at

Figure 4. Normalized magnetic tuning forces with respect to the normalized tuning magnet positions where - < <a d4 0.t (a) Transverse
force versus axial displacement; (b) axial force versus axial displacement.

Figure 5. Transverse and axial stiffness for transverse parallel magnetization orientation of magnets where >d 0t (a) transverse stiffness
versus transverse displacement; (b) transverse stiffness versus axial displacement; (c) axial stiffness versus transverse displacement; (d) axial
stiffness versus axial displacement. Displacements are normalized with respect to the magnet half edge size a.
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larger axial displacements, illustrating the complexity of the
magnetic fields in 2D space.

When the cantilever beam is subjected to an axial force,
an axial stiffness is introduced which alters the resonant
frequency of the cantilever beam. The axial stiffness ka as
given in (5) is only a function of the geometry of the beam
and the axial load F .a Based on section 2.2, figures 5(c) and
(d) show the variation of axial stiffness ka with respect to the
normalized axial and transverse displacements of the tuning
magnet when >d 0.t In this case, a compressive load is
applied between the two magnets and the induced axial
stuffiness ka is negative such that <k 0,a with the effective
stiffness of the beam decreasing according to (1). Figure 5(d)
shows that the axial stiffness will decrease to a minimum
value at some axial displacement, after which it increases to
zero for larger axial displacements. This characteristic is
consistent with the results of the axial forces shown in
figure 3(d).

Due to symmetry, for case 3 (when the tuning magnet is
fully below the fixed magnet such that )< -d a4 ,t the
analysis of the axial and transverse stiffnesses will follow
figure 5 and thus is not repeated here. For case 2, according to
the theoretical magnetic force equations [17], the results for a
transverse displacement = -d a2t are ill defined (resulting in
the gaps shown in figures 6(a) and (c)). However, the results
of stiffness in figures 6(a) and (c) suggest that both transverse
stiffness and axial stiffness are symmetric about = -d a2t

and will reach a maximum value when the transverse
displacement approaches - a2 , where the two magnets are
aligned in the axial direction. In addition, as expected,
figures 6(b) and (d) illustrate that both transverse and axial
stiffnesses approach zero for larger axial displacement. Note
that when the tuning magnet and tip magnet are partially (or
fully) overlapped in the transverse direction such that
- < <a d4 0t (in case 2), the axial stiffness is not always
negative (as was observed for case 1) as shown in figure 6(d).
Lastly, as shown in figure 6(d), when = -d a2.5t and

= -d a3t the axial stiffness >k 0.a In this case, a tensile
load will be applied to the cantilever beam such that >F 0,a

which will result in an increase in the resonant frequency.
When both transverse and axial magnetic forces are

simultaneously applied on a clamped-free cantilever beam,
the effective resonant frequency is altered as the result of both
transverse stiffness and axial stiffness contributions to the
overall effective stiffness of the system as shown in (1). To
illustrate the impact of magnet location on the resonant
frequency of the system, a contour plot of the change in
resonant frequency as a function of tuning magnet position in
2D space is shown in figure 7 for the transverse parallel
magnetization orientation. Here we assume that movement of
the tuning magnet can be described as ( )=d a a a0 : 0.5 : 5a

and ( )=d a a a0.5 : 0.5 : 5 ,t with the tuning step defined as
a0.5 . (However, note that the tuning magnet positions should

be subject to the appropriate constraints for the cantilever

Figure 6. Transverse and axial stiffness for transverse parallel magnetization orientation of magnets where - < <a d4 0t (a) transverse
stiffness versus transverse displacement; (b) transverse stiffness versus axial displacement; (c) axial stiffness versus transverse displacement;
(d) axial stiffness versus axial displacement. Displacements are normalized with respect to the magnet half edge size a.
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beam as outlined in section 2.4.) Given the transverse parallel
magnetization orientation being considered here, the axial
forces are in general relatively small and do not drastically
shift the resonance of the beam. For the specific parameters
listed in table 1, the untuned frequency of the cantilever beam
is 417.8 Hz and the projected tuning range is between −6.2%
to +26%, which corresponds to 391.9–526.5 Hz.

3.2. Tuning with axial parallel magnetization directions

A second scenario to be analyzed is when the two magnets are
aligned with the magnetization orientations in the axial par-
allel direction as shown in figure 1(b). Again both the trans-
verse force Ft and axial force Fa as a function of axial ( )da and
transverse ( )dt location of the tuning magnets can be found
using the approach described in section 2.3; as discussed
previously, these are directly related to the forces shown in
figures 3 and 4 above for the transverse parallel orientation.
These forces again contribute to the magnetic transverse
stiffness kt and the axial magnetic stiffness ka of the system,
which impact the net effective resonant frequency of the
system as shown in (1) and (2).

As we assume that the tuning magnet is always moving
to the right of the fixed magnet such that >d a2 ,a figure 8
shows the variation of transverse stiffness kt and axial stiff-
ness ka with respect to normalized displacements of the tuning
magnet. For case 1 and case 3, when >d 0t or < -d a4 ,t the
transverse stiffness and axial stiffness with respect to the
normalized transverse displacement follow the same sym-
metric relationship described previously. When the tuning
magnet and tip magnet are partially (or fully) overlapped in
the transverse direction such that- < <a d4 0t (case 2), the
axial stiffness ka is always negative. Note that in figures 8(b)
and (d), values of <d a2a would result in overlap of the

magnets and are not considered. Specifically, it is clear from
figure 8 that both transverse stiffness and axial stiffness will
attain the maximum absolute value when the two magnets are
aligned in the axial direction where = -d a2t such that the
2D tuning model simplifies to the 1D horizontal tuning
approach described previously in the literature [10]. In addi-
tion, figure 8 also illustrates that the transverse stiffness term
is significantly larger than the axial stiffness for the 2D tuning
scenario with the axial parallel magnet orientation. Also note
that the magnitudes of the transverse stiffness in the axial
parallel orientation are, as expected, much smaller than those
obtained for the transverse parallel orientation of the magnets
as shown in figure 5(a).

A contour plot of frequency differences obtained using
the 2D magnetic tuning with an axial parallel magnetization
orientation is shown in figure 9, assuming a tuning magnet
range of ( )=d a a a2 : 0.5 : 5a and ( )=d a a a0 : 0.5 : 5 .t As
shown in figure 9, a tuning range of 71.1 Hz
(434.5–505.6 Hz) for axial parallel magnetization is obtained,
with the corresponding frequency differences between 4% to
12.1% of the unturned frequency. Note that in the assumed
2D tuning space, the tuning frequencies are always larger than
the untuned frequency due to the assumption that the tuning
magnet is always above and on the right side of the fixed
magnet. Obviously as the tuning magnet is further removed
from the cantilever beam the impact of the applied magnetic
forces would decrease and the tuned frequency approaches
the untuned frequency of the system.

3.3. Tuning with cross magnetization orientation

Similar to the approach used above, the tuning performance
of the system for the cross magnetization orientation direction
as shown in figure 1(c) is highlighted below.

3.3.1. Tuning forces versus positions. For the cross
magnetization orientation, theoretical calculations performed
by MATLAB and simulation results by COMSOL
magnetostatic 3D model in AC/DC module are given in
figure 10. Excellent agreement for the calculated forces is
again observed using these two approaches. Because of the
cross magnetic orientation of the magnets, one difference that
is observed from previous magnetic orientations is that the
largest transverse forces Ft are not obtained when the magnets
are aligned and =d 0a (see figure 10(b)). As discussed
before, this results from the complex magnetic fields
generated as the tuning magnetic is moved in 2D space.
Figures 10(c) and (d) describe the normalized axial forces
versus normalized transverse and axial displacements,
respectively. As might be expected, a comparison of
figures 3 and 10 shows that the magnitudes of the magnetic
forces are much smaller for the cross magnetization direction.

3.3.2. Impact of tuning forces on effective stiffness and
resonant frequency. By applying the effective stiffness
theory, the impact of these magnetic forces on the
contributions to the effective stiffness can be calculated as
shown in figure 11. Compared to the effective stiffness

Figure 7. Contour plot of net resonant frequency changes of
magnetically tuned cantilever beam for transverse parallel magne-
tization orientation of the magnets.
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contributions found for the transverse parallel (figure 5) and
the axial parallel (figure 8) magnetic orientations, we see that
the cross parallel magnetization results in a somewhat lower
transverse stiffness contribution and similar axial stiffness

values compared to the transverse parallel orientation, with
the largest contributions to the axial stiffness found for the
axial parallel orientation.

In addition, a contour plot of frequency differences
obtained using the 2D magnetic tuning with a cross parallel
magnetization orientation assuming a tuning magnet range of

( )=d a a a2 : 0.5 : 5a and ( )=d a a a0 : 0.5 : 5t is shown in
figure 12. For the given 2D tuning space, figure 12 shows that
for the cross magnetization orientation effective resonant
frequencies between −1.4% to +23.3% of the untuned
system frequency, corresponding to 412.0–514.5 Hz, can be
obtained for this system.

4. Case study

A simple experimental study measuring the effective resonant
frequency of a 2D magnetically tuned cantilever beam energy
harvester was conducted to confirm the results from the
analytical and computational models described above. Here
the transverse parallel magnetic orientation, which was found
to be the most effective way to implement the 2D tuning
approach as discussed in section 3, is implemented to illus-
trate this tuning approach. As shown in figure 13, the proto-
type consisted of a cantilever beam, a tip magnet, a tuning
magnet, and a housing frame which is mounted on a shaker to
provide a given vibration of known amplitude and frequency.
The cantilever beam is a piezoelectric stripe actuator (APC

Figure 8. Transverse and axial stiffness for axial parallel magnetization orientation of magnets. (a) Transverse stiffness versus transverse
displacement; (b) transverse stiffness versus axial displacement; (c) axial stiffness versus transverse displacement; (d) axial stiffness versus
axial displacement. Displacements are normalized with respect to the magnet half edge size a.

Figure 9. Contour plot of net frequency changes of tuning for axial
parallel magnetization for < <d a0 5t and < <a d a2.1 5a .
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International Ltd, Model 40-2010), and all necessary dimen-
sions and properties are listed in table 2.

In the experimental configuration, the entire housing of
the energy harvester is fixed to a shaker (Model 4810 from
Bruel & Kjaer) which is used to provide a known vibration
input excitation to the system using a function generator (HP
4120 series) with a power amplifier (Bruel and Kjaer). Within
the energy harvesting device, the cantilever beam with a fixed
magnet at the tip is vibrating in the vertical direction, with
two tuning screws for the transverse and axial directions,
respectively, used to carefully adjust the location of the tuning
magnet in 2D space with respect to the fixed magnet. The
pitch of the screws and the number of turns are used to
determine the displacement in both transverse and axial
directions. For the current configuration, the transverse tuning
displacements are from 2.54 to 15.24 mm while the axial
tuning displacements are between 0 and 10.16 mm, with
2.54 mm steps in both transverse and axial directions
corresponding to the half-length of the magnets. The real time
voltage output from the piezoelectric stripe actuator is col-
lected using a data acquisition (DAQ) card (National Instru-
ments, model NI USB-6009) and LabView software. By
adjusting the different relative positions between the magnets
in 2D space, the resonance of the tuned system was deter-
mined based on measuring the frequency of the peak voltage
obtained for a given location.

The values obtained for the experimentally tuned fre-
quencies as a function of magnet position for the case of the
transverse parallel magnetization orientation are given in
table 3. Within experimental error, we find that the cantilever
beam system (untuned frequency of 61 Hz) can be tuned from
approximately 51 to 87 Hz based on 2D tuning space
explored in the table. The experimentally obtained results are
further compared with the analytical calculations for the fre-
quency differences are shown in table 4. Based on the geo-
metry parameters of the beam and magnets listed in table 2,
the experimental tuning range for transverse parallel magne-
tization of this prototype is between −16.2% to +23%. As
shown in table 4, the experimentally obtained frequencies in
most cases closely match the analytical values, with sig-
nificant error only found for the case of =d a2 ,a where the
two magnets are aligned with each other in the axial direction.
We attribute this error to the fact that the gradients of the
magnetic force are largest when the magnets are aligned, such
that the results in this case are particularly sensitive to posi-
tional errors in the experimental testing.

5. A note on power output

In general, an energy harvesting device can be modeled as a
spring–mass–damper system as shown in figure 2, where the
mechanical dashpot bm accounts for the energy losses due to

Figure 10. Normalized forces for cross magnetization orientation where dt>0: Transverse force versus transverse displacement; (b)
transverse force versus axial displacement; (c) axial force versus transverse displacement; (d) axial force versus axial displacement. Forces
are normalized with respect to the contact force F0 and displacements are normalized with respect to the magnet half edge size a.
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structural and viscous damping, while the electrical damping
be corresponds to the energy harvested through the energy
conversion mechanism [11]. Given a sinusoidal excitation
vibration ( ) w=y t Y tsin ,s where Y and ws are the source

vibration amplitude and frequency, respectively, the net
electrical power generated can be written as [11]
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where zt is the total damping ratio ( )z z z= +t m e which is the
sum of mechanical damping ratio zm and electrical damping
ratio ze and wstruc is the undamped natural frequency of the

Figure 11. Transverse and axial stiffness for cross magnetization orientation of magnets. (a) Transverse stiffness versus transverse
displacement; (b) transverse stiffness versus axial displacement; (c) axial stiffness versus transverse displacement; (d) axial stiffness versus
axial displacement. Displacements are normalized with respect to the magnet half edge size a.

Figure 12. Contour plot of net frequency changes of tuning for cross
magnetization orientation for < <a d a0.5 5t and < <a d a2 5a .

Figure 13. Schematic of 2D resonant frequency tuning approach:
(left) model, (right) experimental setup.
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vibrating structure. When the energy harvesting device is in
resonance such that w w= ,s struc the power output at resonance
Pres can be simplified as

( )
z
z

w=P m Y
4

. 14res
e

t
2 struc

2
s

3

According to (14), when the device is vibrating in reso-
nance, the power output is dependent on the mass of structure,
the amplitude and frequency of the source vibration, and the
damping characteristics of the system. As the vibration ampl-
itude and frequency are a function of the environmental
vibration source and thus not design variables, at resonance the
vibrating structure and damping parameters can be optimized to
maximize the power output of the energy harvesting device.

In the application of the 2D magnetic resonance fre-
quency tuning approach, tuning of the resonant frequency will
affect the power output of the device by directly changing the
resonant frequency of the harvester. Determination of the
power output from a particular device could be measured
following procedures used previously in the literature [9, 10].
However, note that from a systems perspective, the energy
needed to implement the tuning mechanism (in this case, the
movement of the tuning magnets) should be included in an
overall analysis of the system performance [18].

6. Conclusions

Given the increasing interest in the development of wireless
sensor networks, it is desired to make the sensors self-contained
with their own renewable power supply. Moreover, recent
advances in low-power sensor technology have reduced the
power requirements of these sensor nodes to the level of several
milliwatts [19, 20], such that it is becoming increasingly feasible
to implement self-powered wireless sensors. One such promis-
ing solution pursued here is vibration-based energy harvesting,
which converts ambient (mechanical) vibration energy to elec-
trical energy. Clearly, the energy harvesting power solution is
preferable to batteries in terms of less maintenance and longer
operational lifetime when compared to batteries and other che-
mical sources. However, a vibration-based energy harvester
produces maximum power only when its resonant frequency is
properly tuned with the environmental vibration frequency. As
has been discussed in the literature, practical implementation of
these harvesters will almost certainly require a way to tune the
resonant frequencies to enable the device to harvest energy in
various environments. In earlier work, a horizontal method to
tune the frequency of energy harvester has been proposed [10];
this approach may be optimal at the MEMS scale since it is
much more difficult to move the magnets vertically at that length
scale.

In the current work a 2D magnetic stiffness tuning method,
where the tuning magnet is free to move in 2D space with
respect to the fixed magnet on the cantilever beam energy har-
vesting element is presented. By applying magnetic forces in 2D
space, the effective resonant frequency of the system is related to
two additional stiffness components added to the untuned sys-
tem. Here we have shown that the transverse and axial magnetic
forces and related stiffness contributions can be accurately cal-
culated based on theoretical calculations provided earlier in the
literature [17], with the results confirmed using a COMSOL
magnetostatic 3D model. In particular, as the optimal magnetic
orientation of the magnets for the 2D tuning approach is not
clear, we examined the three different possible magnetization
orientations (transverse parallel, axial parallel, and cross mag-
netization directions) between the fixed and tuning magnets to
examine the effect of magnetic orientation on tuning. After
analyzing these three different magnetization orientation direc-
tions, we conclude that the transverse parallel orientation may be
the most effective in most cases as it provides the largest fre-
quency bandwidth for the tuned harvester. In all cases, the
transverse stiffness term is in general significantly larger than the
axial stiffness contribution, suggesting that from a tuning per-
spective it may be possible to use the transverse and axial
stiffness contributions for coarse and fine frequency tuning,
respectively. Lastly, an experimental case study for the trans-
verse parallel magnetization orientation verified the proposed
model for the 2D resonant frequency tuning approach.

This 2D resonant frequency tuning approach extends earlier
1D approaches and may be useful, in particular, for applications
where space constraints impact the available design space of the
energy harvester. On the other hand, we note that a limitation of
the proposed 2D tuning approach is that it will be more difficult
than 1D solutions to practically implement, given the need to

Table 2. The parameters of cantilever beam and magnets used in the
experimental confirmation of the 2D magnetic frequency tuning
approach. (Parameters not explicitly listed in table 2 are the same as
those given in table 1.)

Description Value Units

Cantilever beam

Width 20×10−3 m
Length 60×10−3 m
Thickness of piezoelectric stripe actuator 0.7×10−3 m

Magnets

Side length ´ -5.08 10 3 m
Density (NdFeB) 7400 -kg m 3

Table 3. Experimental tuned frequency (Hz) of the 2D tuning
approach for transverse parallel magnetization orientation. The
untuned frequency of the system was 61 Hz.

Experimental tuned frequency (Hz)

da/a

0 1 2 3 4

dt/a

1 86.81 78.00 52.15 51.08 51.15
2 80.64 70.47 55.16 56.99 54.14
3 74.74 68.29 56.66 58.06 56.05
4 68.77 65.09 56.98 59.98 57.61
5 65.16 63.43 56.94 60.72 59.94
6 64.49 61.68 57.62 61.94 60.60
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accurately locate the tuning magnet in 2D space. In addition,
because the same effective stiffness can correspond to multiple
positions of the tuning magnet in 2D space, a tuning path which
accounts for the energy costs associated with the tuning step and
projected future frequency tuning requirements would be
necessary to determine the final optimal tuning magnet position
for adaptive, real-time tuning of the resonant frequency of the
energy harvesting device [18]. Nonetheless, the proposed 2D
tuning results may find use as a means of tuning the resonant
frequency of vibration-based energy harvesting devices.
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