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CHAPTER 3: NANOTUBE WAVINESS AND THE

EFFECTIVE MODULUS OF NANOTUBE-REINFORCED

POLYMERS

Introduction

In order to increase our understanding of the mechanical behavior of nanotube-

reinforced polymers, it is useful to develop models of the effective properties of these

materials, enabling detailed study of the material system. One means to accomplish

this is the extension of traditional micromechanics and composite models to address

specific features characteristic of these materials. As an example, consider the high-

magnification electron microscopy images of nanotubes embedded in a polymer

matrix shown in Figure 18. In the images the nanotubes appear to be wavy (not

straight), a feature not typically associated with traditional fiber reinforced

composites. Note that this waviness is inherently distinct from the uniform and

controlled waviness of the yarns in traditional textile composites. While one might

expect that this waviness will reduce the effectiveness of these inclusions for purposes

of modulus enhancement, modeling of this reduction will lead to more accurate

quantitative models of the mechanical behavior of these materials.
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Figure 18. Micrographs showing the waviness of nanotubes embedded in

polymers. (a) TEM image of 1 wt% MWNTs in polystyrene (Qian, Dickey et al.

2000). (b) SEM image of 50 wt% MWNTs in poly(vinyl alcohol). (Shaffer and

Windle 1999)

Motivated by such observations, the model presented in this chapter has been

developed to analyze how this waviness impacts the effective moduli of NRPs. This is

accomplished via a hybrid finite element-micromechanical model that determines the

effective reinforcing modulus (ERM) of a wavy embedded nanotube. As demonstrated

later in this chapter, the effective reinforcing modulus is then used within a multiphase
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micromechanics model to predict the effective modulus of a polymer reinforced with a

distribution of wavy nanotubes. We found that even slight nanotube curvature

significantly reduces the effective reinforcement in comparison to models assuming

straight nanotubes. Using experimental data, we demonstrate that nanotube waviness

can significantly limit the property enhancement of the NRP. Thus nanotube waviness

may be one reason why the modulus enhancements for NRP systems measured to

date, while significant, have been much less than would be anticipated using standard

micromechanics models.

At the moment it is impossible to differentiate the impact of nanotube

waviness from competing reinforcement-limiting mechanisms such as a weak NT-

polymer interface, poor dispersion, and NT degradation in experimental data.

Nevertheless, our results provide a clear picture of how moderate waviness can hinder

the effectiveness of NTs as structural reinforcement. While the work reported here is

an application of a micromechanics method to a nanostructured material, the

integration of atomic scale modeling could readily be adapted into such an analysis. In

the future a fusion of true nanoscale and microscale modeling will provide even more

insight, and quantitatively accurate predictions, of this material behavior.

Next we will describe the models that were developed to determine the

effective reinforcing moduli of an embedded wavy nanotube. We will then show how

the results of this finite element modeling can be incorporated into micromechanics
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techniques to determine the effective modulus of an NRP with randomly orientated,

wavy nanotubes. We will then present results that demonstrate how the waviness of

the nanotube limits the effective reinforcement that the inclusion provides the host

polymer material. This reduced reinforcement results in effective moduli predictions

that are significantly lower than those derived assuming straight nanotube inclusions.

In all cases these reduced moduli values are in closer agreement with experimental

data published in the literature, although currently it is impossible to separate the

effects of NT waviness from other reinforcement-limiting mechanisms influencing the

effective material behavior. We will also briefly describe an alternative (albeit related)

model that has been developed and addresses the impact of NT waviness via the

numerical calculation of the dilute strain concentration tensor (Bradshaw, Fisher et al.

2002). At the end of the chapter we will summarize the results of these models and

discuss how these results may influence future developments in the area of nanotube-

reinforced polymers.

The Model

Based on the discussion of the last section, we are interested in using

micromechanical techniques to study the effective elastic moduli of nanotube-

reinforced polymers. The basis of the current model is to determine the effective
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reinforcing modulus (ERM) of the wavy embedded nanotube; that is, a representative

value denoted EERM that accounts for the reduction in reinforcement provided by the

wavy nanotube in comparison to the reinforcement provided by a straight NT (of

modulus ENT).1 Thus while the nanotube modulus ENT is a material property, the

effective reinforcing modulus EERM (EERM ≤ ENT) is a material parameter that is a

function of the geometry of the wavy nanotube and other variables (as discussed later

in this chapter). This effective modulus is then available for use in standard

micromechanical models in lieu of the true (actual) nanotube modulus. While such a

procedure can be applied in general to any class of curved and wavy inclusions,

embedded nanotubes and NRPs are the focus of the present discussion.

In this regard, we note the results of several researchers who found that

continuum models provide useful insight into nanotube behavior, despite the discrete

nature of their atomic structure (Ruoff and Lorents 1995; Yakobson and Smalley

1997).2 To simplify the geometry we will treat the nanotube as a solid element of

circular cross-sectional area, which implicitly introduces two simplifications into the

analysis. First, treating the inclusion as a solid cylinder neglects the hollow nature of

                                                  

1 This effective reinforcing modulus EERM is identical to what we have called the wavy nanotube
modulus (Ewavy) in previous work (Fisher, Bradshaw et al. 2002a).
2 Others have found a large number of atomic layers was necessary to justify the treatment of the
nanotube as a continuum (Govindjee and Sackman 1999). However, for the purposes of moduli
predictions we believe that a continuum assumption is an acceptable simplification. Other mechanical
behavior, such as crack propagation and fracture, will undoubtedly be more dependent on atomic
structure and may be especially ill-suited for such an assumption.
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the nanotubes.3 Second, by modeling the nanotube as a continuum we are disregarding

the specific form of the nanotube (SWNT, MWNT, or bundle) and neglecting any

possible relative motion between individual shells or tubes in a MWNT and an NT

bundle, respectively. Each of these assumptions suggests that EERM as calculated here

is an “upper bound” for the given model, in that accounting for the hollow nature of

the NTs or modeling relative sliding of the tubes or shells would further reduce the

effective stiffness of a wavy nanotube. Thus nanotube waviness may be even more

significant than the results presented in this work would indicate. While this approach

will highlight the impact of nanotube waviness on the effective modulus of an NRP, a

more rigorous analysis that accounts for the discrete nature of the nanotube and the

atomic interaction between the nanotube and polymer is warranted and will be the

subject of future work.

In addition to the continuum assumption, several other simplifications are

invoked throughout this work to aid in the interpretation of the results. The individual

phase materials are modeled as linear elastic and isotropic, and perfect bonding

between the phases is assumed. The waviness of a nanotube of diameter d will be

introduced by prescribing an embedded NT shape of the form 

† 

y = a cos 2pz / l( ) ,

where l is the sinusoidal wavelength and z is the fiber axial direction (see Figure 21

                                                  

3 It is also well established that in many cases the cross-section of the nanotubes is not circular but is
typically distorted due to van der Waals interactions between the shells (or tubes). However, for our
current investigation the effect of this slight distortion in cross-sectional shape is negligible.
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on page 63). Unless otherwise noted, Poisson ratios of 0.30 were assumed for all

phases in the simulations; this value is representative of a wide range of polymer

materials, and is consistent with the range of values estimated for carbon nanotubes.

This assumption will be discussed in more detail later in this chapter.

We will first present our initial efforts to develop an analytical model

describing the extension of a wavy NT in response to an applied axial load. While it

was useful to consider such an initial model, we found that its utility was greatly

limited due to the inability to accurately capture the influence of the surrounding

matrix on the response of the wavy nanotube. This led us to study the problem via the

finite element analysis, where the constraint of the surrounding matrix can now be

considered. Following this, the formulation of the Mori-Tanaka method for a

multiphase composite with randomly aligned cylindrical inclusions in two- and three-

dimensional space will be presented. Finally, we will present a multiphase composite

approach where the nanotubes are modeled as a finite number of discrete inclusion

phases with distinct effective moduli based on their embedded waviness.

Analytical solution for an isolated wavy nanotube

A critical component of the problem at hand is to model the mechanical

response of an embedded wavy nanotube, due to an applied axial load P, as a function

of waviness. As a first approximation it is insightful to consider the analytical solution
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for the effective stiffness of a free-standing wavy rod subject to axial load. We will

later show that such a model is only useful when the modulus of the straight nanotube

ENT is much larger than the modulus of the matrix Ematrix. When this criterion is not

satisfied (i.e. ENT/Ematrix < 1000), a finite element analysis is necessary to account for

the lateral constraint that the surrounding matrix provides the embedded nanotube. For

completeness, we briefly describe the analytical solution for a free-standing wavy rod

below.

Figure 19. Schematic of the analytical solution for a free-standing wavy fiber.

Consider the sinusoidal wavy rod of solid cross-section shown in Figure 19.

Asuming linear elastic material behavior and small displacements, Castligiano’s

theorem states that the displacements due to an applied load P, in the direction of P,

are given by 

† 

dP = ∂U / ∂P , where U is the total elastic strain energy of the system

(Boresi, Schmidt et al. 1993). Given the sinusoidal geometry of the free-standing
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nanotube, one can determine the internal axial (N) and shear (V) forces and the internal

moment (M) within the rod as a function of z:

† 

N(z) = P cos(q) =
P

1+
4 p2 a2

l2 sin2 2pz
l

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

,

† 

V(z) = P sin(q) =
-

2ap

l
Psin 2pz

l

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

1+
4 p2 a2

l2 sin2 2pz
l

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

, (3)

† 

M(z) = P a - y(z)[ ] = Pa 1-cos 2pz
l

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 

˘ 

˚ 
˙ .

The total end displacement dP of the rod is then the sum of the components due

to each of these terms, integrated over one wavelength l of the sinusoidal rod,

† 

dP = dN + dV + dM =
N

EAÚ ∂N
∂P

ds +
kV
GAÚ ∂V

∂P
ds +

M
EIÚ ∂M

∂P
ds, (4)

where dN , dV , and dM  are the contributions due to the internal axial and shear forces,

and the internal moment, respectively, and ds is an increment of arc length. In this

expression k is the correction factor for the shear strain energy (equal to 1.33 for a

solid circular cross section (Boresi, Schmidt et al. 1993)), G is the shear modulus, and
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A  and I are the cross sectional area and the moment of inertia for a circular cross

section. By substituting (3) into (4) and with further simplification, the components of

the axial displacement of the free-standing wavy rod are

† 

dN =
P

AE
1

1+
4p 2 a2

l2 sin2 2pz
l

0

l

Ú dz , (5)

† 

dV =
4a2 p2 kP

AGl2

sin2 2pz
l

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

1+
4p 2 a2

l2 sin2 2pz
l

0

l

Ú dz , (6)

† 

dM =
a2 P
IE

1- cos 2pz
l

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 

˘ 

˚ 
˙ 

0

l

Ú
2

1+
4 p2 a2

l2 sin2 2pz
l

dz . (7)

Given these displacement components, the total displacement of the end of the rod is

given via (4).  Note that in the limit of a straight rod (a=0), the above expression yields

the standard expression for the extension of straight rod under uniaxial tension,

† 

d =
PL
A E .

We now define the effective reinforcing modulus of the free-standing wavy rod

as the ratio of the applied stress to the resulting strain, such that
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† 

E free =
s

e
=

P / A
dP / L

=
PL

AdP
. (8)

This expression, normalized with respect to the true modulus, is plotted versus

waviness w (defined as the ratio of sinusoidal amplitude to wavelength a/l) in Figure

20 for l/d=100. Also shown in Figure 20 are the results of an analogous finite element

model (described later in the chapter), which indicate excellent agreement between the

two solutions. The slight difference between the solutions is attributed to the imposed

displacement boundary conditions in the finite element model, which prevent vertical

displacement of the rod at z=l. As expected, the effective modulus quickly falls off

with increasing waviness, such that for even very minimal values of waviness the

effective stiffness is negligible (i.e. for w=a/l=0.01, the effective stiffness is less than

5% of the true modulus).

We found that this analytical solution is limited in the present analysis because

it does not reflect the physical nature of the constraint imposed by the surrounding

matrix. Specifically, comparison of this analytical solution with our finite element

results for an embedded wavy nanotube (described later) show that the free-standing

solution severely underestimates the effective stiffness of embedded wavy inclusions.

As demonstrated in Figure 20, if one were to use the analytical model in (8), it would

be possible for the effective reinforcing modulus of a stiff inclusion to be less than the
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matrix modulus. As such the wavy nanotube would decrease the effective modulus of

the NRP, a result that is clearly not realistic.

Figure 20. Comparison of finite element and analytical solutions for the effective

modulus of a free-standing wavy rod.

Attempts to adapt this analytical solution for the case of the embedded wavy

inclusions were not successful, primarily because of the difficulty in accounting for

the additional constraint of the surrounding matrix. For example, the Rule of Mixtures

approximation is ill-suited for this analysis because the volume fraction of the free-

standing nanotube is not well defined. This difficulty is eliminated in our finite
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element model of the effective reinforcing modulus, which is discussed in the next

section and will be the focus of the remainder of this chapter.

Finite element model for the effective reinforcing modulus

To determine the effective reinforcing moduli EERM of an embedded wavy

nanotube, ANSYSTM was used to create and analyze a three dimensional finite element

model of a single, infinitely long wavy nanotube of diameter d perfectly bonded

within a matrix material. For axial loading the problem is symmetric about the x=0

and z=nl/2 (where n is an integer) planes; thus the quarter-symmetric unit cell shown

in Figure 21 is used for the analysis. The size of the cell was chosen such that the

effective cell response is independent of additional matrix material (this proof is

provided later in this chapter). A more complete description of the finite element

modeling used here has been described in the literature (Bradshaw, Fisher et al. 2002).

For the finite element simulations symmetry conditions ux=0 and uz=0 were

prescribed on the x=0 and z=0 planes, respectively. The model was constrained in the

y direction at a single point to prevent free body translation, and an infinitesimally

small axial displacement, D , prescribed to all nodes on the plane z=l/2. The effective

modulus of the finite element cell is defined as

† 

E cell
FEA =

Ftot l

2 AD
, (9)
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where Ftot is the sum of all nodal resultant forces on the displaced plane and A is the

cross-sectional area of the cell.

Figure 21. Finite element cell model of an embedded wavy nanotube. For the

model shown, w=a/l=0.1 and l/d=35.

In order to extract the effective reinforcing moduli of the embedded wavy

inclusion (as it exists in the matrix) from (9), we propose a parallel model of the

effective cell response, independent of the previous analysis,

† 

E cell
parallel = cNT EERM + 1- cNT( )Ematrix ,  (10)



64

where cNT is the nanotube volume fraction within the finite element cell and Ematrix is

the matrix modulus. From (9) and (10), EERM of the embedded inclusion can be

calculated as

† 

E ERM =
Ecell

FEA - (1-cNT )E matrix
cNT

. (11)

Thus EERM represents the modulus of a straight inclusion that, under identical loading

conditions, would yield the same effective finite element cell response as that obtained

with the wavy inclusion.

This finite element solution is a powerful tool to model the effective response

of embedded wavy inclusions. While at first glance the number of parameters

affecting 

† 

E cell
FEA  (and hence EERM) appears quite large, we will show later in this

chapter that for the model described above, and an additional assumption that the

Poisson ratios of the phases are equal, EERM will only be dependent on three

parameters: the waviness ratio (w=a/l) and wavelength ratio (l/d) of the nanotube and

the ratio of the phase moduli (Eratio=ENT/Ematrix). A systematic analysis of the impact of

these parameters on EERM was undertaken and the key results will be presented later in

this chapter. The benefit of such an analysis is that it allows inclusion waviness to be

integrated into traditional micromechanics techniques by simply modeling the wavy
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inclusions as straight inclusions with a reduced reinforcing modulus EERM determined

via finite element modeling.

Analytical solution for Ecell

After the development of the finite element model presented above, it was

brought to our attention that in certain circumstances the value for Ecell can be

approximated using analytical expressions developed for the analysis of flexible fiber

composites (Chou and Takahashi 1987; Kuo, Takahashi et al. 1988). Specifically, the

effective Young’s modulus for a composite with isophase sinusoidal fibers can be

written as

† 

E x
* =

1+ c( )3/2

1+
c
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ S11 - 1+

3
2

c - 1+ c( )3/2Ê 

Ë 
Á 

ˆ 

¯ 
˜ S22 +

c
2

2S12 +S66( )
(12)

where 

† 

c = 2pa l( )2
 and Sij are the elastic compliance terms which relate longitudinal

(L) and transverse (T) stresses and strains of the unidirectional straight fiber

composite via

† 

eL
eT
gLT

Ê 
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Á 
Á 
Á 

ˆ 

¯ 
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=
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˜ 

. (13)
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The key aspect of the analysis is that a sufficiently small volume fraction of straight

inclusion must be assumed in (13), such that the resulting elastic compliance terms

approximate the dilute solution response modeled in the finite element analysis.

Similar to the analysis using the finite element method, these terms will converge for a

sufficiently small volume fraction of inclusions, which we found to be on the order of

0.01%.

Similar to the Analytical Long Wavelength (ALW) model presented later in

this chapter, the analytical expressions above can be used to approximate Ecell from the

finite element analysis when the wavelength ratio l/d is sufficiently large for the case

of a given waviness ratio a/l. When a/l is too large for a given wavelength ratio, the

analytical solution underestimates the value of Ecell determined from the finite element

analysis. For consistency, in the current work the values for Ecell were taken directly

from the finite element simulations.

Convergence of EERM for a sufficiently large matrix

In order to eliminate the size of the finite element model as a parameter in the

analysis, it is necessary to show that EERM converges for a sufficiently large matrix.

To accomplish this we consider a finite element cell of an embedded wavy nanotube

(see Figure 21), where for simplicity we redefine the length of the cell as L (to

eliminate carrying a factor of two in our analysis below). We assume that the matrix
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boundary at the top and bottom of the cells is sufficiently far from the nanotube such

that fields at these boundaries are undisturbed by the presence of the nanotube, and

denote the volumes of the NT, matrix, and total cell as VNT, Vmatrix, and V,

respectively. Note that a respective area is given as A=V/L. We apply an

infinitesimally small uniform strain 

† 

ez  in the fiber axial direction and measure the

total resultant force Ftot necessary to cause this strain. From (10) and (11) we can write

the effective reinforcing modulus for this particular finite element cell as

† 

E ERM1
=

Ftot L
Vez

-
Vmat

V
Emat

VNT
V

=
Ftot L

VNT ez
-

Vmat
VNT

Emat . (14)

Now consider a second finite element geometry, identical to the previous cell

except that additional matrix material, with a volume Vmatrix2, has been evenly divided

and added to the top and bottom of the first cell. Because of the size of the first cell,

this additional matrix material is also unaffected by the presence of the wavy

nanotube, thus the force necessary to produce a uniform strain 

† 

ez  in this additional

matrix material is simply 

† 

F2 =
Emat Vmat 2 ez

L . The effective reinforcing modulus for the

second finite element cell can be written as



68

† 

EERM2
=

Ftot + F2( )L
V + Vmat2( )ez

-
Vmat + Vmat 2

V + Vmat 2

Emat

VNT
V + Vmat2

=
Ftot + F2( ) L

VNT e z
-

Vmat + Vmat 2

VNT
Emat (15)

Substituting the expression for F2 into (15) yields EERM1=EERM2, and thus for a

sufficiently large matrix the value of EERM is independent of the size of the finite

element cell. For all simulations the finite element cell was created large enough such

that this condition was satisfied; typically the nanotube volume fraction in the finite

element cell was less than 0.05%.

Reduction of EERM parameters for the finite element analysis

Because we have shown that EERM converges given a sufficiently large finite

element cell, it is sufficient to consider the model parameters that influence Ecell in the

present analysis. Assuming isotropic behavior of the phase materials, the model at first

appears to the dependent on seven parameters: the moduli (ENT and E matrix) and

Poisson ratios (nNT and nmatrix) of the phase materials, the wavelength and diameter of

the NT (l and d), and the sinusoidal amplitude a such that

† 

E cell = f ENT ,E matrix,nNT ,nmatrix,a,d,l( ) . (16)
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To first simplify the analysis we assume that the Poisson ratios of the phases

are identical and equal to 0.30, an assumption which we will discuss in further detail

later in the text. Thus one can write (16) in a mathematically equivalent form as

† 

g Ecell ,E NT,Ematrix ,a,d,l( ) = 0 , (17)

where g is dependent on these six parameters but of an unknown functional form.

Using the Buckingham Pi theorem (Fox and McDonald 1992), we can further rewrite

(17) as

† 

’1 = G1 ’2,’3,’4( ) , (18)

where 

† 

’ i are the dimensionless ratios

† 

’1 = ENT
a lb Ecell , ’2 = E NT

-c ld E mat

’3 = ENT
e lf a, ’4 = ENT

g l-h d
. (19)

The unknown superscript parameters a-h  in (19) can be determined through

dimensional analysis and substituted into (18) to yield

† 

E cell
E NT

= G1
ENT
E mat

, a
l

, l

d
Ê 

Ë 
Á 

ˆ 

¯ 
˜ , (20)

where G1 is a function of these parameters (only) and will be determined through our

finite element study.
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Micromechanical Modeling and the Mori-Tanaka Method

We will illustrate how inclusion waviness can be incorporated into traditional

micromechanical techniques by using the Mori-Tanaka method, a popular tool for the

analysis of multi-phase materials (Mori and Tanaka 1973; Benveniste 1987; Weng

1990). The Mori-Tanaka method has been used by a wide range of researchers to

model the effective behavior of composites, and allows the average stress fields and

overall effective stiffness of a composite with a non-dilute concentration of inclusions

to be determined. It has been used to study the effect of inclusion shape on composite

moduli (Zhao and Weng 1990; Qui and Weng 1991) and the viscoelastic behavior of

polymer-matrix composites (Brinson and Lin 1998; Fisher and Brinson 2001). Further,

the Mori-Tanaka method has been extended to cover composites with multiple

inclusion phases (Benveniste 1987; Weng 1990) and random orientations of inclusions

(Tandon and Weng 1986; Weng 1990).

Specifically we are interested in the Mori-Tanaka solution for an N phase

composite, where each inclusion phase is randomly orientated in two or three

dimensional space. For the following derivation we first consider the case where the

inclusions are unidirectionally aligned within the matrix. Once the necessary

parameters have been determined for this case, appropriate tensor transformations and
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volume averaging procedures will be introduced to account for the different inclusion

orientations. This technique is described in more detail below.

Mori-Tanaka method for unidirectionally-aligned inclusions

We assume that the composite is comprised of N phases; the matrix will be

denoted as phase 0 with a corresponding stiffness C0 and volume fraction f0, while an

arbitrary rth inclusion phase (where r=1 to N-1) has a stiffness of Cr and a volume

fraction fr. Each phase is assumed to be linearly elastic and isotropic, and perfect

bonding between the inclusions and the matrix is assumed. The inclusions are further

assumed to be ellipsoidal with a circular cross-section (a1=a2), an aspect ratio ar (ratio

of length to diameter), and aligned along the 3-axis (as shown in Figure 22).

Figure 22. Schematic of Mori-Tanaka method. (left) Multiphase composite

material. (right) Comparison material.
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Consider the two models shown in Figure 22, representing the composite

model and a “comparison material” with properties identical to those of the matrix.

Unless required, explicit tensor notation will be omitted for clarity. Displacements are

now prescribed on the boundary of each material to give rise to a uniform strain 

† 

ea  in

each material.  The stresses required to produced this uniform strain in each material

are

† 

s = Cea, s0 = C0 ea (21)

where 

† 

s  and s0 are the average stress of the composite and comparison materials,

respectively.

The strain field within the matrix material of the composite will not be uniform

due the presence of the inclusions (and hence the average matrix strain 

† 

e 0 will not

equal 

† 

ea), but rather will be perturbed by an amount 

† 

e 0
pt  such that

† 

e 0 = ea + e 0
pt , (22)

where an overscore represents the volume average of the stated quantity. The average

strain in the rth inclusion is further perturbed from that of the matrix,

† 

e r = e 0 + er
pt . (23)
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Given that the average stress in each phase is given as 

† 

s r = Cr e r , using the

equivalent inclusion method one can show that the average stress in the rth inclusion

can be written in terms of the matrix stiffness,

† 

s r = Cr e r = C0 e r - er
*( ) , (24)

where 

† 

er
*  is the ficticious eigenstrain of the rth inclusion. For a single ellipsoidal

inclusion in an infinite matrix, Eshelby showed that the eigenstrain and perturbed

strain of the rth inclusion can be related via

† 

er
pt =Sr er

* , (25)

where Sr is the Eshelby tensor. General forms of the Eshelby tensor are provided in the

Appendix.

Solving for 

† 

er
*  in (24) and then substituting into (23) using (25), one can find

the dilute strain-concentration factor of the rth phase, 

† 

Ar
dil , which relates the average

strain in the rth inclusion to the average strain in the matrix, such that

† 

e r = Ar
dil e 0, (26)

where
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† 

Ar
dil = I+ Sr C0

-1 Cr - C0( )[ ]-1
(27)

and I is the fourth order identity tensor. We further require that the volume-weighted

average phase strains must equal the far-field applied strain, such that

† 

f0 e 0 + fr e r
r=1

N-1

Â = ea . (28)

Given (28), we can now define the strain-concentration factor 

† 

A0, which

accounts for inclusion interaction by relating the average matrix strain in the

composite to the uniform applied strain,

† 

e 0 = A0 ea , (29)

where

† 

A0 = f0 I + fr Ar
dil

r=1

N-1

Â
È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

-1

. (30)

The key assumption of the Mori-Tanaka method is that the far-field strain that each

inclusion “feels” is the unknown average matrix strain. This can be expressed as

† 

e r = Ar
dil e 0 , (31)
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which in conjunction with (29) gives the strain-concentration factor 

† 

Ar  for the rth

inclusion phase in the non-dilute composite as

† 

Ar = Ar
dil A0. (32)

To find the effective stiffness C for a unidirectionally aligned composite, we

require that the average stress 

† 

s  of the composite be equal to the sum of the weighted

average stresses in each phase,

† 

s = f0 s 0 + fr s r
r=1

N-1

Â = Cea  . (33)

Through straightforward substitution and manipulation, the effective stiffness of the

unidirectionally aligned composite is found to be

† 

C = f0 C0 A0 + fr Cr Ar
r=1

N-1

Â . (34)

For purposes of the next section it will be useful to express (34) in a slightly

different form.  Recalling (28) and (33), we can write

† 

C = f0 C0 + fr Cr Ar
dil

r=1

N-1

Â
Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ f0 I+ fr Ar

dil

r=1

N-1

Â
Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ 

-1

, (35)
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which is a form prevalent in the literature (see (Weng 1990)).4 Both (34) and (35) thus

provide the effective stiffness of a multiphase composite with aligned inclusions.

However, in order to account for random orientations of the inclusion phases, the

analysis must be extended as discussed below.

Mori-Tanaka method for randomly aligned inclusions

When the inclusion phases are randomly orientated in the matrix,

determination of the effective composite stiffness can be accomplished by taking the

orientational averages of appropriate quantities (Weng 1990). In this case the strain

consistency condition in (28) can be written as

† 

f0 I + fr Ar
dil{ }

r=1

N-1

Â
Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ e0 = ea (36)

where brackets {} represent the average of a quantity over all possible orientations.5

Due to this averaging process, the average strain in the matrix will be different from

that in the unidirectional composite due to the random alignment of inclusions.

                                                  

4 Weng further simplifies this expression using the relationship that 

† 

A0
dil

= I . Such an expression is
sensible given that by definition 

† 

A0 relates the average strain in the matrix to the uniform applied
strain. In the dilute sense these strains will be equal.
5 Note that the derivation for unidirectional inclusions presented in the last section is a subset of the
more general derivation presented here.
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Similarly one can rewrite (33) for the case of randomly orientated inclusions

(with the understanding that the matrix stress and strain are orientation-independent

due to the isotropy of the matrix) as

† 

s = f0 s 0 + fr s r{ }
r=1

N-1

Â = Cea . (37)

This expression can be simplified using the relationships established in the preceding

section. Briefly,

† 

s = f0C0e 0 + fr Cre r{ }
r=1

N-1

Â

= f0C0e 0 + fr CrAr
dil{ }

r=1

N-1

Â e 0

= f0C0 + fr CrAr
dil{ }

r=1

N-1

Â
Ê 

Ë 

Á 
Á 

ˆ 

¯ 

˜ 
˜ e 0 = Cea

. (38)

From (36) and (38), the effective stiffness of a composite with randomly orientated

inclusions can be written as

† 

C = f0C0 + fr CrAr
dil{ }

r=1

N-1

Â
Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ f0 I + fr Ar

dil{ }
r=1

N-1

Â
Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ 

-1

, (39)
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which is the direct analog of (35) except that appropriate averaging is used here to

account for the inclusion orientation. Later in this chapter we will discuss how these

orientational averages can be determined.

Euler angles and tensor transformations

To determine the effective properties of a composite with randomly orientated

inclusions, it will be necessary to calculate various orientational averages as outlined

in the previous section. We will assume that the local axes of the fiber are denoted 

† 

x1
' ,

† 

x2
' , and 

† 

x3
'  (where 

† 

x3
'  is the inclusion axis), and the global (or fixed) composite

coordinates are X1, X2, and X3 (see Figure 23). Our goal is to develop the

transformation matrix aij which maps vector vj' in the local coordinate system to

coordinates vi in the global coordinate system via

† 

vi = aij vj
' . (40)

Note that in general it is necessary to specify three Euler angles to describe the

inclusion orientation; however, because the inclusion is assumed to be spheroidal it is

only necessary to specify f1 and F in Figure 23 to completely describe the orientation

of the fiber.
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Figure 23. Relationship between the local and global coordinate systems.

Following Roe's specification for Euler angles (Randle 1992), the local

coordinate system is obtained by a rotation of f1 about the X3 axis, followed by a

rotation of F about the resulting 

† 

x2
'  axis.  These rotations can be described using the

appropriate coordinate transformations that map local vectors to global vectors (i.e.

where 

† 

Xi = Rij xj
' )

† 

R(f1) =

cos(f1) - sin(f1) 0
sin(f1) cos(f1) 0

0 0 1

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
, 

† 

R(F) =

cos(F) 0 sin(F)
0 1 0

- sin(F) 0 cos(F)

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
. (41)
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Consecutive rotations of f1 and F thus result in the following transformation between

local and global coordinates:

† 

X1
X2
X3

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

= R(f1)R(F)
x1

'

x2
'

x3
'

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

=

mp -n mq
np m nq
-q 0 p

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

x1
'

x2
'

x3
'

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

= aij
3D xj

' (42)

where m=cos(f1), n=sin(f1), p=cos(F ), q=sin(F ) , and 

† 

aij
3D  represents the

transformation matrix describing transformations in full three-dimensional space. If

the inclusions are restricted to lie in the 1-2 plane, the appropriate 2D transformation

matrix 

† 

aij
2D  can be found by setting F=!/2 (see Figure 23), such that

† 

aij
2D =

0 -sin f1 cos f1
0 cosf1 sin f1
-1 0 0

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
. (43)

Higher order tensor transformations are accomplished through the usual tensor

transformation laws. Thus the transformation of a fourth-order stiffness tensor Bijkl

from local to global coordinates can be written as

† 

Bijkl f1,F( ) = aira jsaktaluBrstu
' , (44)
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where the angular dependence of the aij terms is implied and the standard convention

that double indices implies summation is used.6 To further illustrate (44), we write out

the B1111 terms below:

† 

B1111(f1,F) = a11
4 B1111

' + a12
4 B2222

' + a13
4 B3333

' + (2B1122
' + 4B1212

' )a11
2 a12

2

+(2B1133
' + 4 B1313

' )a11
2 a13

2 + (2B2233
' + 4 B2323

' )a12
2 a13

2
, (45)

where it is assumed that particular symmetry conditions (Brstu=Bturs and

Brstu=Brsut=Bsrut=Bsrtu) hold in the local coordinate system.  When these symmetry

conditions do not hold (such as for the dilute strain concentration tensor 

† 

Ar
dil  in the

previous section) the procedure is identical, although the collection of terms such as

that in (45) is more tedious.

Given (44), the orientational average of a fourth tensor in random 3D space is

† 
† 

Bijkl{ } =
1

2p
Bijkl f1,F( )

0

p

Ú
0

p

Ú sin(F) dF df1 (46)

where the transformation matrix for three dimensional space 

† 

aij
3D  is used in (44) and

the sin(F) term accounts for the surface area of a sphere. For a 3D random orientation

                                                  

6 We stress that the transformation in (44) is a tensor transformation, and as such is only applicable to
tensor quantities. Quantities which are not of tensorial form, specifically tensors expressed using
contracted notation, must first be converted to their appropriate tensorial components before such a
transformation is valid.
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of inclusions, the resulting tensor component transformations can be expressed using

contracted notation and written in matrix form as:

† 

B11{ }
B22{ }
B33{ }
B12{ }
B21{ }
B13{ }
B31{ }
B23{ }
B32{ }
B44{ }
B55{ }
B66{ }

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

=
1

120

9 45 24 5 5 6 6 10 10 40 24 20

9 45 24 5 5 6 6 10 10 40 24 20

64 0 24 0 0 16 16 0 0 0 64 0

3 15 8 15 15 2 2 30 30 -40 8 -20

3 15 8 15 15 2 2 30 30 -40 8 -20

8 0 8 0 40 12 32 20 0 0 -32 0

8 0 8 40 0 32 12 0 20 0 -32 0

8 0 8 0 40 12 32 20 0 0 -32 0

8 0 8 40 0 32 12 0 20 0 -32 0

16 0 16 0 0 -16 -16 0 0 40 56 80

16 0 16 0 0 -16 -16 0 0 40 56 80

3 15 8 -5 -5 2 2 -10 -10 40 8 20

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

B11

B22

B33

B12

B21

B13

B31

B23

B32

B44

B55

B66

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

(47)

In two-dimensional space, orientational averaging is defined as

† 
† 

Bijkl{ } =
1
p

Bijkl f1( )
0

p

Ú df1 (48)

where the two-dimensional transformation matrix 

† 

aij
2D  given in (43) is used in

evaluating the integrand. Following the same procedure as before, the resulting

components of the transformed tensor are:
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† 

B11{ } = B22{ } =
1
8

3B22 + 3B33 + B23 + B32 + 4B44[ ]

B33{ } = B11

B12{ } = B21{ } =
1
8

B22 + B33 + 3B23 + 3B32 - 4B44[ ]

B13{ } = B23{ } =
1
2

B21 + B31[ ]

B31{ } = B32{ } =
1
2

B12 + B13[ ]

B44{ } = B55{ } =
1
2

B55 + B66[ ]

B66{ } =
1
8

B22 + B33 - B23 - B32 + 4B44[ ]

(49)

A note on symmetry

Writing the constitutive stress-strain relationship 

† 

s ij = Cijkl ekl  in tensor form

suggests that it would require 81 constants to characterize the stress-strain response of

a material (i.e there are 81 independent Cijkl tensor components). However, the

condition that the stress and strain tensors are symmetric reduces the number of

independent constants to 36; this allows the use of contracted notation that is

commonplace in composites research (see the Appendix). The number of independent

constants is further reduced based on arguments related to the work per unit volume of

the system, from which one can prove that the stiffness (compliance) tensor must be

symmetric, such that Cijkl=Cklij. This condition further reduces the number of

independent constants to 21. The number of independent constants can be further
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reduced based on assumptions of the material behavior (i.e. it can be shown that

transversely isotropic materials have 5 independent constants, and that isotropic

materials have two independent constants).

One inconsistency with the implementation of the Mori-Tanaka method for

multiphase materials is that it may yield non-symmetric stiffness (and compliance)

tensors, thus violating the symmetry conditions required for a real material

(Benveniste, Dvorak et al. 1991; Li 1999; Schjodt-Thomsen and Pyrz 2001). This non-

symmetry is a result of the non-symmetric strain concentration tensors 

† 

Ar
dil  calculated

in (27). This difficulty has been attributed to the extension of the Mori-Tanaka

scheme, originally developed for two-phase materials, to multiphase composites (Li

1999).

To illustrate, we calculate the effective stiffness of a three-phase composite

composed of isotropic phase materials. Here we consider cylindrical inclusions with

an aspect ratio a=L/d=1000, randomly orientated in the 1-2 plane with volume

fractions f0=0.50 and f1=f2=0.25, phase moduli E0=1, E1=50, and E2=200, and Poisson

ratios ni=0.30, where the matrix phase is denoted as phase 0. Using the Mori-Tanaka

method, the effective stiffness of the system can be calculated as
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† 

L 2D =

36.764 12.214 1.350 0 0 0
12.214 36.764 1.350 0 0 0
1.342 1.342 3.222 0 0 0

0 0 0 1.039 0 0
0 0 0 0 1.039 0
0 0 0 0 0 12.275

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

, (50)

where the non-symmetry of stiffness tensor (L13=L23≠L31=L32) is evident (see also

Schjodt-Thomsen and Pyrz (2001) for additional examples). Such an example is only

given to illustrate the non-symmetry of the stiffness tensor; the extent of non-

symmetry is closely related to the properties and geometries of the phases in a

particular system. It is worth noting the following conditions, under which the Mori-

Tanaka method is guaranteed to yield a symmetric stiffness (Schjodt-Thomsen and

Pyrz 2001):

• Two-phase composites

• Multiphase composites with aligned inclusions

• Multiphase composites with randomly aligned spherical inclusions

In addition, in our numerical studies we have found that the Mori-Tanaka solution for

a multiphase composite with similarly shaped inclusions randomly orientated in three-

dimensional space has in every case yielded a symmetric (and isotropic) stiffness;

however, a proof of this condition is beyond the scope of this dissertation.
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One of the manners in which the symmetry of the effective stiffness can be

guaranteed is by normalizing the concentration tensors (see Schjodt-Thomsen and

Pyrz (2001) and references therein). However, because here we are primarily

interested in the effective moduli predictions (rather than the stiffness tensor), one can

show that the effect of this non-symmetry is minimal.  Specifically, later in this

chapter we show that the effective moduli are only dependent on the product of the C13

and C31 terms, independent of the symmetry (or lack thereof) of the stiffness tensor.

Thus symmetry of the stiffness tensor was enforced after the Mori-Tanaka calculation

by setting

† 

C13 = C23 = C31 = C32 = C13 C31 . (51)

Such manipulation will have no affect on the Mori-Tanaka predictions for E11, E33,

m12, or m13.

An alternate model for randomly orientated inclusions

An alternative method has been proposed in the literature to determine the

effective moduli of composites containing randomly orientated inclusions using the

Mori-Tanaka method (Huang 2001). This alternative model will be referred to as the

Huang model, to distinguish it from the Weng model described earlier. In the Huang

model, the effective stiffness for a multiphase composite is found by taking the
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orientational average of the effective modulus for the unidirectional composite case

(i.e. equation (35)), rather than the orientational averaging of the individual

components as outlined in (39) for the Weng model.

The Huang model is inviting because it allows explicit expressions for

composites with randomly oriented inclusions to be given in terms of the

unidirectional composite stiffness components. However, there is a critical difference

between these models. For the Weng model, the introduction of the orientational

averaging of field quantities is effectively introduced before the determination of the

unknown average matrix strain that is fundamental to the Mori-Tanaka approach. For

the Huang model, the unknown matrix strain is solely determined from the analysis of

the unidirectional composite model, and thus is not dependent on the type of

randomness that the inclusions might exhibit. Thus the Huang model does not

properly model a multiphase composite with randomly orientated inclusions, but

rather models a composite within which individual domains of aligned inclusions are

present. As shown in Figure 24, for the Huang model the inclusion orientations are

random in the sense that these smaller domains of aligned inclusions are of different

orientations within the global material.
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Figure 24. Models to account for randomness of inclusion orientation. (a) Huang

model. (b) Weng model.

For small volume fractions of inclusions, and when the properties of the

inclusions are not vastly different than those of the matrix, results from the two models

are somewhat similar. However, this difference becomes significant as the volume

fractions of inclusions increase, due to the difference between the two models in the

determination of the average matrix strain of the composite. (We note that in the case

of 2D random orientations the out-of-plane predictions from each model are in

excellent agreement.) To illustrate the difference in moduli predictions between the

two methods, the results for a three-phase composite consisting of isotropic phase

constituents, with equal volume fractions of inclusion phases (i.e. f1=f2), are presented

in Table 6. Here we see that the effective moduli found using the Huang model are

less than those found from the (correct) Weng Mori-Tanaka implementation, because

the Huang model overestimates the average matrix strain, leading to a model of
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material behavior that is too compliant. Because the Weng model correctly accounts

for inclusion orientation in its determination of the effective composite stiffness, all

subsequent work utilizing the Mori-Tanaka method will use the Weng model, i.e.

equation (39), for the determination of the effective composite properties.

Weng model Huang model

f0=0.9 f0=0.6 f0=0.9 f0=0.6

E 10.99 55.74 10.19 38.13

m 4.37 22.19 4.06 15.23
3D random
orientation

n 0.256 0.256 0.256 0.252

E11=E22 20.44 99.80 19.18 74.15

E33 1.53 2.61 1.53 2.60

m12 7.68 37.62 7.21 27.85

m13=m23 0.46 0.83 0.46 0.83

2D random
orientation

k 15.53 74.56 14.61 55.91

Table 6. Comparison of Huang and Weng models for effective moduli of

multiphase composites with randomly orientated inclusions. (f1=f2, E0=1, E1=100,

E2=1000, a1=a2=L/d=1000, and ni=0.30)

Simplification for a two-phase system

While the above formulations are concerned with the effective properties of

multiphase composite materials, analytical expressions have been derived for the

Mori-Tanaka solution for two-phase composites with 2D and 3D randomly orientated
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inclusions (Tandon and Weng 1986). The expressions are quite unwieldy and thus not

repeated here. It has been verified numerically that the Weng multiphase composite

model used in this work matches the results of the analytical expressions for two-

phase composites.

Determination of the effective engineering constants

Keeping in mind the preceding arguments that require a contracted stiffness

tensor for a real material to be symmetric, the stress-strain relationship for a

transversely isotropic material with a 1-2 plane of isotropy can be written as

† 

s1
s2
s3
s4
s5
s6

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

=

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C31 C31 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0

0 0 0 0 0 C11 -C12
2

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

e1
e2
e3
e4
e5
e6

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

, (52)

where the tensorial shear strains e are related to the engineering shear strains g via

† 

e4 = e23 = 2g23 , 

† 

e5 = e13 = 2g13 , and 

† 

e6 = e12 = 2g12 . For completeness, a more

detailed description of contracted notation is provided in the Appendix. The contracted

stiffness for a composite with inclusions aligned along the 3-axis, as well as

composites with inclusions randomly orientated in the 1-2 plane, will show such a
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form.  For the case of inclusions randomly orientated in three-dimensional space, the

stiffness will be fully isotropic such that the additional relations C11=C33,

C12=C13=C31=C32, and C44=

† 

1
2 (C11 – C12) in (52) will be satisfied.

The compliance tensor S (where 

† 

e =Ss ) is defined as the inverse of the

stiffness tensor, and can be written in terms of the stiffness components Cij as

† 

S =

C11C33 - C13C31

D1

C12C33 - C13C31

D1
-

C13

D 2
0 0 0

C12C33 - C13C31

D1

C11C33 - C13C31

D1
-

C13

D 2
0 0 0

-
C31

D 2
-

C31

D 2

C11+ C12

D 2
0 0 0

0 0 0
1

C44
0 0

0 0 0 0 1
C44

0

0 0 0 0 0 2
C11 - C12

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

, (53)

where

† 

D1 = C33 C11
2 - C12

2( ) -2C13C31 C11 -C12( )

D 2 = C33 C11 + C22( ) -2C13C31

. (54)

From (52)-(54), we see that the procedure of using the geometric mean of C13 and C31

given in (51) to enforce the symmetry of the Mori-Tanaka effective stiffness will only

affect the S13=S23=S31=S31 compliance components. While such changes will alter the
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exact value of some of the engineering constants, for our purposes the Young’s and

shear moduli with which we are most interested will not be affected by such a scheme.

We note that the compliance tensor will have the same level of symmetry as that of the

stiffness tensor.

Once the stiffness and compliance tensors are known, the components of these

tensors can be used to calculate the engineering constants of the material. For an

isotropic material two independent constants are required to describe the material

response, for example the Young’s modulus E and the shear modulus m. These can be

determined from the known stiffness (or compliance) terms via

† 

E = E11 = E22 = E33 =
1

S11
=

D1
C11C33 -C13C31

m = m44 = m55 =m66 =
1

S44
= C44

. (55)

For a transversely isotropic material five independent constants are required to fully

characterize the material response. For a transversely isotropic material with a 1-2

plane of isotropy, five such constants are the transverse modulus E11=E22, the

longitudinal modulus E33, the axial shear modulus m44=m55, the transverse shear

modulus m66, and the plane strain bulk modulus k, which can be determined from the

known stiffness or compliance terms such that
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† 

E11 = E 22 =
1

S11
=

D1
C11C33 - C13C31

E 33 =
1

S33
=

D 2
C11 + C12

m44 = m55 =
1

S44
= C44

m66 =
1

S66
=

2
C11 - C12

k =
C11 + C12

2

. (56)

Relationships to obtain alternative elastic constants are given in the Appendix.

Discretization of nanotubes based on waviness

To model the nanotube-reinforced polymer we partition the nanotube

inclusions into distinct phases, based on their embedded waviness, and treat the

problem as that of a multiphase composite. Each nanotube phase is then assigned a

distinct effective reinforcing modulus EERM based on the average waviness of the

phase and the results of the preceding finite element analysis. In practice, such a

solution could be developed by imaging a representative portion of the NRP and

developing an appropriate waviness distribution function characterizing the magnitude

and extent of the nanotube waviness, leading to an appropriate multiphase composite

model (see Figure 25 and Figure 26). This waviness distribution, along with the spatial
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orientation of the NTs, can be used within an appropriate micromechanical method to

provide a refined estimate of the effective moduli of a nanotube-reinforced polymer.

This procedure is demonstrated in the next section using the Mori-Tanaka method for

2D and 3D randomly orientated inclusions assuming a given distribution of nanotube

waviness.

Before we begin our analysis, it is insightful to estimate the range of values

that may be characteristic of the waviness and wavelength ratios associated with the

wavy geometry of embedded nanotubes. For illustrative purposes, Figure 25 shows an

image of an NRP with different wavy nanotubes marked by solid lines, with

approximate values for a/l and l/d given in the inset. Several nanotubes in Figure 25

are approximately straight (and not identified in the inset), while others show kinks

and bends which, while not of the sinusoidal shape assumed in the model, will

similarly limit the effective reinforcement of those nanotubes. We note that waviness

perpendicular to the plane of the TEM image is masked, and that NT straightening

during the preparation of the TEM sample may have occurred. Thus the waviness

parameters shown in Figure 25 are to be seen as illustrative only, and will be

influenced by the NRP system and the processing conditions of a particular sample.

While a more thorough procedure to determine the embedded nanotube waviness may

be warranted, for the purposes of this paper a hypothetical waviness distribution is

sufficient to show the effect of nanotube waviness on the effective modulus of an
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NRP. As our earlier analysis indicated, even for moderate nanotube waviness the

decrease in effective reinforcement can be appreciable.

A critical step in the analysis is the determination of the dilute strain-

concentration tensor 

† 

Ar
dil  relating the average strain of the rth inclusion to that of the

matrix. In the present analysis 

† 

Ar
dil  is found via (27), where the stiffness tensor(s) of

the inclusion phase(s) Cr are assumed to be isotropic with moduli EERM (based on the

finite element modeling described earlier) and the Poisson ratio of the straight

inclusion. The Eshelby tensors Sr are calculated assuming infinitely long cylindrical

inclusions. Thus to account for the waviness of a particular inclusion we first find

EERM, based on the embedded geometry and other applicable parameters, via a finite

element analysis. We then treat the wavy inclusion as a straight inclusion but with an

adjusted stiffness tensor to account for the wavy geometry. In related work discussed

in the next section, we show that 

† 

Ar
dil  can be computed directly from an appropriate

finite element analysis (Bradshaw, Fisher et al. 2002); in either case once 

† 

Ar
dil  has

been determined the implementation of the Mori-Tanaka solution remains unchanged.
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Figure 25. Illustrative example of nanotube waviness. (Image from (Qian, Dickey

et al. 2000)). (inset) Approximate values for the parameters w=a/l and l/d for the

highlighted nanotubes.

Figure 26. Model of an NRP using a multiphase composite analysis with a known

waviness distribution function.
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Our results suggest that modeling the NTs as straight inclusions (i.e. neglecting

the curvature of the embedded geometry) is a simplification that will severely

overestimate the reinforcement that the NTs provide the polymer. While the procedure

here is demonstrated using EERM calculations based on finite element results,

alternative means to evaluate EERM, such as molecular dynamics or related methods

(Odegard, Gates et al. 2001a), could also be used in a similar analysis. Adaptations of

the current model to include such effects as inter-layer (MWNTs) and inter-tube (NT

bundles) sliding, as well as imperfect bonding between the nanotubes and the polymer,

while not addressed here could also be developed.

Results

The objective of this work is to develop a method to incorporate the typically

observed waviness of embedded nanotubes into standard micromechanics techniques.

Because the nanotube has been modeled as a continuum, the method is also in general

applicable to other types of inclusions that may exhibit similar embedded geometries.

We note that EERM will be less than (or equal to) the true NT modulus due to its

waviness, and that a distribution of NT waviness within the material is likely. Thus

rather than treat the NRP as a two-phase (nanotube/polymer) composite, we have

developed a multiphase composite model where the NTs are partitioned into distinct
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phases, with each NT phase assigned a characteristic EERM based on their embedded

waviness.

With this in mind, the remainder of this section is divided into two parts. In the

first part we discuss the impact of nanotube waviness and other model parameters on

EERM. We will then use the results of the EERM analysis to compare the predictions of

our micromechanical analysis, accounting for the embedded nanotube geometry, with

results obtained assuming straight nanotube inclusions and with published

experimental data for NRP effective modulus.

Effective reinforcing modulus EERM

As discussed previously, we have shown that the model for EERM is a function

of three parameters: the waviness (w=a/l) and wavelength ratio (l/d) of the nanotube

and the ratio of the phase moduli (Eratio=ENT/Ematrix). Figure 27 shows EERM as a

function of waviness for several different values of Eratio and a wavelength ratio of

100. For all simulations a matrix modulus of 1 GPa was used. As expected, for zero

waviness we obtain the straight nanotube results EERM=ENT. We note that EERM is

strongly dependent on the waviness and quickly decreases with increasing nanotube

curvature. This drop in EERM is less pronounced for smaller Eratio values because the

mechanical constraint of the surrounding matrix material in this case is more

significant.
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Figure 27. EERM as a function of nanotube waviness ratio (a/l) for different ratios

of phase moduli with wavelength ratio l/d=100. Ematrix=1 GPa.

Figure 28 shows the dependence of EERM on the nanotube wavelength ratio for

different values of waviness and Eratio=200. We see that as the wavelength ratio

increases the value of EERM converges to a constant value that is a function of the

waviness. While we have shown that for longer wavelength ratios (l/d > 1000) curves

of EERM versus waviness for different values of Eratio can be superposed via vertical

shifting (as discussed later in this section), for real NRP materials the wavelength ratio

is likely to be much smaller. Unless otherwise specified, to simplify the remainder of

this section we will only consider wavelength ratios of 100.
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Figure 28. EERM as a function of nanotube wavelength ratio (l/d) for different

values of nanotube waviness. (ENT=200 GPa, Ematrix=1 GPa).

In Figure 29 EERM (normalized with respect to ENT) is presented as a function

of Eratio for different values of waviness with l/d=100. Note that when the phase

moduli are equal (Eratio=1), the finite element cell is homogeneous and

EERM=ENT=Ematrix; while not shown explicitly in Figure 29 all curves monotonically

approach this point. With this in mind we note the strong initial decrease in EERM/ENT

for small values of Eratio, revealing the critical role of the mechanical constraint of

surrounding matrix for this case. As Eratio increases the impact of the mechanical

constraint diminishes, resulting in minimal changes in EERM/ENT for larger values of

Eratio (note that in the limit as Eratio Æ• the response is that of a free-standing wavy
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rod). From Figure 29 the impact of nanotube waviness on EERM is again evident; for

w=0.056, the effective reinforcement provided by the wavy nanotube decreases by

almost 20% for Eratio=200, a modulus ratio representative of those anticipated for

NRPs. For larger values of waviness the decrease in EERM is even more apparent. Note

that in our simulations we are interested in the initial reinforcing modulus of the wavy

nanotube, and do not consider the effects of nanotube straightening due to the

application of an applied load.

For all previous simulations the Poisson ratios of the matrix and nanotube were

assumed to be equal (nNT=nmatrix=0.30) to simplify the analysis. For many practical

nanotube-polymer systems the difference in Poisson ratio is likely to be relatively

small, with nNT typically predicted in the range of 0.20-0.30 and nmatrix for a typical

structural polymer approximately 0.25-0.40.7 Simulations were conducted with

constant wavy NT parameters (Eratio=200, l/d=1000, and w=0.1) while varying the

Poisson ratio of each phase to study the impact of the Poisson ratio mismatch on EERM.

The results of this study are shown in Figure 30. We found that the value of the

Poisson ratio of the nanotube is immaterial, which is not surprising considering the

small volume fraction of nanotube (< 0.05%) modeled in the finite element cell. While

the effect of nmatrix is more significant, we note that the difference in EERM is only ~5%

                                                  

7 The use of nanotubes as reinforcement in elastomers could potentially utilize the high elastic strains of
the nanotubes (Barraza, Pompeo et al. 2002). For such polymer systems the Poisson ratios are closer to
0.5, and the Poisson ratio mismatch may be more significant.
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for nmatrix between 0.25 and 0.40. Thus the results presented in this paper for

nNT=nmatrix=0.30 are in general applicable to a wide range of typical NT-polymer

composite systems.

Figure 29. Normalized EERM (with respect to ENT) as a function of Eratio for

l/d=100. For Eratio=1, the material is homogeneous and EERM=1 as marked; all

curves monotonically approach this point (not shown for clarity).
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Figure 30. Effect of Poisson ratio on the EERM values calculated from the FEM

simulations. (l/d=1000, Eratio=200, w=0.1)

In summary, we have found that the effective reinforcing modulus EERM of an

embedded, wavy nanotube is strongly dependent on its geometry and the ratio of the

phase moduli. As expected, the stiffening effect of the wavy nanotube decreases as the

waviness of the nanotube increases, while stiffening increases as the wavelength ratio

l/d increases. We have also shown that EERM is a function of the ratio of the phase

moduli, as the constraint of the surrounding matrix on the straightening of the wavy

nanotube can be significant. Further, we have seen that for values of these parameters

which are likely to be representative of wavy nanotubes embedded within a polymer
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matrix, this reduction in effective modulus can be quite substantial, suggesting that the

waviness of the embedded nanotubes will result in less than optimal reinforcement.

Analytic expressions for EERM for large wavelength ratios

From our numerical simulations we have found that for sufficiently large

wavelength ratios (on the order of l/d > 500, dependent on the waviness ratio), the

effective reinforcing modulus EERM remains virtually constant for increasing

wavelength ratios. To illustrate, Figure 31 shows how the log of EERM varies with

respect to the waviness ratio for four difference ratios of phase moduli with l/d=1000.

Using a non-linear least squares solver we found that, for sufficiently large l/d, EERM

can be approximated as

† 

log EERM w,Eratio( ) = log Eratio + k1w + k2w
2 + k3w

3 . (57)

For Eratio=200, the curve fit parameters in (57) were found to be k1=-0.947, k2=-12.90,

and k3=22.27. This curve fit is represented by the solid line in Figure 31, which

demonstrates that the functional form of (57) well represents the data from our finite

element analysis.
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Figure 31. Plot of log EERM versus waviness for l/d=1000.

Unexpectedly, from Figure 31 it appears that the responses for different Eratio

seem to be related, such that the curves can be superposed (particularly for lower

waviness ratios) via an appropriate vertical shifting procedure. Such a shifting

procedure can be used to find the response for a particular value of Eratio given the

known response at a reference Eratio, via

† 

log EERM w,Erat( ) = log w,EERM ref( ) + log( E rat
E ERMref

) . (58)

This fit is demonstrated by the dashed lines in Figure 31, where the curve fit for

Eratio=200 has been used as the reference data. This vertical shifting procedure is seen
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to well describe the response for different ratios of the phase moduli, particularly for

smaller waviness ratios.

We stress that the vertical shifting procedure given in (58) is only appropriate

for very large values of l/d, such that EERM is approximately independent of the aspect

ratio. This is verified in Figure 32, which shows a plot similar to Figure 31 but for a

smaller aspect ratio (l/d=100). Here it is apparent that while the general shapes of the

EERM curves appear similar, the responses for different Eratio cannot be related via a

simple vertical shifting procedure.

While this shifting procedure is limited in that it is only applicable for larger

values of the wavelength ratio l/d, based on Figure 28 we note that for sufficiently

small waviness ratios, the requirement of large wavelength ratio is greatly reduced. As

discussed earlier, the efficiency of the nanotubes as structural reinforcement is greatly

reduced for small wavelength and large waviness ratios, suggesting that NRP

fabrication techniques that can control these parameters will optimize the effective

modulus of nanotube-reinforced polymers. If the waviness of the embedded NTs is

minimized, then the shifting procedure outlined in this section may be useful in

analyzing EERM, and would significantly reduce the number of finite element

simulations required. However, for consistency we will use EERM values calculated

directly from our finite element analysis throughout the remainder of this chapter.
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Figure 32. Plot of log EERM versus waviness for l/d=100.

Micromechanical effective modulus predictions using EERM

We are now in the position to use EERM within traditional micromechanics

techniques in order to predict the effective modulus of NRPs. Here we highlight the

procedure outlined in Figure 26 by comparing effective modulus predictions obtained

using the Mori-Tanaka method with experimental tensile modulus data for various

loadings of MWNTs in polystyrene (Dow 666) (Andrews, Jacques et al. 2002). The

nanotubes used in this study were grown via a chemical vapor deposition process

using Xylene-ferrocene (Andrews, Jacques et al. 1999) and dispersed within the

polystyrene matrix via shear mixing in a Haake Polylab bowl mixer. While the
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researchers report good dispersion of the NTs within the matrix, in situ TEM straining

studies have found evidence of inadequate bonding between the phases (Andrews

2001).

Figure 33. Experimental data for MWNTs in polystyrene (Andrews, Jacques et

al. 2002) and micromechanical predictions of NRP effective moduli assuming a

3D random orientation of straight and wavy nanotubes. ENT=450 GPa.

In Figure 33 and Figure 34 we present the experimental data for the effective

tensile modulus as a function of volume fraction of MWNTs, together with the Mori-

Tanaka predictions assuming a single phase of straight NT inclusions randomly

orientated inclusions in 3D and 2D space, respectively. Also shown are the predictions



109

obtained considering nanotube waviness by assuming each of the nanotube waviness

distributions given in Table 7. Lacking an appropriate image of the nanostructure,

these waviness distributions are loosely based on the NRP images shown in Figure 18

and represent two potential types of waviness (minimal waviness and more moderate

waviness) that may be anticipated for nanotubes embedded within a polymer matrix.8

For each waviness distribution EERM, for each nanotube phase was found from the

finite element model described previously with Eratio=200 and l/d=100. An Eratio of

200 was selected to approximate a value of ENT=450 GPa that has been given in the

literature for the modulus of NTs grown using a similar CVD method (Pan, Xie et al.

1999). These EERM values are given in Table 7. Given the waviness distribution and

appropriate values of EERM, the multiphase composite analysis described in the

previous section can be implemented.

                                                  

8 While it would be desirable to image a representative portion of the actual NRP sample to obtain the
waviness distribution, our results nonetheless clearly demonstrate how nanotube waviness can
significantly decrease the effective modulus of the NRP.
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Volume fraction
waviness (w=a/l) EERM (GPa)

NT distribution 1 NT distribution 2

0 450 0.4 0.05

0.05 383 0.4 0.15

0.1 260 0.2 0.3

0.25 57 0 0.3

0.5 10 0 0.2

Table 7. Effective reinforcing moduli and hypothetical NT waviness distributions

in the micromechanics analysis. (EERM values for Eratio=200 and l/d=100)

What is most striking about the results presented in Figure 33 and Figure 34

are the large discrepancies between the Mori-Tanaka predictions assuming straight

nanotubes and the experimentally measured moduli. While the experimental modulus

has been significantly enhanced with the addition of the NTs (the modulus increases

by a factor of two for 15 vol% NTs), the realized improvements in modulus are

significantly less than the micromechanics predictions with straight nanotubes would

indicate. Integrating moderate nanotube waviness (NT distribution 2) into the effective

moduli predictions is shown to drastically decrease the moduli predictions, suggesting

that NT waviness may be one factor limiting the modulus enhancement of NRPs.
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Figure 34. Experimental data for MWNTs in polystyrene (Andrews, Jacques et

al. 2002) and micromechanical predictions of NRP effective moduli assuming a

2D random orientation of straight and wavy nanotubes. ENT=450 GPa.

Similar results were found for other NRP experimental data presented in the

literature. Figure 35 shows the experimental modulus and micromechanics predictions

obtained for 5 wt% MWNTs embedded in epoxy (Schadler, Giannaris et al. 1998),

using the second waviness distribution and corresponding EERM values found in Table

7. Again the results show that the micromechanics predictions assuming straight NTs

overestimate the experimental data. However, moderate NT waviness can reduce the

predicted effective modulus of the NRP significantly, bringing the predictions more in

line with the experimental data. The results for unidirectionally aligned NTs, also
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shown in Figure 35, suggest that an order of magnitude increase in modulus may be

possible for such systems.

Figure 35. Experimental data for 5 wt% MWNTs in epoxy (Schadler, Giannaris

et al. 1998) and micromechanical predictions of NRP effective moduli assuming

straight and wavy nanotubes with different NT orientations.

At the moment it is impossible to distinguish the effects of nanotube waviness

from other mechanisms that would tend to decrease the effective properties of the

nanotube-reinforced polymer. Other conditions, such as a poor NT-polymer interface,

inadequate NT dispersion, and nanotube degradation due to processing of the NRP

would also result in experimental moduli less than those predicted using

micromechanics. However, based on images of nanotubes embedded in polymers and
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our modeling results presented here, we have demonstrated that nanotube waviness

may be an additional mechanism which can strongly influence the effectiveness of

nanotubes as structural reinforcement.

An Alternative Model to Incorporate Nanotube Waviness

into Effective Moduli Predictions

During the development of the EERM model, an alternative (albeit related)

solution was conceived to incorporate inclusion waviness into micromechanical

predictions of effective stiffness. In this alternative model, which we call the

Numerical Strain Concentration Tensor (NSCT) method, the complete dilute strain

concentration tensor 

† 

Ar
dil  is found via the solution of six separate finite element

models with appropriate boundary conditions, a procedure that is described in detail in

the literature (Bradshaw, Fisher et al. 2002). Once the dilute strain concentration

tensor 

† 

Ar
dil  has been determined, it can then be used directly in the Mori-Tanaka

solution (see equation (35)) to predict the NRP effective modulus.

The major difference between these two models is that the ERM model solves

a single finite element model, analogous to a numerical tensile test, and then treats the

wavy nanotube as an isotropic inclusion with a reduced modulus EERM. For the NSCT

model, the solution to the six independent finite element models (with identical
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geometry) yields an orthogonal effective response such that the isotropic

simplification used in the ERM model is unnecessary.  To demonstrate the difference

in the two models, the effective moduli predictions for a two-phase unidirectional

composite with a 10% volume fraction of NTs with Eratio=400 and l/d=100 are shown

in Figure 36-Figure 38.

Figure 36. Effective composite modulus E11 (in the x direction of Figure 21, out-

of-plane of NT waviness) with increasing waviness ratio (a/l) for the ERM and

NSCT models. (Bradshaw, Fisher et al. 2002)
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Figure 37. Effective composite modulus E22 (in the y direction of Figure 21, in the

plane of waviness and transverse to the NT axis) with increasing waviness ratio

(a/l) for the ERM and NSCT models. (Bradshaw, Fisher et al. 2002)

As one might expect, the largest difference between the two models is found in

the E22 term, which the NSCT model predicts will increase for large values of

waviness. This is sensible physically; as the waviness increases, the portion of the

wavy nanotube that is aligned towards the 2-direction increases, such that the NT

begins to provide significant reinforcement in this direction. This behavior cannot be

captured in the ERM model, where only the response of a single finite element cell

subject to loading parallel to the NT long axis is analyzed.
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Figure 38. Effective composite modulus E33 (in the z direction of Figure 21,

parallel to the NT axis) with increasing waviness ratio (a/l) for the ERM and

NSCT models. (Bradshaw, Fisher et al. 2002)

The ERM and NSCT predictions for a two-phase NRP with a 3D random

orientation of wavy nanotubes are shown in Figure 39. Here we assume isotropic

constituent phases, a 10% NT volume fraction (where all NTs have the same

waviness), and Eratio=400. We see that for shorter wavelength ratios (l/d=10), the

difference between the models is minimal until very large values of the waviness ratio

a/l are considered, at which point the NSCT model predicts a stiffer effective

response.  For larger wavelength ratios (l/d=100), the difference between the two

models is more significant, although it should be noted that this difference is
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exaggerated here given the large NT volume fraction modeled. We also note that

Figure 39 assumes that all of the nanotubes have identical values of a/l. As discussed

previously, there is likely to be a distribution of NT waviness within the material, such

that only a fraction of the nanotubes would be characterized by a/l and l/d parameters

for which the difference between the ERM and NSCT results is significant.

Figure 39. Young's modulus predictions for an NRP with 3D randomly oriented

wavy NTs using the ERM and the NSCT models for Eratio=400. (Bradshaw,

Fisher et al. 2002)
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For NRP samples with moderate waviness, the differences in moduli

predictions given by the two models may be minimal and likely masked by other

factors; in this case the ERM model may be preferable due to its simplicity. For cases

where significant nanotube waviness is expected or has been observed, the NSCT

model is preferred because it more accurately models the full impact of the wavy

nanotube on the effective moduli of the NRP.

Summary

Motivated by micrographs showing that nanotubes embedded within polymers

often exhibit significant curvature, we have developed a model that incorporates this

curvature into traditional micromechanical methods via a multiphase composite

approach. Finite element results of embedded wavy inclusions show that the effective

reinforcing moduli EERM of the inclusions quickly decreases as a function of inclusion

waviness, and is also dependent on the wavelength ratio and the ratio of the phase

moduli. Using material properties representative of nanotube-reinforced composites,

we have shown that nanotube waviness can reduce the predicted effective moduli of

these materials by a factor of two or more, and may be one reason why the modulus

enhancement of NRPs, while significant, is somewhat less than predicted using

standard micromechanical techniques. While for some applications (such as impact
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resistance and energy absorption) nanotube waviness may be beneficial, for structural

applications inclusion waviness can significantly degrade the modulus enhancement

provided by the nanotube inclusions.

While here we use EERM values based on finite element modeling, alternative

means to determine an appropriate value of EERM, incorporating more detailed atomic

scale information, could also be used in a similar analysis. Adaptations of the current

model to include inter-layer (MWNTs) and inter-tube (NT bundles) sliding, and a

transversely isotropic NT inclusion, will also be addressed in future work.

Our results suggest that methods of NRP fabrication that reduce the waviness

of embedded NTs would result in more efficient structural reinforcement. For

example, one can hypothesize that nanotube waviness may be one reason why NRP

modulus enhancement has sometimes only been reported at higher temperatures as

shown in Figure 40 (Shaffer and Windle 1999; Jin, Pramoda et al. 2001). If

compressive stresses developed during polymer cure introduce bending (and hence

curvature) into the embedded nanotubes, significant NT reinforcement may only be

realized as the NTs straighten due to polymer softening at elevated temperatures.
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Figure 40. Storage moduli of PVOH reinforced with MWNTs (Shaffer and

Windle 1999).

While it might seem intuitive that NT waviness would decrease the NRP

effective modulus, the utility of the models presented in this Chapter is that for the

first time we are able to quantify the impact of this waviness on the NRP effective

modulus. One drawback of the model is that presently it is impossible to differentiate

nanotube waviness from other reinforcement-limiting mechanisms in the system.

Another simplification is the assumption of the sinusoidal shape describing the

nanotube waviness. Based on images of free-standing and embedded nanotubes, it is

likely that the waviness of the nanotube will vary both along, and between, the

embedded nanotubes. Nanotube waviness is also likely to be strongly dependent on
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the processing conditions and NT-polymer interaction for a particular system under

investigation.

A potential means of experimentally validating the proposed model of

nanotube waviness is the use of silicon nanostructures of well-defined shape and

dimension, as shown in Figure 41 (Yin, Gates et al. 2000). These pieces are fabricated

using a technique that combines near-field optical lithography, followed by a reactive

ion etch and subsequent lift-off from the substrate. The result of the processing

technique is nanometer-sized structures of single crystal silicon. This method has been

proposed as a quick and efficient means of creating accurately dimensioned

nanostructures at a very reasonable price.

Figure 41. SEM images of silicon nanostructures. (Yin, Gates et al. 2000)
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While the primary interest in these silicon nanostructures comes from the area

of microelectronics, in regards to the current work these structures may provide model

wavy inclusions of well-defined geometry as a means to experimentally validate the

models proposed in this Chapter. Given that such nanowires can be easily fabricated, a

model polymer matrix composite with idealized nanostructured inclusions could be

produced. It would be useful to compare the experimental moduli obtained for such

materials with the theoretical models presented here. While experimental validation of

the proposed wavy nanotube model was beyond the scope of the work in this

dissertation, future experimental work along these lines is warranted.


