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ABSTRACT

Nanomechanics and the Viscoelastic Behavior of Carbon

Nanotube-Reinforced Polymers

Frank Thomas Fisher

Recent experimental results demonstrate that substantial improvements in the

mechanical behavior of polymers can be attained using small amounts of carbon

nanotubes as a reinforcing phase. While this suggests the potential use of carbon

nanotube-reinforced polymers (NRPs) for structural applications, the development of

predictive models describing NRP effective behavior will be critical in the

development and ultimate employment of such materials. To date many researchers

have simply studied the nanoscale behavior of NRPs using techniques developed for

traditional composite materials. While such studies can be useful, this dissertation

seeks to extend these traditional theories to more accurately model the nanoscale

interaction of the NRP constituent phases.

Motivated by micrographs showing that embedded nanotubes often exhibit

significant curvature within the polymer, in the first section of this dissertation a

hybrid finite element-micromechanical model is developed to incorporate nanotube
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waviness into micromechanical predictions of NRP effective modulus. While also

suitable for other types of wavy inclusions, results from this model indicate that

moderate nanotube waviness can dramatically decrease the effective modulus of these

materials.

The second portion of this dissertation investigates the impact of the nanotubes

on the overall NRP viscoelastic behavior. Because the nanotubes are on the size scale

of the individual polymer chains, nanotubes may alter the viscoelastic response of the

NRP in comparison to that of the pure polymer; this behavior is distinctly different

from that seen in traditional polymer matrix composites. Dynamic mechanical analysis

(DMA) results for each of three modes of viscoelastic behavior (glass transition

temperature, relaxation spectrum, and physical aging) are consistent with the

hypothesis of a reduced mobility, non-bulk polymer phase in the vicinity of the

embedded nanotubes.

These models represent initial efforts to incorporate nanoscale phenomena into

predictive models of NRP mechanical behavior. As these results may identify areas

where more detailed atomic-scale computational models (such as ab initio or

molecular dynamics) are warranted, they will be beneficial in the modeling and

development of these materials. These models will also aid the interpretation of NRP

experimental data.
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CHAPTER 1: INTRODUCTION

Since their discovery in the early 1990s (IIjima 1991), carbon nanotubes have

excited scientists and engineers with their wide range of unusual physical properties.

These outstanding physical properties are a direct result of the near-perfect

microstructure of the nanotubes (NTs), which at the atomic scale can be thought of as

a hexagonal sheet of carbon atoms rolled into a seamless, quasi-one-dimensional

cylindrical shape. Besides their extremely small size, it has been suggested that carbon

nanotubes are half as dense as aluminum, have tensile strengths twenty times that of

high strength steel alloys, have current carrying capacities 1000 times that of copper,

and transmit heat twice as well as pure diamond (Collins and Avouris 2000). To take

advantage of this unique combination of size and properties, a wide variety of

applications have been proposed for carbon nanotubes, including: chemical and

genetic probes, field emission tips, mechanical memory, supersensitive sensors,

hydrogen and ion storage, scanning probe microscope tips, and structural materials

(Collins and Avouris 2000). It has been suggested that nanotechnology, largely fueled

by the remarkable properties of carbon nanotubes, may ultimately transform

technology to a greater extent than the advances of the silicon revolution (Jamieson

2000).
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While the outstanding properties of carbon nanotubes have led to a wide range

of hypothesized applications, in this thesis we limit our analysis to the use of carbon

nanotubes as a filler phase for structural reinforcement in a host polymer, a material

we will refer to as a nanotube reinforced polymer (NRP). A great deal of interest in

NRPs for structural applications exists due to a number of potential benefits that are

predicted with such materials. A number of these benefits are highlighted below (and

discussed in more detail in Chapter 2):

• High stiffness of carbon nanotubes. Numerical simulations predict tensile

moduli on the order of 1 TPa, making nanotubes perhaps the ultimate high-

stiffness filler material. Recent experimental work typically confirms these

predictions.

• High elastic strains of the nanotube. Numerical simulations predict elastic

(recoverable) strains in the nanotube as large as 5%, suggesting an order of

magnitude increase in NRP tensile strength compared to traditional

composites.

• Extremely high strength- and stiffness-to-weight ratios. Given the exceptional

strength and stiffness of the NT filler material, it may be possible match



3

traditional composite properties with much smaller amounts of nanotubes.

Alternatively, it may be possible to fabricate high volume fractions NRPs,

resulting in strength and stiffness weight ratios unachievable with traditional

composite materials. Both scenarios suggest the possibility of substantial

weight savings for weight-critical applications.1

• Multifunctionality. In addition to their outstanding mechanical properties, NTs

have also been shown to have exceptional electrical and heat-related

properties, suggesting materials that may be designed to meet mechanical as

well as secondary material property specifications.

• Increase in the working/use temperature range. In some cases large increases

in the glass transition temperature of NRPs, in comparison with the blank

polymer material, have been reported. Such increases could extend the range of

temperatures over which the material will exhibit glassy behavior, increasing

the working temperature range of the polymer in structural applications.

                                                  

1 NASA predicts that SWNT composites will reduce spacecraft weight by 50% or more.
(http://mmptdpublic.jsc.nasa.gov/jscnano/)
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Despite these potential benefits, a number of critical issues must be overcome

before the full benefit of such materials can be realized. Such issues include:

• The high-cost and availability of the raw nanotube material. As of October

2002, two grams of high quality, low defect, purified SWNTs were available

from Carbon Nanotechnologies Incorporated (http://www.cnanotech.com/) for

$750/gram. At the same time another supplier, CarboLex

(http://carbolex.com/), offers as-prepared, unprocessed SWNTs for $100/gram,

and touts that their production output is up to 250 grams per week. These

prices are several orders of magnitude higher than the cost of high strength

carbon fibers used in composites applications. Methods to develop a

continuous, cost-efficient method of producing low-defect carbon nanotubes

are under development.

• Bonding between the nanotube and the polymer. Proper bonding between the

nanotubes and the polymer is critical for sufficient load transfer between the

phases. Several examples of excellent load transfer between nanotubes and a

polymer have been demonstrated, but more research in this area is needed.

Functionalization of the nanotubes is also being investigated by several groups
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as a way to increase the chemical reactivity of the nanotubes and thus improve

the bonding between the NTs and the polymer.

• Dispersion of the nanotubes within the polymer. Due to van der Waals

attractive forces nanotubes are notoriously difficult to disperse in a polymer.

Proper dispersion will be necessary for optimal, and more importantly uniform,

material properties.

• Orientation and geometry of the nanotubes within the polymer. To tailor the

properties of NRPs it is desirable to be able to control the orientation of the

nanotubes within the polymer. While methods have been developed to orient

free-standing and as-grown NTs, methods to orient nanotubes in bulk polymers

have yet to be developed. In addition, electron microscopy images of

nanotube-reinforced polymers also show that the NTs typically remain curved

(wavy) when embedded within a polymer. The impact of this waviness on the

effective modulus of the NRP is modeled in Chapter 3 of this work.

• Differences between nanotubes forms.  The properties of nanotubes are known

to be dependent on the method of production and the form of the nanotube

(single-walled nanotube, multi-walled nanotube, or nanotube bundle). The
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relationship between these variables and mechanical properties needs to be

further elucidated.

• Accurate models of NRP behavior. Accurate models of NRP behavior are

necessary to aid in the interpretation of experimental results and, in the long

term, to allow aggressive design strategies that fully leverage the benefits of

such materials. In particular, the viscoelastic behavior of nanotube-reinforced

polymers is often substantially different than that of the pure (blank) polymer;

this behavior is modeled in terms of a reduced mobility non-bulk interphase

region (in the vicinity of the nanotubes) in Chapter 4 of this dissertation.

Over the last several decades research in the area of composite materials, and

in particular polymer matrix composites, has become quite mature. However, in many

cases it will be necessary to extend these theories, which have been developed for

macroscale composites, to account for phenomena that are particular to the use of

nanoscale reinforcement. The work presented in this thesis represents two examples of

such model extensions:
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• The incorporation of nanotube waviness, which is typically observed in high

magnification electron microscopy images of nanotube-reinforced polymers,

into micromechanical predictions of the elastic stiffness of these materials.

• The impact of the nanotubes on the mobility of the polymer chains and the

resulting effective viscoelastic behavior of the NRP.

This dissertation has been organized in the following format. To firmly ground

the reader in the current state of the art, an in-depth discussion of the theoretical and

experimental properties of nanotubes and nanotube-reinforced polymers is provided in

Chapter 2. In Chapter 3 a hybrid finite element – micromechanical model developed to

incorporate the waviness of the embedded nanotubes into micromechanics prediction

of effective elastic moduli of NRPs is presented. In Chapter 4 the impact of the

nanotubes on the overall viscoelastic behavior of the NRP is discussed. While

Chapters 3 and 4 are both related to the effective mechanical properties of nanotube-

reinforced polymers, each chapter has been written as a self-contained unit and may be

read independent of the other. Chapter 5 summarizes this work and highlights future

directions of research that will facilitate the development of accurate models of

nanotube-reinforced polymer behavior.
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CHAPTER 2: BACKGROUND

The extremely small size and outstanding physical properties of carbon

nanotubes have interested researchers in a wide variety of fields, including chemistry,

physics, materials science, and engineering. This interest is from both the standpoint

of fundamental research into material behavior, as well as the use of carbon nanotubes

in a variety of applications (as discussed in Chapter 1), where the characteristics of the

nanotubes can be exploited to gain a design advantage. With the explosion of research

in the area of nanotechnology, the potential application of nanotubes (and other

nanostructures) is quite large, and several excellent books broadly discuss the early

work in this field (Drexler 1992; Dresselhaus, Dresselhaus et al. 1996; Harris 1999).

In this dissertation we will primarily focus on the use of carbon nanotubes as

the reinforcing phase in a bulk polymer material, with a focus on the effective

mechanical response of the material to low levels of stress. While this narrow focus

will neglect a wide variety of interesting topics, such as the electrical, thermal, and

fracture behavior of nanotube-reinforced polymers, we believe that the results

presented in this dissertation will provide a strong foundation for future

characterization and development of NRP systems.
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From the standpoint of modeling, nanotubes and their use in polymers are

challenging because of the range of length scales that must be modeled for such

materials. Modeling at atomistic scales using the principles of quantum mechanics and

molecular dynamics has been developed to model clusters of atoms, but are

computationally prohibitive and to date have been limited to looking at the behavior of

individual nanotubes. For larger length scales, the fields of micromechanics and

continuum mechanics are well established but not well-suited to model details at the

atomistic level that are likely to be important for nanostructured materials. The area of

nanomechanics is proposed as a means to bridge these length scales in order to

develop accurate models of nanotubes and related materials. The development of

nanomechanics into a well-grounded area of study will require contributions from

these other length scales as shown in Figure 1. Additional information provided by

experimental techniques, at both the micro- and nano-scale, will further the

development of these models.

The work described in this dissertation is an initial thrust in this direction;

these efforts can be characterized as extending traditional micromechanics and

viscoelastic models for the study of nanotube-reinforced polymers. This work is

motivated by theoretical predictions and preliminary experimental results that suggest

that small amounts of carbon nanotubes can significantly enhance the overall

mechanical behavior of the polymer (Schadler, Giannaris et al. 1998; Shaffer and
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Windle 1999; Gong, Liu et al. 2000; Qian, Dickey et al. 2000; Andrews, Jacques et al.

2002). Other types of nanoscale inclusions, including boron nitride (BN) nanotubes

(Bengu and Marks 2001; Demczyk, Cumings et al. 2001), graphite nanoplatelets,

nanoclays, and nanowires, while not directly addressed here, have also been proposed

as candidate filler materials. NRPs hold vast potential as structural materials due to the

extremely high strength- and modulus-to-weight ratios that are likely to be achieved

with such materials. Other potential advantages of NRPs include multifunctionality,

increased energy absorbance, higher toughness, and ease of manufacturing

(particularly if the NRPs can be processed using traditional polymer techniques).

Despite the challenges which these materials present in terms of modeling, processing,

and most notably the availability and cost of the raw nanotube material, the

preliminary results and inherent potential suggest that further study of NRPs is

warranted.

In the remainder of this chapter we will introduce the reader to pertinent topics

regarding both carbon nanotubes and their use as a reinforcing phase in polymeric

materials. This background information will serve as a foundation for later chapters,

where we will present models and experimental methodology that have been

developed to study the mechanical response of nanotube-reinforced polymers.
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Figure 1. Nanomechanics and other modeling length scales.

Structure of Carbon Nanotubes

Due to the inherent strength of the carbon-carbon bond and the potential of a

defect-free structure, it has been suggested that nanotubes may approach the

theoretical limits for many important mechanical properties, including axial stiffness

and tensile strength. Large increases in fracture strain and toughness, and superior

electrical/thermal properties, are other potential benefits of using NTs as the filler

material in a polymer-based composite.
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The outstanding properties that are predicted (and in some cases verified

experimentally) for carbon nanotubes are the result of their structure, which can be

pictured as being formed by rolling a graphene sheet into a cylinder. Because the

graphene hexagonal lattice can be rolled at different angles, the geometry of a

particular nanotube is best described in terms of the unit cell of the carbon nanotube,

as shown in Figure 2. The atomic arrangement of the carbon nanotube is described by

the chiral vector, which is defined by 

† 

Ch = n ˆ a 1 + mˆ a 2, where 

† 

ˆ a 1 and 

† 

ˆ a 2  are unit

vectors on the hexagonal lattice and n and m are integers. Using this description the

chiral angle (q in Figure 2) and diameter of the nanotube are given as

† 

q = tan-1 3n
2m + n

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ , (1)

† 

dt =
3
p

aC-C m2 + mn + n2 , (2)

where 

† 

aC-C is the distance between neighboring carbon atoms in a flat graphene sheet

(approximately 0.142 nm). As shown in Figure 3, nanotubes with different chiral

vectors (n,m) will have different atomic configurations.
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Figure 2. Unit cell and chiral vector for a (4,2) carbon nanotube.

Figure 3. Examples of nanotubes with different chirality.
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Certain nanotube properties have been found to be strongly dependent on the

chirality of the nanotube, including electrical resistivity and fracture behavior. For

example, a carbon nanotube will be metallic when the chiral vector satisfies the

relationship n – m = 3q, where q is an integer, while all other nanotubes will be

semiconductive. It has been estimated that 1/3 of all nanotubes are metallic. However,

other properties, and in particular the stiffness, have been found to be relatively

independent of the chirality. For our modeling work presented later in this dissertation

we assume that chirality affects are negligible.

Carbon nanotubes can be further classified into three broad categories: single-

walled nanotubes (SWNT), multi-walled nanotubes (MWNT), and nanotube bundles

or ropes. SWNTs consist of a single layer of carbon atoms wrapped into a cylindrical

shape, which may or may not be capped on each end by one half of a fullerene

molecule (see Figure 3). Typical diameters for SWNTs are on the order of 1 nm, while

lengths are often on the order of µm. This results in very large aspect ratios, which in

traditional composites theory are desirable from the perspective of load transfer. Both

the diameter and the length of the SWNTs are typically dependent on the particular

technique used to create the nanotubes.

MWNTs consist of several concentric layers (or shells) of individual carbon

nanotubes that are weakly coupled to each other through van der Waals forces. A high

resolution transmission electron microscope (TEM) image of a MWNT is shown in
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Figure 4 (Harris 1999). The spacing between these individual shells is on the order of

0.34 nm, which is slightly larger than the interlayer spacing in a graphene sheet. The

diameter and number of shells comprising a MWNT is again dependent on the

fabrication process, although diameters on the order of 30 nm may be considered as a

ballpark estimate (Pan, Xie et al. 1999; Qian, Dickey et al. 2000).

Typically, nanotubes are found to have self-organized into crystalline bundles

(Thess, Lee et al. 1996; López, Rubio et al. 2001), consisting of several to hundreds of

SWNTs or MWNTs arranged in a closest-packed two-dimensional lattice. Within

these bundles the nanotubes normally display a monodisperse range of diameters, with

adjacent tubes weakly coupled via van der Waals interactions. A high resolution TEM

image of a SWNT bundle is shown in Figure 5 (Journet, Maser et al. 1997), where the

bundle is seen to consist of approximately 20 SWNTs of almost uniform diameter

packed in a triangular lattice. The average tube diameter in the bundle is 1.4 nm, and

the average spacing between the tubes was reported as 1.7 nm.
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Figure 4. High resolution TEM image of a MWNT with an internal cap

highlighted by the arrow. (Harris 1999)

While not modeled in the continuum approaches presented later in this work,

explicit differences in the structural behavior of these various NT forms will need to

ultimately be included in future models of nanotube-related materials. From the

perspective of structural reinforcement, optimal behavior will be dependent on the

proper transfer of load from the matrix to the inclusion (and among the shells or tubes

in the case of MWNTs or NT bundles, respectively). While SWNTs are more

susceptible to bending due to their extremely small cross-sections, for MWNTs and

NT bundles interlayer sliding (so-called “sword and sheath” slippage (Yu, Yakobson

et al. 2000)) and weak intertube coupling, respectively, could hinder load transfer

between the phases. Such differences are not included in the models presented in this

dissertation and will be the subject of future work.



17

Figure 5. High resolution TEM image of a SWNT bundle. (Journet, Maser et al.

1997)

Methods of Nanotube Fabrication

The properties of carbon nanotubes are closely related to their method of

production. While an in-depth discussion of nanotube fabrication techniques is well

beyond the scope of this dissertation, a summary of production techniques is included

below for completeness. The reader is referred to the literature for a fuller description

of work in this area.

A summary of some standard nanotube fabrication techniques is given in Table

1. A newer processing technique, flame synthesis, is also currently being developed
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(Vander Wal and Ticich 2001). In early work the arc discharge and laser vaporizations

processes were the most common forms of nanotube production, typically resulting in

nanotubes with low structural defects and thus excellent physical properties. In these

techniques SWNTs are typically formed in the presence of a metal catalyst, which

seems to preclude the formation of MWNTs. One difficulty associated with these

techniques is the need to process the end-product, which are typically found to be

quite entangled (see Figure 6); in many cases amorphous carbon and other

contaminants on the surface of the nanotubes need to be removed via various purifying

techniques. An additional problem with these techniques is that production yields from

these methods are rather limited, and do not seem suited to satisfy the long-term goal

of ton-quantity production.

In the interest of developing a process that can be scaled for industrial

production, a great deal of work has been devoted to techniques that may be classified

as chemical vapor deposition (CVD) (Che, Lakshmi et al. 1998; Cassell, Raymakers et

al. 1999). While CVD processes have been used to create a wide variety of carbon

structures (Endo 1988), the major drawback of these methods is the reduced structural

integrity of the nanotubes. For example, experimental work has suggested that the

tensile moduli of CVD nanotubes may be more than an order of magnitude lower than

those measured for nanotubes created via other methods (and hence with fewer

structural defects) (Salvetat, Kulik et al. 1999). However, promising CVD techniques
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that seem to produce nanotubes with fewer defects (and hence better physical

properties) are currently under development (Cassell, Raymakers et al. 1999).

Method

Arc discharge

(carbon arc)

(Ebbesen and

Ajayan 1992)

Chemical vapor

deposition (CVD)

(Endo 1988)

Laser ablation

(vaporization)

(Thess, Lee et al.

1996)

High-pressure CO

conversion

(HiPCO)

(Bronikowski,

Willis et al. 2001)

Summary

Graphite

evaporated by a

plasma via high

currents

Decomposition of a

carbon-based gas

Graphite blasted

with intense laser

pulses

Metal catalysts

nucleate SWNTs at

high pressure and

temperature

Yield 30% 20 to ~100 % Up to 70% 95% purity, 10 g/day

Strength
SWNT and

MWNTs with few

structural defects

Easiest to scale to

industrial production

Produces SWNTs;

diameter control via

reaction temperature

Excellent structural

integrity for a CVD

process

Weakness
Tubes tend to be

short and highly

entangled

Typically MWNTs

with a high density

of defects

More expensive

than the other

methods

Production rates still

relatively low

Table 1. Common methods of carbon nanotube production.

One of the benefits of the CVD method is that the growth and alignment of the

nanotubes can be controlled by the patterning of the catalyst (typically metal)

particles, such that very regular nanotube arrays as shown in Figure 7 can be formed.

Here the nanotubes are seen to align perpendicular to the surface on which the catalyst

has been deposited; results suggest that the nanotubes can be patterned on any suitable
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substrate (independent of the geometry) given sufficient conditions (Bower, Zhou et

al. 2000). Using techniques such as these it may be possible to create nanotube-

reinforced polymers where the arrangement of the nanotubes is ordered and well-

controlled. Such control of the orientation, alignment, and dispersion of nanotubes

within a polymer matrix will be necessary to optimize the material performance of

these systems.

A great deal of recent research has focused on limiting the defects within the

nanotubes (which are particularly detrimental from a mechanical property

perspective), and increasing the production yields from nanotube processing

techniques. At the moment this work is quite challenging because detailed models of

nanotube growth are not well developed. However, as interest from scientific

community continues to expand it is expected that nanotube fabrication techniques

will continue to develop. While at the moment the rather limited availability and large

expense of nanotubes are hindrances to research in this area, future advances are likely

to relax these restrictions.
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Figure 6. SEM image of SWNT bundles formed via the arc discharge method.

(Journet, Maser et al. 1997)

Figure 7. SEM images of aligned MWNTs grown via microwave plasma

enhanced chemical vapor deposition. (Bower, Zhou et al. 2000)
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Mechanical Properties of Carbon Nanotubes

Because we are interested in the use of carbon nanotubes as a reinforcing phase

within a polymer material, we will primarily focus on the mechanical properties of

carbon nanotubes, a topic of intense research over the last few years. In this section we

will review the initial theoretical and computation work in this area. We will also

present recent experimental evidence that, despite the obvious complications

associated with manipulating objects of such small size, has nonetheless tended to

validate these predictions.

Modulus

Much of the initial work studying the mechanical properties of nanotubes has

consisted of computational methods such as molecular dynamics and ab initio models.

These models are primarily used to study SWNTs because of the increase in

computational resources necessary to model systems comprised of a larger number of

atoms. Typically these computational studies have found nominal values for the axial

Young's modulus on the order of 1000 GPa (assuming a shell thickness of 0.34 nm),

with values for the Poisson ratio approximately 0.20 to 0.30 (Gao, Çagin et al. 1998;

Hernández, Goze et al. 1998; Che, Çagin et al. 1999; Sánchez-Portal, Artacho et al.

1999). Using an empirical force-constant method, elastic moduli of approximately 1
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TPa were calculated for SWNTs and MWNTs, while values for SWNT bundles were

between 0.4 and 0.8 TPa and found to be very dependent on the diameter of the

individual tubes (Lu 1997). Ab initio calculations have found that the mechanical

properties of nanotubes are similar to those of graphite down to small nanotube radii

(on the order of 3 nm), at which point the properties increase due to the enhanced

curvature of the tubes (Sánchez-Portal, Artacho et al. 1999)1. Most of these models

assume defect-free nanotubes; nanotubes with a significant number of defects (such as

those produced via CVD methods) are expected to have much lower moduli values

(Salvetat, Kulik et al. 1999; Xie, Li et al. 2000).

More recently, a great deal of progress has been realized in the manipulating

and testing of individual nanotubes and nanotube bundles (Treacy, Ebbesen et al.

1996; Falvo, Clary et al. 1997; Krishnan, Dujardin et al. 1998; Salvetat, Bonard et al.

1999; Salvetat, Briggs et al. 1999; Li, Cheng et al. 2000; Yu, Files et al. 2000; Yu,

Kowalewski et al. 2000; Yu, Lourie et al. 2000). In general, the experimental results

have validated the computational predictions. A summary of these experimental

results is given in Table 2 (the reader is referred to the original sources for a more

complete description of these methods). While a method of producing large quantities

                                                  

1 It should be noted that other researchers have suggested that, in order to properly model the bending
behavior of the nanotubes, more appropriate values for the Young's modulus and the shell thickness
would be on the order of 5 TPa and 0.067 nm, respectively (Yakobson, Campbell et al. 1997; Xin,
Jianjun et al. 2000).
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of nanotubes with uniform geometric and physical properties has yet to be developed,

the high modulus of carbon nanotubes makes them an attractive candidate filler for

composite materials.

Strength

Because strength is closely related to the presence of defects within a material,

it has been hypothesized that nanotubes (particularly low defect NTs formed via

carbon arc and laser vaporization methods) may approach theoretical limits in terms of

strength. In a recent molecular mechanics simulation, NT fracture strains between 10

and 15% were reported, with corresponding tensile stresses on the order of 65 to 93

GPa (compare to the values for other common filler materials listed in Table 3)

(Belytschko, Xiao et al. 2002).
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Type of NT Method Modulus Values Comments

Laser ablated SWNTs

(Krishnan, Dujardin et al.

1998)

Amplitude of thermal

vibration within a TEM

1.3 -0.4/+0.6 TPa Weighted average value

of 1.25 TPa

Laser ablated SWNT bundles

(Yu, Files et al. 2000)

Nanostressing stage

within a SEM

320 to 1470 GPa, mean

of 1002 GPa

Load carried by SWNTs

on rope perimeter

Carbon arc SWNT bundles

(bundle diameters 3-20 nm)

(Salvetat, Briggs et al. 1999)

Beam-bending via AFM ~ 1 TPa for 3 nm

diameter, decreasing to

< 0.1 GPa for larger

diameter

Estimated shear moduli

of SWNT bundle on the

order of 1 GPa

Carbon arc MWNTs

(Poncharal, Wang et al.

1999)

Electromechanical

deflection and

resonance within a

TEM

~ 1 TPa for small

diameter (<10 nm) to

0.1 TPa for large

diameter (>30 nm)

Modulus a strong

function of diameter

Carbon arc MWNTs (Yu,

Lourie et al. 2000)

Nanostressing stage

within a SEM

Modulus of outer shell

from ~270 to ~950 GPa

Failure via "sword-in-

sheath" mechanism

CVD and carbon arc

MWNTs (Salvetat, Kulik et

al. 1999)

Beam-bending via AFM CVD: ~ 10-50 GPa

Arc: 810 –160/+410

GPa

Order of magnitude

increase after annealing

CVD NTs at 2500°C

CVD MWNTs (Pan, Xie et

al. 1999; Xie, Li et al. 2000)

Miniature stress-strain

tests on 2 mm NT ropes

Youngs’s modulus ~

0.45 TPa

Tensile strength ~ 1.5-

3.6 GPa

Lower values attributed

to defects in CVD tubes

Table 2. Experimental values for the Young's modulus of carbon nanotubes.
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Novel experimental work looking at the fracture behavior of nanotubes has

recently been carried out using a nanostressing stage located within an SEM (see

Figure 8). For SWNT bundles the maximum tensile strain was estimated to be 5.3%,

with the tensile strength of the individual SWNTs estimated to be 13 to 52 GPa (Yu,

Files et al. 2000). Related tests on MWNTs found that failure occurred via a “sword-

in-sheath” mechanism at tensile strains up to 12%, with the tensile strength of the

outer shell of the MWNT estimated to be between 11 and 63 GPa (Yu, Lourie et al.

2000). The tensile strength of NTs has been estimated to be 3.6 GPa for CVD-grown

MWNTs using a miniature stress-strain puller to test long (2mm) NT ropes, with the

order of magnitude decrease in strength attributed to an increase in defects (Pan, Xie et

al. 1999; Xie, Li et al. 2000).

Figure 8. SEM image of a MWNT loaded in tension between two AFM tips in a

nanostressing stage. (Yu, Lourie et al. 2000)
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To place the nanotube moduli and strength predictions into proper perspective,

representative values for common types of filler materials for structural reinforcement

are given in Table 3. While the predicted properties of carbon nanotubes compare

quite favorably to those materials listed in this table, a greater understanding of the

nanotubes themselves, and issues related to their use within a polymer matrix, must be

developed in order to fully utilize the properties of the nanotubes in structural

composites. These issues will be discussed in the next section.

Fiber
Diameter

(µm)
Density
(g/cm3)

Tensile
strength (GPa) Modulus (GPa)

Carbon 7 1.66 2.4-3.1 120-170

S-glass 7 2.50 3.4-4.6 90

Aramid 12 1.44 2.8 70-170

Boron 100-140 2.50 3.5 400

Quartz 9 2.2 3.4 70

SiC fibers 10-20 2.3 2.8 190

SiC whiskers 0.002 2.3 6.9 -

Carbon NTs 0.001-0.1 ~1.33 Up to ~50 Up to ~1000

Table 3. Filler materials for structural reinforcement. (Matienzo, Wang et al.

1994)
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Carbon Nanotube-Reinforced Polymers

Given the moduli and strength values that have been predicted (and measured)

for carbon nanotubes, they are potentially an ideal filler material for high performance

(polymer) composite materials with outstanding modulus-to-weight and strength-to-

weight ratios. However, to fully and efficiently utilize the exceptional properties of

carbon nanotubes in NRPs for structural reinforcement, several issues related to the

fabrication of the NRPs will need to be addressed. These issues are discussed in detail

below. We will then present a review of some initial experimental results on NRPs

that show promising mechanical property enhancements with the addition of relatively

small amounts of carbon NTs. A summary of selected published work regarding

carbon nanotube-reinforced polymers is given in the Appendix.

Issues related to the fabrication of NRPs

Although the fabrication of nanotube-reinforced polymers must be optimized

in order to achieve ultimate effective properties, at the moment there are several

critical issues that are not well understood in this area. While individual research

groups have made significant processing advances for particular nanotube-polymer

systems, universal guidelines regarding the fabrication of NRPs do not exist. This is in

part due to the complexity of the polymer chemistry, the lack of detailed models
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describing the processing conditions, and the large list of parameters (specific to the

polymer and type of nanotube under consideration) that can influence the polymer-

nanotube interaction and impact the effective NRP properties. Three of these issues

are discussed in detail below.

Nanotube dispersion with the polymer

One issue of practical importance for NRPs is the separation and dispersion of

the nanotubes within the matrix, which is critical as the nanotubes tend to assemble

into ropes or bundles due to van der Waals interactions between the individual tubes.

While some researchers have been able to separate individual nanotubes from the

bundles via ultrasound and polar solvents, maintaining separated nanotubes during the

processing of NRPs is still the subject of ongoing work. Some results suggest that the

use of a surfactant as a coupling agent may overcome van der Waals attractive force

and allow good dispersion of the nanotubes within the polymer (Gong, Liu et al.

2000). However, it is unclear whether such processing agents can be employed to

promote nanotube dispersion without compromising the nanotube-polymer interface.

Nanotube orientation

Optimal material properties will only be achieved if the orientation of the

nanotubes within the polymer can be controlled, and several techniques have been
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proposed to address this issue. One group found that cutting thin slices (on the order of

100 nm) of a nanotube-reinforced epoxy film introduced preferential orientation via

shear flow (Ajayan, Stephan et al. 1994). This flow orientation method has also been

used to orient small amounts of NTs (0.1% wt) in a urethane acrylate polymer to

thicknesses up to 150 µm (Zhao and Weng 1996; Wood, Zhao et al. 2001). An

alternative method that may be more suitable for larger samples is tensile loading of

the NRP at temperatures above the glass transition temperature of the polymer (Jin,

Bower et al. 1998; Bower, Rosen et al. 1999). A combination of solvent casting and

melt mixing was also found to produce a high degree of nanotube alignment

(Haggenmueller, Gommans et al. 2000). While individual SWNTs and SWNT ropes

have been aligned in the presence of electric (Chen, Saito et al. 2001) and magnetic

(Smith, Benes et al. 2000) fields, to our knowledge this method has yet to be extended

to nanotube-reinforced polymers.
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Figure 9. Alignment of nanotubes in PHAE via microtoming . The sample

thickness is 90 nm. (Jin, Bower et al. 1998)

Load transfer across the nanotube-polymer interface

Another topic of critical importance is the NT-polymer interface and load

transfer between the polymer and the nanotubes (Schadler, Giannaris et al. 1998;

Bower, Rosen et al. 1999; Jia, Wang et al. 1999; Shaffer and Windle 1999; Ajayan,

Schadler et al. 2000; Lordi and Yao 2000; Qian, Dickey et al. 2000; Lozano and

Barrera 2001). Poor load transfer for MWNTs and SWNT ropes embedded in a

polymer has been attributed to the relative slipping of individual tubes within the

MWNT (Schadler, Giannaris et al. 1998) and the rope (Ajayan, Schadler et al. 2000),

respectively. However, other researchers have found evidence of promising nanotube-
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polymer interactions in composite materials. For example, a strong interface between

MWNTs and polystyrene (PS) (Qian, Dickey et al. 2000) and polyhydroxyaminoether

(PHAE) (Jin, Bower et al. 1998) has been reported. Analysis of SWNT bundles-

PMMA thin films found that PMMA was able to intercalate within the bundles, which

would likely enhance the interface between the nanotube and polymer phases

(Stéphan, Nguyen et al. 2000). Significant wetting and interfacial adhesion for SWNT

bundles embedded in an epoxy resin has also been reported (Lourie and Wagner

1998b). Functionalization of the NTs to increase their chemical reactivity has also

been proposed as means to further promote nanotube-polymer interaction (Srivastava,

Brenner et al. 1999).

A recent molecular dynamics study suggests that polymer morphology, and

specifically the helical wrapping of the polymer around the nanotubes, is a key factor

influencing the strength of the interface (Lordi and Yao 2000). Using molecular

mechanics to study the interfacial characteristics of a polystyrene-nanotube composite,

the interfacial shear stress was estimated to be 160 MPa (Liao and Li 2001). This is

comparable to the value of 500 MPa obtained from fragmentation experiments on a

polyurethane-NT system, which is an order of magnitude larger than typically

measured in conventional fiber-based composites (Wagner, Lourie et al. 1998).

Finally, due to their demonstrated adhesion within a urethane matrix, researchers are

currently interested in using NTs as nanoscale strain sensing devices. Here low
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fractions of nanotubes (0.1% wt) make the host polymer Raman-active, allowing

changes in the Raman spectrum to be related to strain within the material (Wood, Zhao

et al. 2001; Zhao, Wood et al. 2001). While promising, a much better understanding of

the factors that influence the nanotube-polymer interface is required.

Figure 10. TEM image showing evidence of PPV wetting the nanotubes. (Curran,

Ajayan et al. 1998)



34

Figure 11. TEM images of MWNTs in PHAE. (a) Fracture surface. (b,c)

Evidence of good adherence between the polymer and the MWNT. (d) Plastically

deformed MWNT at fracture surface. (Bower, Rosen et al. 1999)

The three issues identified above will influence our ability to design and model

materials that fully exploit the potential of nanoscale reinforcement. One issue which

has not typically been associated with the modeling of NRPs, but which seems critical

based on micrograph images of these materials, is the characteristic waviness or

curvature of embedded nanotubes. To address how this embedded waviness influences

the effective properties of these materials, we have developed a hybrid finite element-

micromechanics model that integrates NT waviness into micromechanical predictions
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of the NRP effective modulus. Presented in Chapter 3, this model suggests that

moderate waviness, while potentially beneficial for other applications (i.e. strength),

can drastically reduce the effective stiffness of the NRP when compared to straight

nanotube inclusions.

Mechanical Properties of Carbon Nanotube-Reinforced Polymers

Recently a great deal of experimental work has been presented in the literature

looking at the effective properties of polymers reinforced with carbon nanotubes. It is

difficult to generalize across these studies because of the large number of parameters

that can influence the effective properties, including the method of NT fabrication,

size and form of the NT, NRP processing conditions, NT-polymer interaction, and the

specifics of the polymer chemistry. However, one constant throughout much of the

experimental work is that significant improvements in the properties of the NRP, with

respect to that of the un-reinforced polymer, are obtained. In the following sections we

highlight some of the relevant work in the literature. A more extensive listing of

related work is summarized in the Appendix.

Elastic behavior

Initial experimental work looking at the effective elastic properties of carbon

nanotube-reinforced polymers has suggested that significant property enhancement



36

can be achieved with the addition of relatively small amounts of carbon nanotubes. In

perhaps the first published work in this area, 5 wt% MWNTs were mixed in an epoxy

and formed into macroscale (millimeter) samples; the tensile and compression moduli

measured in these experiments are given in Table 4 (Schadler, Giannaris et al. 1998).2

Simultaneous Raman spectroscopy measurements were used to qualitatively measure

the strain in the nanotubes as the samples were loaded, and it was reported that the

Raman peak position only shifted significantly in compression. It has been suggested

that this is evidence that only the outer layer of the MWNT was loaded in tension,

whereas all layers of the MWNT are loaded in compression. While poor load transfer

between adjacent shells in a MWNT is likely, as they only interact via van der Waals

interactions, it is worth noting the both the average tensile and compression moduli in

this study increased by approximately 20% in comparison to the response of the pure

polymer.

Work with PMMA-based NRPs found that pre-processing CVD-grown

MWNTs using a ball mill (treated NTs) resulted in an increase in tensile strength as

shown in Table 5 (Jia, Wang et al. 1999). The strength enhancement seen with the NT

treatment was attributed to the ball milling operation separating the individual

nanotubes (in comparison to the entangled untreated NTs). They also reported that

                                                  

2 The authors of this study also noted that SEM images show the embedded NTs remain “curved and
interwoven” in the NRP, an observation that led to the model described in Chapter 3 incorporating
nanotubes waviness into effective moduli predictions for an NRP.
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increasing the PMMA polymerization time, prior to adding the NTs, allowed the

PMMA molecules to grow larger and wrap the NT. Finally, the authors suggest that

the initiator used in the polymerization process (AIBN) may interact with the

nanotubes, opening !-bonds that are then free to form bonds with the polymer. SEM

images of the fracture surfaces show that the nanotubes are wrapped with PMMA

layers, which they suggest is an indication of a strong interface between the phases.

Material Tensile Modulus (GPa) Compression modulus (GPa)

Pure epoxy 3.1 ± 0.2 3.63 ± 0.25

NRP 3.71 ± 0.5 4.5 ± 1.5

Table 4. Tensile and compressive moduli for 5% MWNTs in epoxy (Schadler,

Giannaris et al. 1998).
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NT wt%
Tensile strength (MPa)

Untreated NTs

Tensile strength (MPa)

Treated NTs

0 54.90 54.90

1 ~21 58.70

3 ~20 66.80

5 NA 71.66

7 NA 71.65

10 NA 47.15

Table 5. Tensile strength for PMMA-based NRP with treated and untreated

MWNTs. (Jia, Wang et al. 1999)

Researchers at the University of Kentucky have published experimental work

measuring the tensile moduli and strength of 1 wt% MWNTs in polystyrene. A

homogeneous distribution (on the µm scale) of MWNTs was achieved by an

ultrasound-assisted solution-evaporation method. They found a 25% increase in the

tensile strength and an approximately 40% increase in the tensile modulus, with both

values being relatively independent of nanotube length. TEM images suggest that

cracks propagate in regions of relatively low NT density, and that the MWNTs tend to

align and bridge the crack prior to failure (see Figure 12). Eventual failure of the NRP

was due to either NT fracture or pull-out from the matrix. Because NTs aligned

parallel to the direction of crack propagation tended to break between the crack faces
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(rather than pull-out from the matrix), the authors concluded that a relatively strong

interface exists between the two phases.

More recent work from the same Kentucky group has looked at the effective

NRP modulus for variable loadings of MWNTs in polystyrene (Andrews, Jacques et

al. 2002). The CVD grown MWNTs have an average diameter of about 25 nm and are

approximately 40 µm long prior to NRP processing. As a means to develop a

processing method that would be compatible with industry capabilities, the samples

were prepared by shear mixing in a Haake Polylab bowl mixer using roller rotors.

Such a procedure has been reported to yield excellent dispersion (Andrews 2001). One

drawback of this fabrication method is that it may shorten the length of the nanotubes.

Those researchers, however, believe that mild enough conditions were used such that

this shortening was negligible.

The tensile moduli values obtained in this study are shown in Figure 13 and

compared with the standard Rule of Mixtures upper and lower bounds and a

micromechanics (Mori-Tanaka) model assuming a 3D random orientation of

nanotubes with a nanotube modulus of 450 GPa (Fisher, Bradshaw et al. 2002b).3

Within the NRP the nanotubes are likely to randomly orientated in three-dimensional

space, which reduces the optimal effective modulus by approximately a factor of four

                                                  

3 The nanotube modulus of 450 GPa used here is an estimate based on experimental measurements
made on similarly grown CVD MWNTs (Pan, Xie et al. 1999; Andrews 2001).
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(when compared to the case of aligned nanotubes, which is closely modeled by the

Rule of Mixtures upper bound). The experimental modulus enhancements shown here

are not as substantial as reported in other works, which is attributed to insufficient

bonding between the nanotubes and the matrix as verified in TEM images showing

significant nanotube pullout from the polymer (Andrews 2001). Improvements in the

interfacial characteristics of this particular system may result in even larger

improvements in effective properties.

Figure 12. TEM observation of crack propagation and nanotube crack bridging

in an epoxy-MWNT sample. (Qian, Dickey et al. 2000)
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Figure 13. Comparison of experimental data for MWNTs in polystyrene

(Andrews, Jacques et al. 2002) with Rule of Mixtures and Mori-Tanaka

predictions.

Viscoelastic behavior

In addition to the work discussed above, a limited amount of experimental

research has looked at the effective viscoelastic (time- and temperature-dependent)

behavior of nanotube-reinforced polymers. Because the nanotubes are on the same

size scale as the polymer chains, they are expected to alter the mobility of the polymer

chains and thus change the viscoelastic response of the NRP with respect to the un-
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reinforced polymer. Probing the mechanical response of the NRP as a function of

temperature typically shows four characteristic changes in the material response as

shown Figure 14 and Figure 15:

1. Increases in the low temperature (below the polymer glass transition

temperature Tg) storage modulus, similar to the elastic behavior discussed

previously,

2. Significant increases in the high temperature (above Tg) response of the

material,

3. Shifting of the effective glass transition temperature of the material, usually

to temperatures greater than the Tg of the polymer,

4. Broadening of the loss moduli and loss tangent peaks, suggesting the

presence of polymer regions exhibiting non-bulk polymer properties.

Examples of the temperature-dependent response of nanotube-reinforced

polymers are shown in Figure 14 and Figure 15 for MWNTs in epoxy (with and

without surfactant) and PVOH, respectively. In Figure 14, comparing the response of

the pure epoxy (curve 1) to that of the epoxy-1% MWNTs-surfactant sample (curve 4)

shows a 25 °C shift in the glass transition temperature (from 63 to 88 °C), as measured

by the peak of the loss tangent curve. A smaller shift in Tg was also seen when the

NRP was processed without surfactant (see curve 3). Storage moduli results for these
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samples show increases of over 30% for the NRP processed with surfactant. The

greater property improvements observed with the use of surfactant were attributed to

better nanotube dispersion within these samples.

Figure 14. Storage modulus and loss tangent results via dynamic mechanical

analysis for different epoxy samples. Curves are labeled as: (1) pure epoxy, (2)

epoxy plus C12EO8 surfactant, (3) epoxy plus 1% wt MWNTs, and (4) epoxy plus

surfactant plus 1% wt MWNTs. (Gong, Liu et al. 2000).
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Similar changes in viscoelastic behavior have been seen with MWNTs

incorporated into poly(vinyl alcohol) (PVOH) as shown in Figure 15. Composite films

were made by a solution casting process, followed by controlled evaporation to

produce thin films with thicknesses on the order of 50 µm.4 While the peak of the loss

tangent curve does not appear to shift with the addition of the nanotubes (for all

samples the Tg was found to be between 75 and 80 °C), the high-temperature portion

of the peak broadens as the fraction of nanotubes increases. This was attributed to a

reduction of polymer chain mobility in the reinforced samples. Polymers reinforced

with vapor-grown carbon nanofibers (diameters of 20-200 nm) (Lozano and Barrera

2001), nano-sized cellulose whiskers (Brechet, Cavaille et al. 2001), and various

nanoclays (Liu and Wu 2002; Wu, Liu et al. 2002; Xiao, Sun et al. 2002) have also

been found to have a viscoelastic response significantly different than that of the bulk

polymer.

Based on these findings, we have conducted dynamic mechanical testing of

MWNTs embedded in polycarbonate to study different viscoelastic characteristics

(glass transition temperature, relaxation spectra, and physical aging) of the material.

Our results for each mode of viscoelastic response are consistent with the hypothesis

                                                  

4 Based on other work in the literature it seems surprising that NRP samples with up to 60 wt%
MWNTs have been successfully fabricated. While the property enhancements with larger amounts of
nanotubes are still significant, it is likely that the dispersion of the nanotubes within these samples was
quite poor.
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that within the NRP there are regions of polymer in the vicinity of the nanotubes with

reduced mobility; we model this as an interphase region with viscoelastic properties

different from that of the bulk polymer. This work is discussed in much greater detail

in Chapter 4 of this dissertation.

Figure 15. Dynamical mechanical analysis of PVOH with different loadings of

CVD grown nanotubes. (Shaffer and Windle 1999)
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Other properties

While the work in this dissertation focuses on the mechanical behavior of

NRPs, other researchers are looking to leverage the extraordinary electrical and

thermal conductivities of the nanotubes to create multifunctional materials with

improved electrical and thermal properties. For example, the addition of low volume

fractions of NTs is being pursued as a means to increase the conductivity of insulating

polymers from ~10-9 S/m to 10-6 S/m, the level required to provide electrostatic

discharge and electromagnetic-radio frequency interference protection (Sandler,

Shaffer et al. 1999; Shaffer and Windle 1999). Often in such cases, any improvements

in mechanical properties are viewed as an additional benefit; what is more critical is

that the optical properties and finish of the sample remain unchanged.

The impact of the nanotubes on the effective electrical conductivity of NRPs

are shown in Figure 16 and Figure 17 for CVD nanotubes in epoxy and arc grown

MWNTs in poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenyleneviylene) (PmPV),

respectively. In each case substantial increases in conductivity have been attributed to

a percolation-type process, which is achievable for relatively low volume (weight)

fractions of the nanotubes due to their high aspect ratio and outstanding conducting

properties. As shown in Figure 16, the nanotubes are much more efficient than the

carbon black filler which is currently added to improve polymer conductivity. Similar



47

increases in thermal conductivity using small amounts of nanotubes have also been

reported (Biercuk, Llaguno et al. 2002).

Figure 16. Electrical conductivity of CVD grown NTs in an epoxy. (a) CVD

grown NTs. (b) carbon black with copper-chloride. (c) carbon black only.

(Sandler, Shaffer et al. 1999)
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Figure 17. Electrical conductivity of PmPV/nanotube composites. (Curran,

Ajayan et al. 1998)

For purposes of this dissertation we will limit our discussion to the mechanical

behavior of polymers reinforced with small volume fractions of carbon nanotubes. Our

focus is on the extension of traditional micromechanics and viscoelastic models for the

study of nanotube-reinforced polymers, so that from these models we can start to

better understand the impact of the nanotubes on the mechanical response of the

material. Two models have been developed in this regard, and will be presented in the

next two chapters:

• In Chapter 3, we present a hybrid finite element – micromechanics model that

incorporates the typically observed waviness of embedded nanotubes into

micromechanics predictions of the effective elastic modulus of an NRP.
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• In Chapter 4, we present experimental evidence of a reduced mobility, non-

bulk polymer region, which we attribute to the interaction between the

nanotubes and the polymer chains. The effect of this interaction is modeled as

a shift in the relaxation times of the non-bulk polymer properties and results in

a change in the effective viscoelastic properties of the NRP.

The results presented in this chapter demonstrate the complexity of modeling the

effective behavior of NRPs. The models presented in the next chapters represent initial

efforts to extend existing constitutive models in order to meet this challenge.
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CHAPTER 3: NANOTUBE WAVINESS AND THE

EFFECTIVE MODULUS OF NANOTUBE-REINFORCED

POLYMERS

Introduction

In order to increase our understanding of the mechanical behavior of nanotube-

reinforced polymers, it is useful to develop models of the effective properties of these

materials, enabling detailed study of the material system. One means to accomplish

this is the extension of traditional micromechanics and composite models to address

specific features characteristic of these materials. As an example, consider the high-

magnification electron microscopy images of nanotubes embedded in a polymer

matrix shown in Figure 18. In the images the nanotubes appear to be wavy (not

straight), a feature not typically associated with traditional fiber reinforced

composites. Note that this waviness is inherently distinct from the uniform and

controlled waviness of the yarns in traditional textile composites. While one might

expect that this waviness will reduce the effectiveness of these inclusions for purposes

of modulus enhancement, modeling of this reduction will lead to more accurate

quantitative models of the mechanical behavior of these materials.
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Figure 18. Micrographs showing the waviness of nanotubes embedded in

polymers. (a) TEM image of 1 wt% MWNTs in polystyrene (Qian, Dickey et al.

2000). (b) SEM image of 50 wt% MWNTs in poly(vinyl alcohol). (Shaffer and

Windle 1999)

Motivated by such observations, the model presented in this chapter has been

developed to analyze how this waviness impacts the effective moduli of NRPs. This is

accomplished via a hybrid finite element-micromechanical model that determines the

effective reinforcing modulus (ERM) of a wavy embedded nanotube. As demonstrated

later in this chapter, the effective reinforcing modulus is then used within a multiphase
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micromechanics model to predict the effective modulus of a polymer reinforced with a

distribution of wavy nanotubes. We found that even slight nanotube curvature

significantly reduces the effective reinforcement in comparison to models assuming

straight nanotubes. Using experimental data, we demonstrate that nanotube waviness

can significantly limit the property enhancement of the NRP. Thus nanotube waviness

may be one reason why the modulus enhancements for NRP systems measured to

date, while significant, have been much less than would be anticipated using standard

micromechanics models.

At the moment it is impossible to differentiate the impact of nanotube

waviness from competing reinforcement-limiting mechanisms such as a weak NT-

polymer interface, poor dispersion, and NT degradation in experimental data.

Nevertheless, our results provide a clear picture of how moderate waviness can hinder

the effectiveness of NTs as structural reinforcement. While the work reported here is

an application of a micromechanics method to a nanostructured material, the

integration of atomic scale modeling could readily be adapted into such an analysis. In

the future a fusion of true nanoscale and microscale modeling will provide even more

insight, and quantitatively accurate predictions, of this material behavior.

Next we will describe the models that were developed to determine the

effective reinforcing moduli of an embedded wavy nanotube. We will then show how

the results of this finite element modeling can be incorporated into micromechanics
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techniques to determine the effective modulus of an NRP with randomly orientated,

wavy nanotubes. We will then present results that demonstrate how the waviness of

the nanotube limits the effective reinforcement that the inclusion provides the host

polymer material. This reduced reinforcement results in effective moduli predictions

that are significantly lower than those derived assuming straight nanotube inclusions.

In all cases these reduced moduli values are in closer agreement with experimental

data published in the literature, although currently it is impossible to separate the

effects of NT waviness from other reinforcement-limiting mechanisms influencing the

effective material behavior. We will also briefly describe an alternative (albeit related)

model that has been developed and addresses the impact of NT waviness via the

numerical calculation of the dilute strain concentration tensor (Bradshaw, Fisher et al.

2002). At the end of the chapter we will summarize the results of these models and

discuss how these results may influence future developments in the area of nanotube-

reinforced polymers.

The Model

Based on the discussion of the last section, we are interested in using

micromechanical techniques to study the effective elastic moduli of nanotube-

reinforced polymers. The basis of the current model is to determine the effective
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reinforcing modulus (ERM) of the wavy embedded nanotube; that is, a representative

value denoted EERM that accounts for the reduction in reinforcement provided by the

wavy nanotube in comparison to the reinforcement provided by a straight NT (of

modulus ENT).1 Thus while the nanotube modulus ENT is a material property, the

effective reinforcing modulus EERM (EERM ≤ ENT) is a material parameter that is a

function of the geometry of the wavy nanotube and other variables (as discussed later

in this chapter). This effective modulus is then available for use in standard

micromechanical models in lieu of the true (actual) nanotube modulus. While such a

procedure can be applied in general to any class of curved and wavy inclusions,

embedded nanotubes and NRPs are the focus of the present discussion.

In this regard, we note the results of several researchers who found that

continuum models provide useful insight into nanotube behavior, despite the discrete

nature of their atomic structure (Ruoff and Lorents 1995; Yakobson and Smalley

1997).2 To simplify the geometry we will treat the nanotube as a solid element of

circular cross-sectional area, which implicitly introduces two simplifications into the

analysis. First, treating the inclusion as a solid cylinder neglects the hollow nature of

                                                  

1 This effective reinforcing modulus EERM is identical to what we have called the wavy nanotube
modulus (Ewavy) in previous work (Fisher, Bradshaw et al. 2002a).
2 Others have found a large number of atomic layers was necessary to justify the treatment of the
nanotube as a continuum (Govindjee and Sackman 1999). However, for the purposes of moduli
predictions we believe that a continuum assumption is an acceptable simplification. Other mechanical
behavior, such as crack propagation and fracture, will undoubtedly be more dependent on atomic
structure and may be especially ill-suited for such an assumption.
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the nanotubes.3 Second, by modeling the nanotube as a continuum we are disregarding

the specific form of the nanotube (SWNT, MWNT, or bundle) and neglecting any

possible relative motion between individual shells or tubes in a MWNT and an NT

bundle, respectively. Each of these assumptions suggests that EERM as calculated here

is an “upper bound” for the given model, in that accounting for the hollow nature of

the NTs or modeling relative sliding of the tubes or shells would further reduce the

effective stiffness of a wavy nanotube. Thus nanotube waviness may be even more

significant than the results presented in this work would indicate. While this approach

will highlight the impact of nanotube waviness on the effective modulus of an NRP, a

more rigorous analysis that accounts for the discrete nature of the nanotube and the

atomic interaction between the nanotube and polymer is warranted and will be the

subject of future work.

In addition to the continuum assumption, several other simplifications are

invoked throughout this work to aid in the interpretation of the results. The individual

phase materials are modeled as linear elastic and isotropic, and perfect bonding

between the phases is assumed. The waviness of a nanotube of diameter d will be

introduced by prescribing an embedded NT shape of the form 

† 

y = a cos 2pz / l( ) ,

where l is the sinusoidal wavelength and z is the fiber axial direction (see Figure 21

                                                  

3 It is also well established that in many cases the cross-section of the nanotubes is not circular but is
typically distorted due to van der Waals interactions between the shells (or tubes). However, for our
current investigation the effect of this slight distortion in cross-sectional shape is negligible.
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on page 63). Unless otherwise noted, Poisson ratios of 0.30 were assumed for all

phases in the simulations; this value is representative of a wide range of polymer

materials, and is consistent with the range of values estimated for carbon nanotubes.

This assumption will be discussed in more detail later in this chapter.

We will first present our initial efforts to develop an analytical model

describing the extension of a wavy NT in response to an applied axial load. While it

was useful to consider such an initial model, we found that its utility was greatly

limited due to the inability to accurately capture the influence of the surrounding

matrix on the response of the wavy nanotube. This led us to study the problem via the

finite element analysis, where the constraint of the surrounding matrix can now be

considered. Following this, the formulation of the Mori-Tanaka method for a

multiphase composite with randomly aligned cylindrical inclusions in two- and three-

dimensional space will be presented. Finally, we will present a multiphase composite

approach where the nanotubes are modeled as a finite number of discrete inclusion

phases with distinct effective moduli based on their embedded waviness.

Analytical solution for an isolated wavy nanotube

A critical component of the problem at hand is to model the mechanical

response of an embedded wavy nanotube, due to an applied axial load P, as a function

of waviness. As a first approximation it is insightful to consider the analytical solution
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for the effective stiffness of a free-standing wavy rod subject to axial load. We will

later show that such a model is only useful when the modulus of the straight nanotube

ENT is much larger than the modulus of the matrix Ematrix. When this criterion is not

satisfied (i.e. ENT/Ematrix < 1000), a finite element analysis is necessary to account for

the lateral constraint that the surrounding matrix provides the embedded nanotube. For

completeness, we briefly describe the analytical solution for a free-standing wavy rod

below.

Figure 19. Schematic of the analytical solution for a free-standing wavy fiber.

Consider the sinusoidal wavy rod of solid cross-section shown in Figure 19.

Asuming linear elastic material behavior and small displacements, Castligiano’s

theorem states that the displacements due to an applied load P, in the direction of P,

are given by 

† 

dP = ∂U / ∂P , where U is the total elastic strain energy of the system

(Boresi, Schmidt et al. 1993). Given the sinusoidal geometry of the free-standing
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nanotube, one can determine the internal axial (N) and shear (V) forces and the internal

moment (M) within the rod as a function of z:

† 

N(z) = P cos(q) =
P

1+
4 p2 a2

l2 sin2 2pz
l

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

,

† 

V(z) = P sin(q) =
-

2ap

l
Psin 2pz

l

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

1+
4 p2 a2

l2 sin2 2pz
l

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

, (3)

† 

M(z) = P a - y(z)[ ] = Pa 1-cos 2pz
l

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 

˘ 

˚ 
˙ .

The total end displacement dP of the rod is then the sum of the components due

to each of these terms, integrated over one wavelength l of the sinusoidal rod,

† 

dP = dN + dV + dM =
N

EAÚ ∂N
∂P

ds +
kV
GAÚ ∂V

∂P
ds +

M
EIÚ ∂M

∂P
ds, (4)

where dN , dV , and dM  are the contributions due to the internal axial and shear forces,

and the internal moment, respectively, and ds is an increment of arc length. In this

expression k is the correction factor for the shear strain energy (equal to 1.33 for a

solid circular cross section (Boresi, Schmidt et al. 1993)), G is the shear modulus, and
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A  and I are the cross sectional area and the moment of inertia for a circular cross

section. By substituting (3) into (4) and with further simplification, the components of

the axial displacement of the free-standing wavy rod are

† 

dN =
P

AE
1

1+
4p 2 a2

l2 sin2 2pz
l

0

l

Ú dz , (5)

† 

dV =
4a2 p2 kP

AGl2

sin2 2pz
l

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

1+
4p 2 a2

l2 sin2 2pz
l

0

l

Ú dz , (6)

† 

dM =
a2 P
IE

1- cos 2pz
l
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Á 

ˆ 

¯ 
˜ 

È 

Î 
Í 

˘ 

˚ 
˙ 

0

l

Ú
2

1+
4 p2 a2

l2 sin2 2pz
l

dz . (7)

Given these displacement components, the total displacement of the end of the rod is

given via (4).  Note that in the limit of a straight rod (a=0), the above expression yields

the standard expression for the extension of straight rod under uniaxial tension,

† 

d =
PL
A E .

We now define the effective reinforcing modulus of the free-standing wavy rod

as the ratio of the applied stress to the resulting strain, such that
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† 

E free =
s

e
=

P / A
dP / L

=
PL

AdP
. (8)

This expression, normalized with respect to the true modulus, is plotted versus

waviness w (defined as the ratio of sinusoidal amplitude to wavelength a/l) in Figure

20 for l/d=100. Also shown in Figure 20 are the results of an analogous finite element

model (described later in the chapter), which indicate excellent agreement between the

two solutions. The slight difference between the solutions is attributed to the imposed

displacement boundary conditions in the finite element model, which prevent vertical

displacement of the rod at z=l. As expected, the effective modulus quickly falls off

with increasing waviness, such that for even very minimal values of waviness the

effective stiffness is negligible (i.e. for w=a/l=0.01, the effective stiffness is less than

5% of the true modulus).

We found that this analytical solution is limited in the present analysis because

it does not reflect the physical nature of the constraint imposed by the surrounding

matrix. Specifically, comparison of this analytical solution with our finite element

results for an embedded wavy nanotube (described later) show that the free-standing

solution severely underestimates the effective stiffness of embedded wavy inclusions.

As demonstrated in Figure 20, if one were to use the analytical model in (8), it would

be possible for the effective reinforcing modulus of a stiff inclusion to be less than the
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matrix modulus. As such the wavy nanotube would decrease the effective modulus of

the NRP, a result that is clearly not realistic.

Figure 20. Comparison of finite element and analytical solutions for the effective

modulus of a free-standing wavy rod.

Attempts to adapt this analytical solution for the case of the embedded wavy

inclusions were not successful, primarily because of the difficulty in accounting for

the additional constraint of the surrounding matrix. For example, the Rule of Mixtures

approximation is ill-suited for this analysis because the volume fraction of the free-

standing nanotube is not well defined. This difficulty is eliminated in our finite
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element model of the effective reinforcing modulus, which is discussed in the next

section and will be the focus of the remainder of this chapter.

Finite element model for the effective reinforcing modulus

To determine the effective reinforcing moduli EERM of an embedded wavy

nanotube, ANSYSTM was used to create and analyze a three dimensional finite element

model of a single, infinitely long wavy nanotube of diameter d perfectly bonded

within a matrix material. For axial loading the problem is symmetric about the x=0

and z=nl/2 (where n is an integer) planes; thus the quarter-symmetric unit cell shown

in Figure 21 is used for the analysis. The size of the cell was chosen such that the

effective cell response is independent of additional matrix material (this proof is

provided later in this chapter). A more complete description of the finite element

modeling used here has been described in the literature (Bradshaw, Fisher et al. 2002).

For the finite element simulations symmetry conditions ux=0 and uz=0 were

prescribed on the x=0 and z=0 planes, respectively. The model was constrained in the

y direction at a single point to prevent free body translation, and an infinitesimally

small axial displacement, D , prescribed to all nodes on the plane z=l/2. The effective

modulus of the finite element cell is defined as

† 

E cell
FEA =

Ftot l

2 AD
, (9)
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where Ftot is the sum of all nodal resultant forces on the displaced plane and A is the

cross-sectional area of the cell.

Figure 21. Finite element cell model of an embedded wavy nanotube. For the

model shown, w=a/l=0.1 and l/d=35.

In order to extract the effective reinforcing moduli of the embedded wavy

inclusion (as it exists in the matrix) from (9), we propose a parallel model of the

effective cell response, independent of the previous analysis,

† 

E cell
parallel = cNT EERM + 1- cNT( )Ematrix ,  (10)
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where cNT is the nanotube volume fraction within the finite element cell and Ematrix is

the matrix modulus. From (9) and (10), EERM of the embedded inclusion can be

calculated as

† 

E ERM =
Ecell

FEA - (1-cNT )E matrix
cNT

. (11)

Thus EERM represents the modulus of a straight inclusion that, under identical loading

conditions, would yield the same effective finite element cell response as that obtained

with the wavy inclusion.

This finite element solution is a powerful tool to model the effective response

of embedded wavy inclusions. While at first glance the number of parameters

affecting 

† 

E cell
FEA  (and hence EERM) appears quite large, we will show later in this

chapter that for the model described above, and an additional assumption that the

Poisson ratios of the phases are equal, EERM will only be dependent on three

parameters: the waviness ratio (w=a/l) and wavelength ratio (l/d) of the nanotube and

the ratio of the phase moduli (Eratio=ENT/Ematrix). A systematic analysis of the impact of

these parameters on EERM was undertaken and the key results will be presented later in

this chapter. The benefit of such an analysis is that it allows inclusion waviness to be

integrated into traditional micromechanics techniques by simply modeling the wavy
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inclusions as straight inclusions with a reduced reinforcing modulus EERM determined

via finite element modeling.

Analytical solution for Ecell

After the development of the finite element model presented above, it was

brought to our attention that in certain circumstances the value for Ecell can be

approximated using analytical expressions developed for the analysis of flexible fiber

composites (Chou and Takahashi 1987; Kuo, Takahashi et al. 1988). Specifically, the

effective Young’s modulus for a composite with isophase sinusoidal fibers can be

written as

† 

E x
* =

1+ c( )3/2

1+
c
2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ S11 - 1+

3
2

c - 1+ c( )3/2Ê 

Ë 
Á 

ˆ 

¯ 
˜ S22 +

c
2

2S12 +S66( )
(12)

where 

† 

c = 2pa l( )2
 and Sij are the elastic compliance terms which relate longitudinal

(L) and transverse (T) stresses and strains of the unidirectional straight fiber

composite via
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The key aspect of the analysis is that a sufficiently small volume fraction of straight

inclusion must be assumed in (13), such that the resulting elastic compliance terms

approximate the dilute solution response modeled in the finite element analysis.

Similar to the analysis using the finite element method, these terms will converge for a

sufficiently small volume fraction of inclusions, which we found to be on the order of

0.01%.

Similar to the Analytical Long Wavelength (ALW) model presented later in

this chapter, the analytical expressions above can be used to approximate Ecell from the

finite element analysis when the wavelength ratio l/d is sufficiently large for the case

of a given waviness ratio a/l. When a/l is too large for a given wavelength ratio, the

analytical solution underestimates the value of Ecell determined from the finite element

analysis. For consistency, in the current work the values for Ecell were taken directly

from the finite element simulations.

Convergence of EERM for a sufficiently large matrix

In order to eliminate the size of the finite element model as a parameter in the

analysis, it is necessary to show that EERM converges for a sufficiently large matrix.

To accomplish this we consider a finite element cell of an embedded wavy nanotube

(see Figure 21), where for simplicity we redefine the length of the cell as L (to

eliminate carrying a factor of two in our analysis below). We assume that the matrix
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boundary at the top and bottom of the cells is sufficiently far from the nanotube such

that fields at these boundaries are undisturbed by the presence of the nanotube, and

denote the volumes of the NT, matrix, and total cell as VNT, Vmatrix, and V,

respectively. Note that a respective area is given as A=V/L. We apply an

infinitesimally small uniform strain 

† 

ez  in the fiber axial direction and measure the

total resultant force Ftot necessary to cause this strain. From (10) and (11) we can write

the effective reinforcing modulus for this particular finite element cell as

† 

E ERM1
=

Ftot L
Vez

-
Vmat

V
Emat

VNT
V

=
Ftot L

VNT ez
-

Vmat
VNT

Emat . (14)

Now consider a second finite element geometry, identical to the previous cell

except that additional matrix material, with a volume Vmatrix2, has been evenly divided

and added to the top and bottom of the first cell. Because of the size of the first cell,

this additional matrix material is also unaffected by the presence of the wavy

nanotube, thus the force necessary to produce a uniform strain 

† 

ez  in this additional

matrix material is simply 

† 

F2 =
Emat Vmat 2 ez

L . The effective reinforcing modulus for the

second finite element cell can be written as
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† 

EERM2
=

Ftot + F2( )L
V + Vmat2( )ez

-
Vmat + Vmat 2

V + Vmat 2

Emat

VNT
V + Vmat2

=
Ftot + F2( ) L

VNT e z
-

Vmat + Vmat 2

VNT
Emat (15)

Substituting the expression for F2 into (15) yields EERM1=EERM2, and thus for a

sufficiently large matrix the value of EERM is independent of the size of the finite

element cell. For all simulations the finite element cell was created large enough such

that this condition was satisfied; typically the nanotube volume fraction in the finite

element cell was less than 0.05%.

Reduction of EERM parameters for the finite element analysis

Because we have shown that EERM converges given a sufficiently large finite

element cell, it is sufficient to consider the model parameters that influence Ecell in the

present analysis. Assuming isotropic behavior of the phase materials, the model at first

appears to the dependent on seven parameters: the moduli (ENT and E matrix) and

Poisson ratios (nNT and nmatrix) of the phase materials, the wavelength and diameter of

the NT (l and d), and the sinusoidal amplitude a such that

† 

E cell = f ENT ,E matrix,nNT ,nmatrix,a,d,l( ) . (16)
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To first simplify the analysis we assume that the Poisson ratios of the phases

are identical and equal to 0.30, an assumption which we will discuss in further detail

later in the text. Thus one can write (16) in a mathematically equivalent form as

† 

g Ecell ,E NT,Ematrix ,a,d,l( ) = 0 , (17)

where g is dependent on these six parameters but of an unknown functional form.

Using the Buckingham Pi theorem (Fox and McDonald 1992), we can further rewrite

(17) as

† 

’1 = G1 ’2,’3,’4( ) , (18)

where 

† 

’ i are the dimensionless ratios

† 

’1 = ENT
a lb Ecell , ’2 = E NT

-c ld E mat

’3 = ENT
e lf a, ’4 = ENT

g l-h d
. (19)

The unknown superscript parameters a-h  in (19) can be determined through

dimensional analysis and substituted into (18) to yield

† 

E cell
E NT

= G1
ENT
E mat

, a
l

, l

d
Ê 

Ë 
Á 

ˆ 

¯ 
˜ , (20)

where G1 is a function of these parameters (only) and will be determined through our

finite element study.
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Micromechanical Modeling and the Mori-Tanaka Method

We will illustrate how inclusion waviness can be incorporated into traditional

micromechanical techniques by using the Mori-Tanaka method, a popular tool for the

analysis of multi-phase materials (Mori and Tanaka 1973; Benveniste 1987; Weng

1990). The Mori-Tanaka method has been used by a wide range of researchers to

model the effective behavior of composites, and allows the average stress fields and

overall effective stiffness of a composite with a non-dilute concentration of inclusions

to be determined. It has been used to study the effect of inclusion shape on composite

moduli (Zhao and Weng 1990; Qui and Weng 1991) and the viscoelastic behavior of

polymer-matrix composites (Brinson and Lin 1998; Fisher and Brinson 2001). Further,

the Mori-Tanaka method has been extended to cover composites with multiple

inclusion phases (Benveniste 1987; Weng 1990) and random orientations of inclusions

(Tandon and Weng 1986; Weng 1990).

Specifically we are interested in the Mori-Tanaka solution for an N phase

composite, where each inclusion phase is randomly orientated in two or three

dimensional space. For the following derivation we first consider the case where the

inclusions are unidirectionally aligned within the matrix. Once the necessary

parameters have been determined for this case, appropriate tensor transformations and
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volume averaging procedures will be introduced to account for the different inclusion

orientations. This technique is described in more detail below.

Mori-Tanaka method for unidirectionally-aligned inclusions

We assume that the composite is comprised of N phases; the matrix will be

denoted as phase 0 with a corresponding stiffness C0 and volume fraction f0, while an

arbitrary rth inclusion phase (where r=1 to N-1) has a stiffness of Cr and a volume

fraction fr. Each phase is assumed to be linearly elastic and isotropic, and perfect

bonding between the inclusions and the matrix is assumed. The inclusions are further

assumed to be ellipsoidal with a circular cross-section (a1=a2), an aspect ratio ar (ratio

of length to diameter), and aligned along the 3-axis (as shown in Figure 22).

Figure 22. Schematic of Mori-Tanaka method. (left) Multiphase composite

material. (right) Comparison material.
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Consider the two models shown in Figure 22, representing the composite

model and a “comparison material” with properties identical to those of the matrix.

Unless required, explicit tensor notation will be omitted for clarity. Displacements are

now prescribed on the boundary of each material to give rise to a uniform strain 

† 

ea  in

each material.  The stresses required to produced this uniform strain in each material

are

† 

s = Cea, s0 = C0 ea (21)

where 

† 

s  and s0 are the average stress of the composite and comparison materials,

respectively.

The strain field within the matrix material of the composite will not be uniform

due the presence of the inclusions (and hence the average matrix strain 

† 

e 0 will not

equal 

† 

ea), but rather will be perturbed by an amount 

† 

e 0
pt  such that

† 

e 0 = ea + e 0
pt , (22)

where an overscore represents the volume average of the stated quantity. The average

strain in the rth inclusion is further perturbed from that of the matrix,

† 

e r = e 0 + er
pt . (23)
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Given that the average stress in each phase is given as 

† 

s r = Cr e r , using the

equivalent inclusion method one can show that the average stress in the rth inclusion

can be written in terms of the matrix stiffness,

† 

s r = Cr e r = C0 e r - er
*( ) , (24)

where 

† 

er
*  is the ficticious eigenstrain of the rth inclusion. For a single ellipsoidal

inclusion in an infinite matrix, Eshelby showed that the eigenstrain and perturbed

strain of the rth inclusion can be related via

† 

er
pt =Sr er

* , (25)

where Sr is the Eshelby tensor. General forms of the Eshelby tensor are provided in the

Appendix.

Solving for 

† 

er
*  in (24) and then substituting into (23) using (25), one can find

the dilute strain-concentration factor of the rth phase, 

† 

Ar
dil , which relates the average

strain in the rth inclusion to the average strain in the matrix, such that

† 

e r = Ar
dil e 0, (26)

where
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† 

Ar
dil = I+ Sr C0

-1 Cr - C0( )[ ]-1
(27)

and I is the fourth order identity tensor. We further require that the volume-weighted

average phase strains must equal the far-field applied strain, such that

† 

f0 e 0 + fr e r
r=1

N-1

Â = ea . (28)

Given (28), we can now define the strain-concentration factor 

† 

A0, which

accounts for inclusion interaction by relating the average matrix strain in the

composite to the uniform applied strain,

† 

e 0 = A0 ea , (29)

where

† 

A0 = f0 I + fr Ar
dil

r=1

N-1

Â
È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

-1

. (30)

The key assumption of the Mori-Tanaka method is that the far-field strain that each

inclusion “feels” is the unknown average matrix strain. This can be expressed as

† 

e r = Ar
dil e 0 , (31)
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which in conjunction with (29) gives the strain-concentration factor 

† 

Ar  for the rth

inclusion phase in the non-dilute composite as

† 

Ar = Ar
dil A0. (32)

To find the effective stiffness C for a unidirectionally aligned composite, we

require that the average stress 

† 

s  of the composite be equal to the sum of the weighted

average stresses in each phase,

† 

s = f0 s 0 + fr s r
r=1

N-1

Â = Cea  . (33)

Through straightforward substitution and manipulation, the effective stiffness of the

unidirectionally aligned composite is found to be

† 

C = f0 C0 A0 + fr Cr Ar
r=1

N-1

Â . (34)

For purposes of the next section it will be useful to express (34) in a slightly

different form.  Recalling (28) and (33), we can write

† 

C = f0 C0 + fr Cr Ar
dil

r=1

N-1

Â
Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ f0 I+ fr Ar

dil

r=1

N-1

Â
Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ 

-1

, (35)
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which is a form prevalent in the literature (see (Weng 1990)).4 Both (34) and (35) thus

provide the effective stiffness of a multiphase composite with aligned inclusions.

However, in order to account for random orientations of the inclusion phases, the

analysis must be extended as discussed below.

Mori-Tanaka method for randomly aligned inclusions

When the inclusion phases are randomly orientated in the matrix,

determination of the effective composite stiffness can be accomplished by taking the

orientational averages of appropriate quantities (Weng 1990). In this case the strain

consistency condition in (28) can be written as

† 

f0 I + fr Ar
dil{ }

r=1

N-1

Â
Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ e0 = ea (36)

where brackets {} represent the average of a quantity over all possible orientations.5

Due to this averaging process, the average strain in the matrix will be different from

that in the unidirectional composite due to the random alignment of inclusions.

                                                  

4 Weng further simplifies this expression using the relationship that 

† 

A0
dil

= I . Such an expression is
sensible given that by definition 

† 

A0 relates the average strain in the matrix to the uniform applied
strain. In the dilute sense these strains will be equal.
5 Note that the derivation for unidirectional inclusions presented in the last section is a subset of the
more general derivation presented here.
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Similarly one can rewrite (33) for the case of randomly orientated inclusions

(with the understanding that the matrix stress and strain are orientation-independent

due to the isotropy of the matrix) as

† 

s = f0 s 0 + fr s r{ }
r=1

N-1

Â = Cea . (37)

This expression can be simplified using the relationships established in the preceding

section. Briefly,

† 

s = f0C0e 0 + fr Cre r{ }
r=1

N-1

Â

= f0C0e 0 + fr CrAr
dil{ }

r=1

N-1

Â e 0

= f0C0 + fr CrAr
dil{ }

r=1

N-1

Â
Ê 

Ë 

Á 
Á 

ˆ 

¯ 

˜ 
˜ e 0 = Cea

. (38)

From (36) and (38), the effective stiffness of a composite with randomly orientated

inclusions can be written as

† 

C = f0C0 + fr CrAr
dil{ }

r=1

N-1

Â
Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ f0 I + fr Ar

dil{ }
r=1

N-1

Â
Ê 

Ë 
Á 
Á 

ˆ 

¯ 
˜ 
˜ 

-1

, (39)



78

which is the direct analog of (35) except that appropriate averaging is used here to

account for the inclusion orientation. Later in this chapter we will discuss how these

orientational averages can be determined.

Euler angles and tensor transformations

To determine the effective properties of a composite with randomly orientated

inclusions, it will be necessary to calculate various orientational averages as outlined

in the previous section. We will assume that the local axes of the fiber are denoted 

† 

x1
' ,

† 

x2
' , and 

† 

x3
'  (where 

† 

x3
'  is the inclusion axis), and the global (or fixed) composite

coordinates are X1, X2, and X3 (see Figure 23). Our goal is to develop the

transformation matrix aij which maps vector vj' in the local coordinate system to

coordinates vi in the global coordinate system via

† 

vi = aij vj
' . (40)

Note that in general it is necessary to specify three Euler angles to describe the

inclusion orientation; however, because the inclusion is assumed to be spheroidal it is

only necessary to specify f1 and F in Figure 23 to completely describe the orientation

of the fiber.
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Figure 23. Relationship between the local and global coordinate systems.

Following Roe's specification for Euler angles (Randle 1992), the local

coordinate system is obtained by a rotation of f1 about the X3 axis, followed by a

rotation of F about the resulting 

† 

x2
'  axis.  These rotations can be described using the

appropriate coordinate transformations that map local vectors to global vectors (i.e.

where 

† 

Xi = Rij xj
' )

† 

R(f1) =

cos(f1) - sin(f1) 0
sin(f1) cos(f1) 0

0 0 1

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
, 

† 

R(F) =

cos(F) 0 sin(F)
0 1 0

- sin(F) 0 cos(F)

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
. (41)
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Consecutive rotations of f1 and F thus result in the following transformation between

local and global coordinates:

† 

X1
X2
X3

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

= R(f1)R(F)
x1

'

x2
'

x3
'

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

=

mp -n mq
np m nq
-q 0 p

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

x1
'

x2
'

x3
'

È 

Î 

Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 

= aij
3D xj

' (42)

where m=cos(f1), n=sin(f1), p=cos(F ), q=sin(F ) , and 

† 

aij
3D  represents the

transformation matrix describing transformations in full three-dimensional space. If

the inclusions are restricted to lie in the 1-2 plane, the appropriate 2D transformation

matrix 

† 

aij
2D  can be found by setting F=!/2 (see Figure 23), such that

† 

aij
2D =

0 -sin f1 cos f1
0 cosf1 sin f1
-1 0 0

È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
. (43)

Higher order tensor transformations are accomplished through the usual tensor

transformation laws. Thus the transformation of a fourth-order stiffness tensor Bijkl

from local to global coordinates can be written as

† 

Bijkl f1,F( ) = aira jsaktaluBrstu
' , (44)
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where the angular dependence of the aij terms is implied and the standard convention

that double indices implies summation is used.6 To further illustrate (44), we write out

the B1111 terms below:

† 

B1111(f1,F) = a11
4 B1111

' + a12
4 B2222

' + a13
4 B3333

' + (2B1122
' + 4B1212

' )a11
2 a12

2

+(2B1133
' + 4 B1313

' )a11
2 a13

2 + (2B2233
' + 4 B2323

' )a12
2 a13

2
, (45)

where it is assumed that particular symmetry conditions (Brstu=Bturs and

Brstu=Brsut=Bsrut=Bsrtu) hold in the local coordinate system.  When these symmetry

conditions do not hold (such as for the dilute strain concentration tensor 

† 

Ar
dil  in the

previous section) the procedure is identical, although the collection of terms such as

that in (45) is more tedious.

Given (44), the orientational average of a fourth tensor in random 3D space is

† 
† 

Bijkl{ } =
1

2p
Bijkl f1,F( )

0

p

Ú
0

p

Ú sin(F) dF df1 (46)

where the transformation matrix for three dimensional space 

† 

aij
3D  is used in (44) and

the sin(F) term accounts for the surface area of a sphere. For a 3D random orientation

                                                  

6 We stress that the transformation in (44) is a tensor transformation, and as such is only applicable to
tensor quantities. Quantities which are not of tensorial form, specifically tensors expressed using
contracted notation, must first be converted to their appropriate tensorial components before such a
transformation is valid.
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of inclusions, the resulting tensor component transformations can be expressed using

contracted notation and written in matrix form as:

† 

B11{ }
B22{ }
B33{ }
B12{ }
B21{ }
B13{ }
B31{ }
B23{ }
B32{ }
B44{ }
B55{ }
B66{ }

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

=
1

120

9 45 24 5 5 6 6 10 10 40 24 20

9 45 24 5 5 6 6 10 10 40 24 20

64 0 24 0 0 16 16 0 0 0 64 0

3 15 8 15 15 2 2 30 30 -40 8 -20

3 15 8 15 15 2 2 30 30 -40 8 -20

8 0 8 0 40 12 32 20 0 0 -32 0

8 0 8 40 0 32 12 0 20 0 -32 0

8 0 8 0 40 12 32 20 0 0 -32 0

8 0 8 40 0 32 12 0 20 0 -32 0

16 0 16 0 0 -16 -16 0 0 40 56 80

16 0 16 0 0 -16 -16 0 0 40 56 80

3 15 8 -5 -5 2 2 -10 -10 40 8 20

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

B11

B22

B33

B12

B21

B13

B31

B23

B32

B44

B55

B66

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

(47)

In two-dimensional space, orientational averaging is defined as

† 
† 

Bijkl{ } =
1
p

Bijkl f1( )
0

p

Ú df1 (48)

where the two-dimensional transformation matrix 

† 

aij
2D  given in (43) is used in

evaluating the integrand. Following the same procedure as before, the resulting

components of the transformed tensor are:
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† 

B11{ } = B22{ } =
1
8

3B22 + 3B33 + B23 + B32 + 4B44[ ]

B33{ } = B11

B12{ } = B21{ } =
1
8

B22 + B33 + 3B23 + 3B32 - 4B44[ ]

B13{ } = B23{ } =
1
2

B21 + B31[ ]

B31{ } = B32{ } =
1
2

B12 + B13[ ]

B44{ } = B55{ } =
1
2

B55 + B66[ ]

B66{ } =
1
8

B22 + B33 - B23 - B32 + 4B44[ ]

(49)

A note on symmetry

Writing the constitutive stress-strain relationship 

† 

s ij = Cijkl ekl  in tensor form

suggests that it would require 81 constants to characterize the stress-strain response of

a material (i.e there are 81 independent Cijkl tensor components). However, the

condition that the stress and strain tensors are symmetric reduces the number of

independent constants to 36; this allows the use of contracted notation that is

commonplace in composites research (see the Appendix). The number of independent

constants is further reduced based on arguments related to the work per unit volume of

the system, from which one can prove that the stiffness (compliance) tensor must be

symmetric, such that Cijkl=Cklij. This condition further reduces the number of

independent constants to 21. The number of independent constants can be further
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reduced based on assumptions of the material behavior (i.e. it can be shown that

transversely isotropic materials have 5 independent constants, and that isotropic

materials have two independent constants).

One inconsistency with the implementation of the Mori-Tanaka method for

multiphase materials is that it may yield non-symmetric stiffness (and compliance)

tensors, thus violating the symmetry conditions required for a real material

(Benveniste, Dvorak et al. 1991; Li 1999; Schjodt-Thomsen and Pyrz 2001). This non-

symmetry is a result of the non-symmetric strain concentration tensors 

† 

Ar
dil  calculated

in (27). This difficulty has been attributed to the extension of the Mori-Tanaka

scheme, originally developed for two-phase materials, to multiphase composites (Li

1999).

To illustrate, we calculate the effective stiffness of a three-phase composite

composed of isotropic phase materials. Here we consider cylindrical inclusions with

an aspect ratio a=L/d=1000, randomly orientated in the 1-2 plane with volume

fractions f0=0.50 and f1=f2=0.25, phase moduli E0=1, E1=50, and E2=200, and Poisson

ratios ni=0.30, where the matrix phase is denoted as phase 0. Using the Mori-Tanaka

method, the effective stiffness of the system can be calculated as
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† 

L 2D =

36.764 12.214 1.350 0 0 0
12.214 36.764 1.350 0 0 0
1.342 1.342 3.222 0 0 0

0 0 0 1.039 0 0
0 0 0 0 1.039 0
0 0 0 0 0 12.275

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

, (50)

where the non-symmetry of stiffness tensor (L13=L23≠L31=L32) is evident (see also

Schjodt-Thomsen and Pyrz (2001) for additional examples). Such an example is only

given to illustrate the non-symmetry of the stiffness tensor; the extent of non-

symmetry is closely related to the properties and geometries of the phases in a

particular system. It is worth noting the following conditions, under which the Mori-

Tanaka method is guaranteed to yield a symmetric stiffness (Schjodt-Thomsen and

Pyrz 2001):

• Two-phase composites

• Multiphase composites with aligned inclusions

• Multiphase composites with randomly aligned spherical inclusions

In addition, in our numerical studies we have found that the Mori-Tanaka solution for

a multiphase composite with similarly shaped inclusions randomly orientated in three-

dimensional space has in every case yielded a symmetric (and isotropic) stiffness;

however, a proof of this condition is beyond the scope of this dissertation.



86

One of the manners in which the symmetry of the effective stiffness can be

guaranteed is by normalizing the concentration tensors (see Schjodt-Thomsen and

Pyrz (2001) and references therein). However, because here we are primarily

interested in the effective moduli predictions (rather than the stiffness tensor), one can

show that the effect of this non-symmetry is minimal.  Specifically, later in this

chapter we show that the effective moduli are only dependent on the product of the C13

and C31 terms, independent of the symmetry (or lack thereof) of the stiffness tensor.

Thus symmetry of the stiffness tensor was enforced after the Mori-Tanaka calculation

by setting

† 

C13 = C23 = C31 = C32 = C13 C31 . (51)

Such manipulation will have no affect on the Mori-Tanaka predictions for E11, E33,

m12, or m13.

An alternate model for randomly orientated inclusions

An alternative method has been proposed in the literature to determine the

effective moduli of composites containing randomly orientated inclusions using the

Mori-Tanaka method (Huang 2001). This alternative model will be referred to as the

Huang model, to distinguish it from the Weng model described earlier. In the Huang

model, the effective stiffness for a multiphase composite is found by taking the
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orientational average of the effective modulus for the unidirectional composite case

(i.e. equation (35)), rather than the orientational averaging of the individual

components as outlined in (39) for the Weng model.

The Huang model is inviting because it allows explicit expressions for

composites with randomly oriented inclusions to be given in terms of the

unidirectional composite stiffness components. However, there is a critical difference

between these models. For the Weng model, the introduction of the orientational

averaging of field quantities is effectively introduced before the determination of the

unknown average matrix strain that is fundamental to the Mori-Tanaka approach. For

the Huang model, the unknown matrix strain is solely determined from the analysis of

the unidirectional composite model, and thus is not dependent on the type of

randomness that the inclusions might exhibit. Thus the Huang model does not

properly model a multiphase composite with randomly orientated inclusions, but

rather models a composite within which individual domains of aligned inclusions are

present. As shown in Figure 24, for the Huang model the inclusion orientations are

random in the sense that these smaller domains of aligned inclusions are of different

orientations within the global material.
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Figure 24. Models to account for randomness of inclusion orientation. (a) Huang

model. (b) Weng model.

For small volume fractions of inclusions, and when the properties of the

inclusions are not vastly different than those of the matrix, results from the two models

are somewhat similar. However, this difference becomes significant as the volume

fractions of inclusions increase, due to the difference between the two models in the

determination of the average matrix strain of the composite. (We note that in the case

of 2D random orientations the out-of-plane predictions from each model are in

excellent agreement.) To illustrate the difference in moduli predictions between the

two methods, the results for a three-phase composite consisting of isotropic phase

constituents, with equal volume fractions of inclusion phases (i.e. f1=f2), are presented

in Table 6. Here we see that the effective moduli found using the Huang model are

less than those found from the (correct) Weng Mori-Tanaka implementation, because

the Huang model overestimates the average matrix strain, leading to a model of
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material behavior that is too compliant. Because the Weng model correctly accounts

for inclusion orientation in its determination of the effective composite stiffness, all

subsequent work utilizing the Mori-Tanaka method will use the Weng model, i.e.

equation (39), for the determination of the effective composite properties.

Weng model Huang model

f0=0.9 f0=0.6 f0=0.9 f0=0.6

E 10.99 55.74 10.19 38.13

m 4.37 22.19 4.06 15.23
3D random
orientation

n 0.256 0.256 0.256 0.252

E11=E22 20.44 99.80 19.18 74.15

E33 1.53 2.61 1.53 2.60

m12 7.68 37.62 7.21 27.85

m13=m23 0.46 0.83 0.46 0.83

2D random
orientation

k 15.53 74.56 14.61 55.91

Table 6. Comparison of Huang and Weng models for effective moduli of

multiphase composites with randomly orientated inclusions. (f1=f2, E0=1, E1=100,

E2=1000, a1=a2=L/d=1000, and ni=0.30)

Simplification for a two-phase system

While the above formulations are concerned with the effective properties of

multiphase composite materials, analytical expressions have been derived for the

Mori-Tanaka solution for two-phase composites with 2D and 3D randomly orientated
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inclusions (Tandon and Weng 1986). The expressions are quite unwieldy and thus not

repeated here. It has been verified numerically that the Weng multiphase composite

model used in this work matches the results of the analytical expressions for two-

phase composites.

Determination of the effective engineering constants

Keeping in mind the preceding arguments that require a contracted stiffness

tensor for a real material to be symmetric, the stress-strain relationship for a

transversely isotropic material with a 1-2 plane of isotropy can be written as

† 
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, (52)

where the tensorial shear strains e are related to the engineering shear strains g via

† 

e4 = e23 = 2g23 , 

† 

e5 = e13 = 2g13 , and 

† 

e6 = e12 = 2g12 . For completeness, a more

detailed description of contracted notation is provided in the Appendix. The contracted

stiffness for a composite with inclusions aligned along the 3-axis, as well as

composites with inclusions randomly orientated in the 1-2 plane, will show such a
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form.  For the case of inclusions randomly orientated in three-dimensional space, the

stiffness will be fully isotropic such that the additional relations C11=C33,

C12=C13=C31=C32, and C44=

† 

1
2 (C11 – C12) in (52) will be satisfied.

The compliance tensor S (where 

† 

e =Ss ) is defined as the inverse of the

stiffness tensor, and can be written in terms of the stiffness components Cij as
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where

† 

D1 = C33 C11
2 - C12

2( ) -2C13C31 C11 -C12( )

D 2 = C33 C11 + C22( ) -2C13C31

. (54)

From (52)-(54), we see that the procedure of using the geometric mean of C13 and C31

given in (51) to enforce the symmetry of the Mori-Tanaka effective stiffness will only

affect the S13=S23=S31=S31 compliance components. While such changes will alter the
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exact value of some of the engineering constants, for our purposes the Young’s and

shear moduli with which we are most interested will not be affected by such a scheme.

We note that the compliance tensor will have the same level of symmetry as that of the

stiffness tensor.

Once the stiffness and compliance tensors are known, the components of these

tensors can be used to calculate the engineering constants of the material. For an

isotropic material two independent constants are required to describe the material

response, for example the Young’s modulus E and the shear modulus m. These can be

determined from the known stiffness (or compliance) terms via

† 

E = E11 = E22 = E33 =
1

S11
=

D1
C11C33 -C13C31

m = m44 = m55 =m66 =
1

S44
= C44

. (55)

For a transversely isotropic material five independent constants are required to fully

characterize the material response. For a transversely isotropic material with a 1-2

plane of isotropy, five such constants are the transverse modulus E11=E22, the

longitudinal modulus E33, the axial shear modulus m44=m55, the transverse shear

modulus m66, and the plane strain bulk modulus k, which can be determined from the

known stiffness or compliance terms such that
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† 

E11 = E 22 =
1

S11
=

D1
C11C33 - C13C31

E 33 =
1

S33
=

D 2
C11 + C12

m44 = m55 =
1

S44
= C44

m66 =
1

S66
=

2
C11 - C12

k =
C11 + C12

2

. (56)

Relationships to obtain alternative elastic constants are given in the Appendix.

Discretization of nanotubes based on waviness

To model the nanotube-reinforced polymer we partition the nanotube

inclusions into distinct phases, based on their embedded waviness, and treat the

problem as that of a multiphase composite. Each nanotube phase is then assigned a

distinct effective reinforcing modulus EERM based on the average waviness of the

phase and the results of the preceding finite element analysis. In practice, such a

solution could be developed by imaging a representative portion of the NRP and

developing an appropriate waviness distribution function characterizing the magnitude

and extent of the nanotube waviness, leading to an appropriate multiphase composite

model (see Figure 25 and Figure 26). This waviness distribution, along with the spatial



94

orientation of the NTs, can be used within an appropriate micromechanical method to

provide a refined estimate of the effective moduli of a nanotube-reinforced polymer.

This procedure is demonstrated in the next section using the Mori-Tanaka method for

2D and 3D randomly orientated inclusions assuming a given distribution of nanotube

waviness.

Before we begin our analysis, it is insightful to estimate the range of values

that may be characteristic of the waviness and wavelength ratios associated with the

wavy geometry of embedded nanotubes. For illustrative purposes, Figure 25 shows an

image of an NRP with different wavy nanotubes marked by solid lines, with

approximate values for a/l and l/d given in the inset. Several nanotubes in Figure 25

are approximately straight (and not identified in the inset), while others show kinks

and bends which, while not of the sinusoidal shape assumed in the model, will

similarly limit the effective reinforcement of those nanotubes. We note that waviness

perpendicular to the plane of the TEM image is masked, and that NT straightening

during the preparation of the TEM sample may have occurred. Thus the waviness

parameters shown in Figure 25 are to be seen as illustrative only, and will be

influenced by the NRP system and the processing conditions of a particular sample.

While a more thorough procedure to determine the embedded nanotube waviness may

be warranted, for the purposes of this paper a hypothetical waviness distribution is

sufficient to show the effect of nanotube waviness on the effective modulus of an
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NRP. As our earlier analysis indicated, even for moderate nanotube waviness the

decrease in effective reinforcement can be appreciable.

A critical step in the analysis is the determination of the dilute strain-

concentration tensor 

† 

Ar
dil  relating the average strain of the rth inclusion to that of the

matrix. In the present analysis 

† 

Ar
dil  is found via (27), where the stiffness tensor(s) of

the inclusion phase(s) Cr are assumed to be isotropic with moduli EERM (based on the

finite element modeling described earlier) and the Poisson ratio of the straight

inclusion. The Eshelby tensors Sr are calculated assuming infinitely long cylindrical

inclusions. Thus to account for the waviness of a particular inclusion we first find

EERM, based on the embedded geometry and other applicable parameters, via a finite

element analysis. We then treat the wavy inclusion as a straight inclusion but with an

adjusted stiffness tensor to account for the wavy geometry. In related work discussed

in the next section, we show that 

† 

Ar
dil  can be computed directly from an appropriate

finite element analysis (Bradshaw, Fisher et al. 2002); in either case once 

† 

Ar
dil  has

been determined the implementation of the Mori-Tanaka solution remains unchanged.
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Figure 25. Illustrative example of nanotube waviness. (Image from (Qian, Dickey

et al. 2000)). (inset) Approximate values for the parameters w=a/l and l/d for the

highlighted nanotubes.

Figure 26. Model of an NRP using a multiphase composite analysis with a known

waviness distribution function.
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Our results suggest that modeling the NTs as straight inclusions (i.e. neglecting

the curvature of the embedded geometry) is a simplification that will severely

overestimate the reinforcement that the NTs provide the polymer. While the procedure

here is demonstrated using EERM calculations based on finite element results,

alternative means to evaluate EERM, such as molecular dynamics or related methods

(Odegard, Gates et al. 2001a), could also be used in a similar analysis. Adaptations of

the current model to include such effects as inter-layer (MWNTs) and inter-tube (NT

bundles) sliding, as well as imperfect bonding between the nanotubes and the polymer,

while not addressed here could also be developed.

Results

The objective of this work is to develop a method to incorporate the typically

observed waviness of embedded nanotubes into standard micromechanics techniques.

Because the nanotube has been modeled as a continuum, the method is also in general

applicable to other types of inclusions that may exhibit similar embedded geometries.

We note that EERM will be less than (or equal to) the true NT modulus due to its

waviness, and that a distribution of NT waviness within the material is likely. Thus

rather than treat the NRP as a two-phase (nanotube/polymer) composite, we have

developed a multiphase composite model where the NTs are partitioned into distinct



98

phases, with each NT phase assigned a characteristic EERM based on their embedded

waviness.

With this in mind, the remainder of this section is divided into two parts. In the

first part we discuss the impact of nanotube waviness and other model parameters on

EERM. We will then use the results of the EERM analysis to compare the predictions of

our micromechanical analysis, accounting for the embedded nanotube geometry, with

results obtained assuming straight nanotube inclusions and with published

experimental data for NRP effective modulus.

Effective reinforcing modulus EERM

As discussed previously, we have shown that the model for EERM is a function

of three parameters: the waviness (w=a/l) and wavelength ratio (l/d) of the nanotube

and the ratio of the phase moduli (Eratio=ENT/Ematrix). Figure 27 shows EERM as a

function of waviness for several different values of Eratio and a wavelength ratio of

100. For all simulations a matrix modulus of 1 GPa was used. As expected, for zero

waviness we obtain the straight nanotube results EERM=ENT. We note that EERM is

strongly dependent on the waviness and quickly decreases with increasing nanotube

curvature. This drop in EERM is less pronounced for smaller Eratio values because the

mechanical constraint of the surrounding matrix material in this case is more

significant.
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Figure 27. EERM as a function of nanotube waviness ratio (a/l) for different ratios

of phase moduli with wavelength ratio l/d=100. Ematrix=1 GPa.

Figure 28 shows the dependence of EERM on the nanotube wavelength ratio for

different values of waviness and Eratio=200. We see that as the wavelength ratio

increases the value of EERM converges to a constant value that is a function of the

waviness. While we have shown that for longer wavelength ratios (l/d > 1000) curves

of EERM versus waviness for different values of Eratio can be superposed via vertical

shifting (as discussed later in this section), for real NRP materials the wavelength ratio

is likely to be much smaller. Unless otherwise specified, to simplify the remainder of

this section we will only consider wavelength ratios of 100.
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Figure 28. EERM as a function of nanotube wavelength ratio (l/d) for different

values of nanotube waviness. (ENT=200 GPa, Ematrix=1 GPa).

In Figure 29 EERM (normalized with respect to ENT) is presented as a function

of Eratio for different values of waviness with l/d=100. Note that when the phase

moduli are equal (Eratio=1), the finite element cell is homogeneous and

EERM=ENT=Ematrix; while not shown explicitly in Figure 29 all curves monotonically

approach this point. With this in mind we note the strong initial decrease in EERM/ENT

for small values of Eratio, revealing the critical role of the mechanical constraint of

surrounding matrix for this case. As Eratio increases the impact of the mechanical

constraint diminishes, resulting in minimal changes in EERM/ENT for larger values of

Eratio (note that in the limit as Eratio Æ• the response is that of a free-standing wavy
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rod). From Figure 29 the impact of nanotube waviness on EERM is again evident; for

w=0.056, the effective reinforcement provided by the wavy nanotube decreases by

almost 20% for Eratio=200, a modulus ratio representative of those anticipated for

NRPs. For larger values of waviness the decrease in EERM is even more apparent. Note

that in our simulations we are interested in the initial reinforcing modulus of the wavy

nanotube, and do not consider the effects of nanotube straightening due to the

application of an applied load.

For all previous simulations the Poisson ratios of the matrix and nanotube were

assumed to be equal (nNT=nmatrix=0.30) to simplify the analysis. For many practical

nanotube-polymer systems the difference in Poisson ratio is likely to be relatively

small, with nNT typically predicted in the range of 0.20-0.30 and nmatrix for a typical

structural polymer approximately 0.25-0.40.7 Simulations were conducted with

constant wavy NT parameters (Eratio=200, l/d=1000, and w=0.1) while varying the

Poisson ratio of each phase to study the impact of the Poisson ratio mismatch on EERM.

The results of this study are shown in Figure 30. We found that the value of the

Poisson ratio of the nanotube is immaterial, which is not surprising considering the

small volume fraction of nanotube (< 0.05%) modeled in the finite element cell. While

the effect of nmatrix is more significant, we note that the difference in EERM is only ~5%

                                                  

7 The use of nanotubes as reinforcement in elastomers could potentially utilize the high elastic strains of
the nanotubes (Barraza, Pompeo et al. 2002). For such polymer systems the Poisson ratios are closer to
0.5, and the Poisson ratio mismatch may be more significant.
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for nmatrix between 0.25 and 0.40. Thus the results presented in this paper for

nNT=nmatrix=0.30 are in general applicable to a wide range of typical NT-polymer

composite systems.

Figure 29. Normalized EERM (with respect to ENT) as a function of Eratio for

l/d=100. For Eratio=1, the material is homogeneous and EERM=1 as marked; all

curves monotonically approach this point (not shown for clarity).



103

Figure 30. Effect of Poisson ratio on the EERM values calculated from the FEM

simulations. (l/d=1000, Eratio=200, w=0.1)

In summary, we have found that the effective reinforcing modulus EERM of an

embedded, wavy nanotube is strongly dependent on its geometry and the ratio of the

phase moduli. As expected, the stiffening effect of the wavy nanotube decreases as the

waviness of the nanotube increases, while stiffening increases as the wavelength ratio

l/d increases. We have also shown that EERM is a function of the ratio of the phase

moduli, as the constraint of the surrounding matrix on the straightening of the wavy

nanotube can be significant. Further, we have seen that for values of these parameters

which are likely to be representative of wavy nanotubes embedded within a polymer
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matrix, this reduction in effective modulus can be quite substantial, suggesting that the

waviness of the embedded nanotubes will result in less than optimal reinforcement.

Analytic expressions for EERM for large wavelength ratios

From our numerical simulations we have found that for sufficiently large

wavelength ratios (on the order of l/d > 500, dependent on the waviness ratio), the

effective reinforcing modulus EERM remains virtually constant for increasing

wavelength ratios. To illustrate, Figure 31 shows how the log of EERM varies with

respect to the waviness ratio for four difference ratios of phase moduli with l/d=1000.

Using a non-linear least squares solver we found that, for sufficiently large l/d, EERM

can be approximated as

† 

log EERM w,Eratio( ) = log Eratio + k1w + k2w
2 + k3w

3 . (57)

For Eratio=200, the curve fit parameters in (57) were found to be k1=-0.947, k2=-12.90,

and k3=22.27. This curve fit is represented by the solid line in Figure 31, which

demonstrates that the functional form of (57) well represents the data from our finite

element analysis.
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Figure 31. Plot of log EERM versus waviness for l/d=1000.

Unexpectedly, from Figure 31 it appears that the responses for different Eratio

seem to be related, such that the curves can be superposed (particularly for lower

waviness ratios) via an appropriate vertical shifting procedure. Such a shifting

procedure can be used to find the response for a particular value of Eratio given the

known response at a reference Eratio, via

† 

log EERM w,Erat( ) = log w,EERM ref( ) + log( E rat
E ERMref

) . (58)

This fit is demonstrated by the dashed lines in Figure 31, where the curve fit for

Eratio=200 has been used as the reference data. This vertical shifting procedure is seen



106

to well describe the response for different ratios of the phase moduli, particularly for

smaller waviness ratios.

We stress that the vertical shifting procedure given in (58) is only appropriate

for very large values of l/d, such that EERM is approximately independent of the aspect

ratio. This is verified in Figure 32, which shows a plot similar to Figure 31 but for a

smaller aspect ratio (l/d=100). Here it is apparent that while the general shapes of the

EERM curves appear similar, the responses for different Eratio cannot be related via a

simple vertical shifting procedure.

While this shifting procedure is limited in that it is only applicable for larger

values of the wavelength ratio l/d, based on Figure 28 we note that for sufficiently

small waviness ratios, the requirement of large wavelength ratio is greatly reduced. As

discussed earlier, the efficiency of the nanotubes as structural reinforcement is greatly

reduced for small wavelength and large waviness ratios, suggesting that NRP

fabrication techniques that can control these parameters will optimize the effective

modulus of nanotube-reinforced polymers. If the waviness of the embedded NTs is

minimized, then the shifting procedure outlined in this section may be useful in

analyzing EERM, and would significantly reduce the number of finite element

simulations required. However, for consistency we will use EERM values calculated

directly from our finite element analysis throughout the remainder of this chapter.
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Figure 32. Plot of log EERM versus waviness for l/d=100.

Micromechanical effective modulus predictions using EERM

We are now in the position to use EERM within traditional micromechanics

techniques in order to predict the effective modulus of NRPs. Here we highlight the

procedure outlined in Figure 26 by comparing effective modulus predictions obtained

using the Mori-Tanaka method with experimental tensile modulus data for various

loadings of MWNTs in polystyrene (Dow 666) (Andrews, Jacques et al. 2002). The

nanotubes used in this study were grown via a chemical vapor deposition process

using Xylene-ferrocene (Andrews, Jacques et al. 1999) and dispersed within the

polystyrene matrix via shear mixing in a Haake Polylab bowl mixer. While the
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researchers report good dispersion of the NTs within the matrix, in situ TEM straining

studies have found evidence of inadequate bonding between the phases (Andrews

2001).

Figure 33. Experimental data for MWNTs in polystyrene (Andrews, Jacques et

al. 2002) and micromechanical predictions of NRP effective moduli assuming a

3D random orientation of straight and wavy nanotubes. ENT=450 GPa.

In Figure 33 and Figure 34 we present the experimental data for the effective

tensile modulus as a function of volume fraction of MWNTs, together with the Mori-

Tanaka predictions assuming a single phase of straight NT inclusions randomly

orientated inclusions in 3D and 2D space, respectively. Also shown are the predictions
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obtained considering nanotube waviness by assuming each of the nanotube waviness

distributions given in Table 7. Lacking an appropriate image of the nanostructure,

these waviness distributions are loosely based on the NRP images shown in Figure 18

and represent two potential types of waviness (minimal waviness and more moderate

waviness) that may be anticipated for nanotubes embedded within a polymer matrix.8

For each waviness distribution EERM, for each nanotube phase was found from the

finite element model described previously with Eratio=200 and l/d=100. An Eratio of

200 was selected to approximate a value of ENT=450 GPa that has been given in the

literature for the modulus of NTs grown using a similar CVD method (Pan, Xie et al.

1999). These EERM values are given in Table 7. Given the waviness distribution and

appropriate values of EERM, the multiphase composite analysis described in the

previous section can be implemented.

                                                  

8 While it would be desirable to image a representative portion of the actual NRP sample to obtain the
waviness distribution, our results nonetheless clearly demonstrate how nanotube waviness can
significantly decrease the effective modulus of the NRP.
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Volume fraction
waviness (w=a/l) EERM (GPa)

NT distribution 1 NT distribution 2

0 450 0.4 0.05

0.05 383 0.4 0.15

0.1 260 0.2 0.3

0.25 57 0 0.3

0.5 10 0 0.2

Table 7. Effective reinforcing moduli and hypothetical NT waviness distributions

in the micromechanics analysis. (EERM values for Eratio=200 and l/d=100)

What is most striking about the results presented in Figure 33 and Figure 34

are the large discrepancies between the Mori-Tanaka predictions assuming straight

nanotubes and the experimentally measured moduli. While the experimental modulus

has been significantly enhanced with the addition of the NTs (the modulus increases

by a factor of two for 15 vol% NTs), the realized improvements in modulus are

significantly less than the micromechanics predictions with straight nanotubes would

indicate. Integrating moderate nanotube waviness (NT distribution 2) into the effective

moduli predictions is shown to drastically decrease the moduli predictions, suggesting

that NT waviness may be one factor limiting the modulus enhancement of NRPs.
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Figure 34. Experimental data for MWNTs in polystyrene (Andrews, Jacques et

al. 2002) and micromechanical predictions of NRP effective moduli assuming a

2D random orientation of straight and wavy nanotubes. ENT=450 GPa.

Similar results were found for other NRP experimental data presented in the

literature. Figure 35 shows the experimental modulus and micromechanics predictions

obtained for 5 wt% MWNTs embedded in epoxy (Schadler, Giannaris et al. 1998),

using the second waviness distribution and corresponding EERM values found in Table

7. Again the results show that the micromechanics predictions assuming straight NTs

overestimate the experimental data. However, moderate NT waviness can reduce the

predicted effective modulus of the NRP significantly, bringing the predictions more in

line with the experimental data. The results for unidirectionally aligned NTs, also
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shown in Figure 35, suggest that an order of magnitude increase in modulus may be

possible for such systems.

Figure 35. Experimental data for 5 wt% MWNTs in epoxy (Schadler, Giannaris

et al. 1998) and micromechanical predictions of NRP effective moduli assuming

straight and wavy nanotubes with different NT orientations.

At the moment it is impossible to distinguish the effects of nanotube waviness

from other mechanisms that would tend to decrease the effective properties of the

nanotube-reinforced polymer. Other conditions, such as a poor NT-polymer interface,

inadequate NT dispersion, and nanotube degradation due to processing of the NRP

would also result in experimental moduli less than those predicted using

micromechanics. However, based on images of nanotubes embedded in polymers and
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our modeling results presented here, we have demonstrated that nanotube waviness

may be an additional mechanism which can strongly influence the effectiveness of

nanotubes as structural reinforcement.

An Alternative Model to Incorporate Nanotube Waviness

into Effective Moduli Predictions

During the development of the EERM model, an alternative (albeit related)

solution was conceived to incorporate inclusion waviness into micromechanical

predictions of effective stiffness. In this alternative model, which we call the

Numerical Strain Concentration Tensor (NSCT) method, the complete dilute strain

concentration tensor 

† 

Ar
dil  is found via the solution of six separate finite element

models with appropriate boundary conditions, a procedure that is described in detail in

the literature (Bradshaw, Fisher et al. 2002). Once the dilute strain concentration

tensor 

† 

Ar
dil  has been determined, it can then be used directly in the Mori-Tanaka

solution (see equation (35)) to predict the NRP effective modulus.

The major difference between these two models is that the ERM model solves

a single finite element model, analogous to a numerical tensile test, and then treats the

wavy nanotube as an isotropic inclusion with a reduced modulus EERM. For the NSCT

model, the solution to the six independent finite element models (with identical
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geometry) yields an orthogonal effective response such that the isotropic

simplification used in the ERM model is unnecessary.  To demonstrate the difference

in the two models, the effective moduli predictions for a two-phase unidirectional

composite with a 10% volume fraction of NTs with Eratio=400 and l/d=100 are shown

in Figure 36-Figure 38.

Figure 36. Effective composite modulus E11 (in the x direction of Figure 21, out-

of-plane of NT waviness) with increasing waviness ratio (a/l) for the ERM and

NSCT models. (Bradshaw, Fisher et al. 2002)
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Figure 37. Effective composite modulus E22 (in the y direction of Figure 21, in the

plane of waviness and transverse to the NT axis) with increasing waviness ratio

(a/l) for the ERM and NSCT models. (Bradshaw, Fisher et al. 2002)

As one might expect, the largest difference between the two models is found in

the E22 term, which the NSCT model predicts will increase for large values of

waviness. This is sensible physically; as the waviness increases, the portion of the

wavy nanotube that is aligned towards the 2-direction increases, such that the NT

begins to provide significant reinforcement in this direction. This behavior cannot be

captured in the ERM model, where only the response of a single finite element cell

subject to loading parallel to the NT long axis is analyzed.



116

Figure 38. Effective composite modulus E33 (in the z direction of Figure 21,

parallel to the NT axis) with increasing waviness ratio (a/l) for the ERM and

NSCT models. (Bradshaw, Fisher et al. 2002)

The ERM and NSCT predictions for a two-phase NRP with a 3D random

orientation of wavy nanotubes are shown in Figure 39. Here we assume isotropic

constituent phases, a 10% NT volume fraction (where all NTs have the same

waviness), and Eratio=400. We see that for shorter wavelength ratios (l/d=10), the

difference between the models is minimal until very large values of the waviness ratio

a/l are considered, at which point the NSCT model predicts a stiffer effective

response.  For larger wavelength ratios (l/d=100), the difference between the two

models is more significant, although it should be noted that this difference is
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exaggerated here given the large NT volume fraction modeled. We also note that

Figure 39 assumes that all of the nanotubes have identical values of a/l. As discussed

previously, there is likely to be a distribution of NT waviness within the material, such

that only a fraction of the nanotubes would be characterized by a/l and l/d parameters

for which the difference between the ERM and NSCT results is significant.

Figure 39. Young's modulus predictions for an NRP with 3D randomly oriented

wavy NTs using the ERM and the NSCT models for Eratio=400. (Bradshaw,

Fisher et al. 2002)
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For NRP samples with moderate waviness, the differences in moduli

predictions given by the two models may be minimal and likely masked by other

factors; in this case the ERM model may be preferable due to its simplicity. For cases

where significant nanotube waviness is expected or has been observed, the NSCT

model is preferred because it more accurately models the full impact of the wavy

nanotube on the effective moduli of the NRP.

Summary

Motivated by micrographs showing that nanotubes embedded within polymers

often exhibit significant curvature, we have developed a model that incorporates this

curvature into traditional micromechanical methods via a multiphase composite

approach. Finite element results of embedded wavy inclusions show that the effective

reinforcing moduli EERM of the inclusions quickly decreases as a function of inclusion

waviness, and is also dependent on the wavelength ratio and the ratio of the phase

moduli. Using material properties representative of nanotube-reinforced composites,

we have shown that nanotube waviness can reduce the predicted effective moduli of

these materials by a factor of two or more, and may be one reason why the modulus

enhancement of NRPs, while significant, is somewhat less than predicted using

standard micromechanical techniques. While for some applications (such as impact
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resistance and energy absorption) nanotube waviness may be beneficial, for structural

applications inclusion waviness can significantly degrade the modulus enhancement

provided by the nanotube inclusions.

While here we use EERM values based on finite element modeling, alternative

means to determine an appropriate value of EERM, incorporating more detailed atomic

scale information, could also be used in a similar analysis. Adaptations of the current

model to include inter-layer (MWNTs) and inter-tube (NT bundles) sliding, and a

transversely isotropic NT inclusion, will also be addressed in future work.

Our results suggest that methods of NRP fabrication that reduce the waviness

of embedded NTs would result in more efficient structural reinforcement. For

example, one can hypothesize that nanotube waviness may be one reason why NRP

modulus enhancement has sometimes only been reported at higher temperatures as

shown in Figure 40 (Shaffer and Windle 1999; Jin, Pramoda et al. 2001). If

compressive stresses developed during polymer cure introduce bending (and hence

curvature) into the embedded nanotubes, significant NT reinforcement may only be

realized as the NTs straighten due to polymer softening at elevated temperatures.
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Figure 40. Storage moduli of PVOH reinforced with MWNTs (Shaffer and

Windle 1999).

While it might seem intuitive that NT waviness would decrease the NRP

effective modulus, the utility of the models presented in this Chapter is that for the

first time we are able to quantify the impact of this waviness on the NRP effective

modulus. One drawback of the model is that presently it is impossible to differentiate

nanotube waviness from other reinforcement-limiting mechanisms in the system.

Another simplification is the assumption of the sinusoidal shape describing the

nanotube waviness. Based on images of free-standing and embedded nanotubes, it is

likely that the waviness of the nanotube will vary both along, and between, the

embedded nanotubes. Nanotube waviness is also likely to be strongly dependent on
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the processing conditions and NT-polymer interaction for a particular system under

investigation.

A potential means of experimentally validating the proposed model of

nanotube waviness is the use of silicon nanostructures of well-defined shape and

dimension, as shown in Figure 41 (Yin, Gates et al. 2000). These pieces are fabricated

using a technique that combines near-field optical lithography, followed by a reactive

ion etch and subsequent lift-off from the substrate. The result of the processing

technique is nanometer-sized structures of single crystal silicon. This method has been

proposed as a quick and efficient means of creating accurately dimensioned

nanostructures at a very reasonable price.

Figure 41. SEM images of silicon nanostructures. (Yin, Gates et al. 2000)
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While the primary interest in these silicon nanostructures comes from the area

of microelectronics, in regards to the current work these structures may provide model

wavy inclusions of well-defined geometry as a means to experimentally validate the

models proposed in this Chapter. Given that such nanowires can be easily fabricated, a

model polymer matrix composite with idealized nanostructured inclusions could be

produced. It would be useful to compare the experimental moduli obtained for such

materials with the theoretical models presented here. While experimental validation of

the proposed wavy nanotube model was beyond the scope of the work in this

dissertation, future experimental work along these lines is warranted.
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CHAPTER 4: VISCOELASTIC BEHAVIOR OF CARBON

NANOTUBE-REINFORCED POLYMERS

Recent experimental results demonstrate that substantial improvements in the

elastic properties of a polymer can be attained by using small volume fractions of

carbon nanotubes as a reinforcing phase. While these preliminary results are

intriguing, to date limited theoretical and experimental work has been done to

investigate the impact of the nanotubes on the viscoelastic response of the polymer.

Because the nanotubes are on the same length scale as the polymer chains, it is

hypothesized that the polymer segments in the vicinity of the nanotubes will be

characterized by a mobility that is different from that of the polymer chains in the bulk

material. This reduced mobility, non-bulk polymer behavior, which we will refer to as

an interphase, results in significant differences between the viscoelastic (VE) behavior

of the bulk polymer and that of the nanotube-reinforced polymer. Experimental work

presented in the literature, and our own experimental data described below, verify this

phenomena (Shaffer and Windle 1999; Gong, Liu et al. 2000). As discussed in more

detail in Chapter 2, such differences in VE response are typically characterized by:
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1. increases in the low temperature (below the polymer glass transition

temperature Tg) storage modulus,

2. significant increases in the high temperature (above Tg) stiffness of the

material,

3. shifting of the effective glass transition temperature of the material, usually

to temperatures greater than the Tg of the polymer, and

4. broadening of the loss moduli and loss tangent peaks.

In order to further characterize the viscoelastic response of nanotube-

reinforced polymers, we have started an experimental program characterizing

nanotube-reinforced polycarbonate. Samples for this study have been provided by Dr.

Linda Schadler at Rensselaer Polytechnic Institute, who has extensive experience in

the fabrication of nanotube-reinforced polymers (see (Schadler, Giannaris et al.

1998)). She has kindly provided well dispersed samples of 1 and 2 wt% MWNTs in

polycarbonate (PC), as well as pure PC samples fabricated using an identical high

temperature molding process. Samples with higher loadings of NTs are currently

being developed and will be the subject of future studies (Schadler 2002).

Using dynamical mechanical analysis, three modes of viscoelastic response

were tested for both pure and NT-reinforced polycarbonate:
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1. temperature sweeps to measure the effective glass transition

temperature of the samples,

2. frequency sweeps at different temperatures to determine the relaxation

spectra of the samples, and

3. time domain creep/recovery tests to study the physical aging

characteristics of the materials.

The results from each form of viscoelastic testing show that the viscoelastic

behavior of the NRP is different than that of the pure polymer. This behavior is

attributed to the nanoscale interactions between the embedded nanotubes and the

polymer chains in the vicinity of the nanotubes, which in effect causes the composite

to behave as the three phase (nanotube/interphase/matrix) composite shown in Figure

42.1 If one assumes that the behavior of the nanotubes is purely elastic, then the

differences in viscoelastic behavior between the pure polymer and the corresponding

NRP must be due to changes in the viscoelastic response of this non-bulk polymer

(interphase) region. It is worth noting that, in general, the viscoelastic behavior of

polymer matrix composites with micron-sized inclusions closely mirrors that of the

                                                  

1 One could also argue that an appropriate model of the response would be that of a two-phase
(nanotube-altered polymer) composite, where the nanotubes cause a uniform change in polymer
properties throughout the composite. However, in the authors opinion such behavior is unlikely at the
nanoscale. For low volume fractions of nanotubes, there are likely to be regions of polymer so removed
from the embedded nanotubes that the polymer response in this region is unaffected by the nanotubes
and hence identical to that of the bulk polymer.
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pure polymer used as the matrix phase. Thus models of NRP viscoelastic behavior will

have to be modified to account for this reduced mobility interphase region.

Our experimental results for each mode of viscoelastic behavior (Tg, relaxation

spectra, and physical aging) are consistent with the hypothesis that this non-bulk

polymer phase can be characterized by restricted molecular mobility. The effect of this

restricted mobility region on each mode of viscoelastic response, as well as the

advantages and disadvantages of each testing procedure, are given in Table 8.

Figure 42. Three phase model of nanotube-reinforced polymer. Interphase

thickness t = ri-rf.



127

Glass transition

temperature
Frequency response Physical aging

Effective

NRP

behavior

Shift of Tg to

higher

temperatures

Broadening of the

relaxation spectra to

higher frequencies

Longer times needed to

rejuvenate the sample;

slower effective aging2

Strengths Easiest to test
Micromechanics models

available

Most sensitive to the

addition of the NTs

Weaknesses

Shift in Tg is

small; lack of Tg

molecular models

More difficult than Tg

analysis; less sensitive

than physical aging

Most complicated to

run; longer experimental

times

Table 8. Modes of viscoelastic characterization.

In the sections that follow we will first present an introduction to

viscoelasticity, focusing on a discussion of how the viscoelastic behavior of a polymer

can be described based on the molecular mobility of the polymer chains. The influence

of this molecular mobility on the glass transition temperature, time- and frequency-

response of the material, and the physical aging characteristics of the polymer will

follow. After briefly outlining the principles of dynamic mechanical analysis and the

experimental tests that were conducted for this dissertation, we will present the

experimental results of our testing of the glass transition temperature, frequency

                                                  

2 To date, complete rejuvenation to erase the thermal and mechanical history of the samples has yet to
be achieved. However, our preliminary results lead us to believe that the long-term creep characteristics
of the NRP sample will be significantly different from that of the bulk polymer. Further experimental
work in this area is ongoing.
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response, and physical aging of both blank (un-reinforced) and NRP samples. Included

in the discussion of the frequency domain behavior will be initial modeling of the

effective response using a frequency-domain Mori-Tanaka micromechanical approach.

Such an approach may eventually lead to quantitative evaluation of the size and

properties of the interphase region of the NRP via experimental results on macroscale-

sized samples. We will conclude with a summary of the current results of this work

and present future directions of research.

Introduction to Viscoelasticity

The classical theory of linear elasticity assumes that the stress and strain within

a material are directly proportional in accordance with Hooke’s Law, such that

† 

s = Ce, where C is the stiffness tensor of the material and 

† 

s  and 

† 

e are the stress and

strain in the material, respectively. The response of an elastic material is independent

of strain rate (and thus time and frequency) and temperature (other than thermal

expansion effects). For an elastic material, removal of the applied stress (or strain)

implies the material will return to its pre-deformed shape, such that the energy of

deformation required to produce the deformation is recovered. Elasticity theory

properly describes the mechanical behavior of a wide range of solids, particularly at

low temperatures and low levels of strain. On the other hand, for a wide range of
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fluids, the state of stress is proportional to the strain rate of the material but is

independent of the strain, and is described for a Newtonian fluid as 

† 

t = h˙ e , where 

† 

h

is the viscosity of the fluid and 

† 

t  and 

† 

˙ e  are the stress and the rate of strain of the fluid,

respectively. The energy required to deform a Newtonian fluid cannot be recovered.

The Hookean Law for elastic solids and the Newtonian Law for viscous fluids

are each idealizations of material behavior, however, and do not represent accurate

mechanical models for a wide range of materials. In particular, these models are

insufficient to describe the mechanical behavior of most polymer systems, whose

behavior can be described as having both solid-like and liquid-like characteristics.

Specifically, given an applied deformation some of the energy input into the system is

stored within the material (elastic response), while some of the energy is dissipated as

heat (viscous response). Materials that demonstrate such behavior are better described

by viscoelastic models, which incorporate both elastic-like and viscous-like response

characteristics. For such materials the mechanical response is time-dependent, and can

be described in terms of an integral equation of the form

† 

s ij (t) = Cijkl t - x( )
-•

t

Ú
dekl x( )

dx
dx (59)

where 

† 

s ij  and 

† 

ekl  are the standard stress and strain tensors and 

† 

Cijkl  is the time-

dependent modulus. The viscoelastic behavior demonstrated by polymers is a direct
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consequence of the complicated molecular motion that must underlie any mechanical

deformation, as is described further in the next section.

Similar to the case of elasticity, given sufficiently small values of applied

stress the response of the material is both superposable and scalable, such that when

† 

s = s1 + s2, 

† 

e = F(s) = F(s1) + F(s2) , and 

† 

e = F(a s) = aF(s) , where a is a constant.

In such a case the response is described as linear, and we will limit our discussion in

this dissertation to such conditions. A full discussion of viscoelasticity is beyond the

scope of this dissertation; the reader is directed to several excellent textbooks have

been devoted to this area (Ferry 1980; Aklonis and MacKnight 1983; Tschogel 1989).

Molecular theory of polymers and viscoelasticity

A polymer can be defined as a substance composed of molecules which have

long sequences of one or more species of atoms or groups of atoms linked to each

other by primary, usually covalent, bonds (Young and Lovell 1991). Thus on the

nanoscale a polymer can be thought of as a “bowl of spaghetti”, where the individual

polymer chains are highly entangled, and in the case of thermosetting polymers, cross-

linked at various points along the chain. Whereas deformation of a solid can be simply

thought of as displacements of the atoms from an equilibrium position, polymer

deformation requires highly cooperative motion amongst adjacent polymer chains (and

perhaps between different segments of the same polymer chain). When subject to a
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given load, instantaneous rearrangements of the polymer chains result in an initial

configuration of the local polymer chains that represents the (momentary) minimum

free energy of the system. However, if the state of deformation is maintained over

time, long-range cooperative motion of the polymer chains will result in different

minimal free energy configurations. While rearrangements on a local scale are

relatively rapid, the long-range cooperative motion among the polymer chains can be

quite slow; this results in the range of relaxation times which typically characterize

viscoelastic behavior.

It is this continual rearrangement of the polymer chains that results in the

viscoelastic behavior demonstrated by most polymers. The critical parameter

describing how the polymer will respond to an applied strain (or stress) is the mobility

of the polymer chains. The mobility of the polymer chains is influenced by both the

chemical structure (the length of the chains, the size of the side groups which are

attached to the backbone chain, and entanglements and/or cross-links among the

chains, etc.) and the available thermal energy. Thus, polymers demonstrate both time-

dependent (based on the range of time scales that describe various configurational

rearrangements of the chains) and temperature-dependent properties. The vital

parameter describing the temperature-dependent response of a viscoelastic material is

the glass transition temperature Tg, which is described below.
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Glass transition temperature

Every polymer system has a characteristic temperature, which is known as the

glass transition temperature, below which thermal motions of the individual chains is

greatly restricted (Ferry 1980). This glass transition temperature is typically thought of

using the concept of free volume. Free volume is the unoccupied “empty space” on the

nanoscale; it is the available space that the polymer chains can use to accommodate

their rearrangements in configuration. At sufficiently high temperatures, enough free

volume is present such that the chains can instantaneously achieve their equilibrium

volume, and thus the material is in thermodynamic equilibrium. Polymers at such

temperatures are soft (for thermoplastic polymers the material may be in the melt

state); this is referred to as the rubbery region of the mechanical response.

However, as the temperature is reduced, the amount of free volume within the

polymer decreases, until eventually the molecular motion of the chains is impeded due

to a lack of free volume. Because of an insufficient amount of free volume (or

alternatively, thermal energy), chain motion is restricted and the viscoelastic

properties of the polymer are largely independent of time (or frequency). This is

referred to the glassy or pseudo-elastic state of the polymer. The temperature marking
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the critical free volume at which this transition occurs is called the glass transition

temperature, and is shown schematically in Figure 43.3

Figure 43. The glass transition temperature and physical aging.

Recall that a viscoelastic material is one that exhibits both elastic and viscous

behavior. From the standpoint of mechanical behavior, this implies that a portion of

the energy of deformation is recoverable (characterized by the storage modulus E’)

and that a portion of the energy of deformation is irrecoverable (characterized by the

loss modulus E”). The ratio of the viscous to elastic components of the polymer

                                                  

3 While we will treat Tg as a discrete temperature, in reality slight deviations in the chain configurations
at the nanoscale will result in a continuous transition from glassy to rubbery behavior.
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response is designated the loss tangent tan d, such that tan d=E”/E’. The difference in

mechanical behavior between the glassy and rubbery regimes is most evident when

these material properties are measured as a function of temperature.

A common method of determining the glass transition temperature of a

polymer is to use dynamic mechanical analysis (DMA). In this technique, the

mechanical response of a polymer is probed as a function of temperature, and the

temperature at which tan d is maximum is assigned as the glass transition temperature.

(Note that this definition of Tg is somewhat arbitrary, and while this definition is the

most common, alternative definitions can be employed as discussed in the literature.)

An example of the temperature dependence of the mechanical response for an epoxy

sample is shown in Figure 44. The glass transition temperature for this sample is

approximately 155 °C, and coincides with the sharp drop in storage modulus.

The glassy regime of behavior (for T < ~150 °C) is characterized by a stiff

material response and a relatively constant storage modulus. As the test temperature

approaches Tg, the storage modulus quickly decreases; this is referred to as the

transition region of the mechanical response. For temperatures greater than Tg, the

polymer response is described as rubbery, and displays a storage modulus that is

orders of magnitude less than that of the glassy region. The behavior of the storage

modulus in this region is strongly dependent on the chemical structure of the polymer.

For thermoplastic polymers, the storage modulus will continually decrease as a
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function of temperature as the polymer softens and ultimately melts at the melting

temperature. For a thermoset system (such as the epoxy shown here), the rubbery

region storage modulus will plateau at a relatively constant value until the polymer

begins to degrade at sufficiently high temperatures.

Figure 44. Temperature dependence of the modulus of an epoxy sample.

More information regarding the technique of dynamic mechanical analysis,

along with definitions of the various viscoelastic moduli, is provided later in this

Chapter. Other experimental techniques can also be used measure the Tg of polymer

samples, including differential scanning calorimetry (DSC) and thermomechanical
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analysis (TMA); however, DMA is very sensitive to the changes in the underlying

structure of the material and is particularly suited for transition measurements (Menard

1999).

Physical aging

Referring to Figure 43, below the glass transition temperature the material is

not in thermodynamic equilibrium, as sufficient free volume is not available for the

polymer chains to instantaneously achieve the minimal free energy state. Thus as the

sample remains below Tg, long-scale cooperative coordination of the polymer chains

will gradually allow the polymer to reach its thermodynamic equilibrium state. As this

gradual evolution towards thermodynamic equilibrium takes place, material properties

such as specific volume and modulus will also continuously change (Struik 1978).

This process is known as physical aging, and is dependent on the thermal history of

the sample. Because the mechanical properties of the polymer change as a result of

physical aging, physical aging can have a large impact on the long-term properties of

polymeric materials. For a more in-depth discussion of physical aging, the reader is

referred to the literature (Struik 1978; Ferry 1980).

Physical aging is a thermoreversible process, and as such is distinct from

degradative processes such as chemical aging and damage. If the sample is heated for

a sufficient time above the glass transition temperature, the thermal history of the
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sample is erased; this is a process called rejuvenation.4 Once a sample has been

rejuvenated, it loses all “memory” of it past thermal history. Upon a subsequent

quench to below Tg, the process of physical aging then starts anew. The time spent

below Tg, relative to the last rejuvenation, is called the aging time te.

Figure 45. Isothermal physical aging test method of Struik.

Characterization of the isothermal physical aging characteristics of a polymer

are typically carried out using the short-term creep test method developed by Struik

                                                  

4 While rejuvenation is typically thought of an instantaneous process occurring once the material is
above Tg, in reality thermal gradients within the sample and other factors make it necessary to maintain
the sample above Tg for a sufficient period of time before total rejuvenation takes place.
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(1978) and described schematically in Figure 45.5 After the material has been

rejuvenated above Tg for a sufficient period of time, the sample is quenched to the test

temperature Ttest and maintained at this temperature for the duration of the test.

At different aging times te (time since quench), the sample undergoes a short-

term creep test. The duration of the short-term test is 10% of the aging time at the start

of the test, to ensure that further aging of the sample during the shot-term creep test is

negligible. At the end of each loading step, the applied load is removed and the sample

allowed to recover until the start of the next short-term creep test. Typically the aging

times at the start of each short-term test are chosen such that 

† 

t e
i+1 = 2t e

i . (For the

experimental work discussed later in this chapter, the initial aging time was 45

minutes.) From each short-term creep test, a momentary compliance curve is obtained

as shown in Figure 46 for a pure polycarbonate sample. As expected, during each

individual creep test the compliance S(t) decreases (i.e. the stiffness increases) due to

the molecular rearrangements of the polymer chains, which suggests a loss of chain

mobility due to physical aging.

For typical physical aging of polymeric materials, the compliance curves at

different aging times can be superposed through a horizontal shift. Analogous to the

more standard shifting of material responses in time and frequency space (time-

                                                  

5 This method has also been extended to study the nonisothermal physical aging of polymeric materials
(Bradshaw 1997).
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temperature superposition, which is discussed in the next section), this shifting of

momentary compliance curves is referred to as time-aging time superposition.

Typically the momentary compliances at different aging times are shifted to the largest

aging time, as this represents the compliance curve for which the greatest number of

data points has been collected. An example of the shifting of the momentary

compliance curves to create a reference momentary compliance curve, based on the

polycarbonate data shown in Figure 46, is shown in Figure 47. The amount of shifting

necessary to superpose the momentary compliance curve at aging time te to the

reference aging time te,ref is referred to as the aging time shift factor 

† 

at e
.

Figure 46. Short-term momentary compliance curves for different aging times

(pure PC sample, rejuvenated at 165 °C for nominal 15 minutes).
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Figure 47. Shifting of momentary compliance curves to form a reference curve

(pure PC sample, rejuvenated at 165 °C for nominal 15 minutes).

For a specimen isothermally aged at a given temperature T<Tg, it has been

shown experimentally that the aging time shift factors 

† 

at e  are linearly related to the

aging time in log-log space via the shift rate µ, such that

† 

m = -
dlogate

dlogt e
. (60)

This relationship is shown in Figure 48 for the same polycarbonate data presented

earlier. The shift rate µ is a material parameter that may be used to determine the

momentary compliance (and hence the modulus) at a particular aging time given an
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aging time reference curve. For most polymer materials, the shift rate m is on the order

of 1 (Brinson and Gates 1995).6

Data reduction for all physical aging experimental data (including that

presented above) was carried out using PHYAGE, a program developed at

Northwestern to characterize the isothermal physical aging of polymers. The program

uses an error minimization routine to fit an appropriate function to the experimental

compliance data, and then proceeds to find the optimal reference curves and shift rates

describing the physical aging of the polymer. Details of the program are provided

elsewhere (Bradshaw and Brinson 1997c; Bradshaw and Brinson 1997a).

The fact that the momentary compliance curves at different aging times can be

superposed via a horizontal shifting procedure demonstrates that on the nanoscale

physical aging has the effect of altering the relaxation times (and thus the molecular

mobility) characteristic of the polymer. Thus we suspect that the embedded carbon

nanotubes may alter the physical aging response of the polymer, when compared to

physical aging of the un-reinforced sample. Later in this chapter we will present our

initial findings in this regard, which seem to verify this hypothesis.

                                                  

6 Given a sufficiently long period of physical aging, the material will eventually reach effective
equilibrium, which is characterized by an order of magnitude decrease in the shift rate (McKenna,
Leterrier et al. 1995). However, effective equilibrium is not considered in the present work.
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Figure 48. Shift factors and the shift rate µ describing physical aging. (Data for

pure PC sample, rejuvenated at 165 °C for nominal 15 minutes)

Time- and frequency- domain response

Based on the previous discussion of the molecular structure of polymers, it is

not surprising that such materials exhibit time-dependent properties. The viscoelastic

time-dependent modulus can be characterized by a Prony series representation of the

form

† 

E(t) = E• + E j e
-

t
t j

j=1

N

Â , (61)
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where 

† 

E•  is the rubbery asymptotic modulus, 

† 

E j  are the Prony series coefficients,

and 

† 

t j are the relaxation times. Taking the half-sided Fourier transform of (61) yields7

† 

E (w) = E(t)e- iw t dt
0

•

Ú , (62)

where i is the imaginary number. The frequency-domain response is described by the

complex modulus 

† 

E * w( ) , which is defined as

, (63)

† 

¢ E (w) = E• +
E j w

2

1
tj

2 + w2
j=1

N

Â

¢ ¢ E (w) =

E j

tj
w

1
tj

2 + w2
j=1

N

Â

. (64)

The terms defined in (64) are referred to as the storage modulus 

† 

¢ E (w)  and loss

modulus 

† 

¢ ¢ E (w) , respectively.8 The storage modulus is a measure of the energy stored

                                                  

7 While this is generally referred to as a Fourier transform, note that it is missing the factor of 1/2π that
typically appears in the standard definition of the Fourier transform.
8 Such notation follows the standard convention of viscoelasticity, where the use of single primes and
double primes denote storage (elastic) and loss (viscous) components of a complex material function,
respectively. This notation will be used throughout this dissertation.
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and recovered by a viscoelastic material per cycle of sinusoidal deformation, whereas

the loss modulus is a measure of the energy dissipated as heat during a similar cycle

(Tschogel 1989). Note that as written in (64) both the storage and loss moduli are real

quantities.

The ratio of the loss modulus to the storage modulus is referred to as the loss

tangent tan 

† 

d , such that

† 

tand =
¢ ¢ E 
¢ E 
. (65)

The loss tangent is related to the ratio of energy loss to energy stored in the

deformation cycle. Note that the loss tangent is a dimensionless parameter. An

example of the storage and loss moduli and the tan 

† 

d  as a function of temperature (for

a constant frequency, sinusoidal deformation) was given previously in Figure 44.

Time-temperature superposition

While experimental measurements of the polymer response can in theory be

measured for any length of time, time scales on the order of months or years would be

impractical for most applications. Here one can use the principle of time-temperature

superposition, a method of reduced variables, in order to extend the time scales (by

many orders of magnitude) of the response at a particular temperature of interest. For

example, since experimental data may only be available over a limited range of
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frequencies, the principle of time-temperature superposition is extremely useful in that

it can extend the range of frequencies over which the material behavior can be studied.

Because time-temperature superposition is a standard tool for the analysis of

experimental viscoelastic data, it will only be briefly described below. The reader is

referred to any classical book on viscoelasticity for a more precise treatment; see for

example Ferry (1980).

The basic principle of time-temperature superposition (analogous to time-aging

time superposition described previously) is that the material behavior at different

temperatures can be superposed via horizontal shifting in log-log space to form a

reference (or master) curve at a given temperature. This permits one to have a measure

of the polymer response over a range of time (or frequency) scales using data collected

within experimental accessible time scales.

This procedure is demonstrated using creep compliance data collected on an

epoxy sample as shown in Figure 49 (O'Brien, Mather et al. 2001). Here data is

collected over a relatively short time range (up to approximately 100 s) at

temperatures ranging from 30 °C to 175 °C. These individual creep compliance curves

are then shifted to the right (higher temperatures are shifted further and correspond to

longer times) and superpose to form the master reference curve at 30 °C. Thus using

time-temperature superposition, the material behavior at 30 °C is now available over

approximately 14 orders of magnitude, which would certainly be inaccessible
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experimentally. Mathematically, the shifting of material response data collected at

different temperatures can be expressed as

† 

E(t;T1) = E( t
aT

;Tref ) , (66)

where aT is referred to as the temperature shift factor and Tref is the temperature of the

master curve.

Frequency-domain data collected at different temperatures can be shifted in an

equivalent manner, providing the material response at a given temperature over a large

range of frequencies. Occasionally slight vertical curve shifting will be required (this

is true for both the time and frequency domain experimental data); often the basis of

this vertical shifting is the temperature-dependence of the polymer density as

discussed further in the literature (Ferry 1980; Aklonis and MacKnight 1983). Because

time-temperature superposition was only used here as a means to extend the range of

frequencies available for the collection of experimental data, further discussion of

topics associated with time-temperature superposition (such as the standard WLF

representation of the temperature shift factors) is not warranted here. The reader is

referred to the literature for further reading in this area (Ferry 1980; Aklonis and

MacKnight 1983).
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Figure 49. Time-temperature superposition for the creep compliance of an epoxy.

Tref=30 °C. (O'Brien, Mather et al. 2001).

Relaxation spectrum

As the number of the Prony series elements representing the time dependent

modulus in (61) goes to infinity, one obtains a continuous spectrum of relaxation times

describing the viscoelastic response of the polymer. In this case, the time-dependent

modulus can be expressed as

† 

E(t) = E• + H(t)e
- t

t

-•

•

Ú d(ln t) (67)
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where H(t) is referred to as the relaxation spectrum. The relaxation spectrum

represents the infinitesimal contributions to the modulus from relaxation times lying in

the range from 

† 

t  to 

† 

t + dt. The relaxation spectrum is useful in qualitatively gauging

the distribution of relaxation mechanisms (and hence, again, molecular mobility) at

different time scales (Ferry 1980). Thus the relaxation spectrum will give us a

qualitative manner in which to analyze the impact of the embedded nanotubes on the

relaxation mechanisms of the nanotube-reinforced polymer.

For our purposes it will suffice to use Alfrey’s approximation of the relaxation

spectrum, which is defined as

† 

H(t) ª -
dE(t)
dln(t)

. (68)

Thus the relaxation spectrum can be approximated as the negative slope of the time-

dependent modulus (Ferry 1980). Assuming that a Prony series representation of the

time-dependent modulus is known, the relaxation spectrum can thus be approximated

via the analytical expression

† 

H(t) ª
t

t j
E j

j=1

N

Â e
-

t
t j . (69)
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Equation (69) was used to approximate the relaxation spectra for the different samples,

and used the Prony series elements determined from the curve-fitting procedure

described later in this Chapter.

An interphase region in nanotube-reinforced polymers

Because the nanotubes are on the same length scale as the polymer chains, it is

anticipated that the NTs will alter the local polymer morphology in the region directly

surrounding the nanotube (see Figure 42). We refer to this region of non-bulk polymer

behavior as the interphase, borrowing a term used in the composites community that

refers to the region separating the fiber and matrix phases. Due to changes in the local

chain structure of the polymer, the interphase region will have mechanical properties

different from those of the bulk polymer. While in traditional composites research the

interface region is generally attributed to a host of factors (such as the use of fiber

sizings, mechanical imperfections, unreacted polymer components, etc.), here we limit

our discussion specifically to the change in molecular mobility of the polymer chains

in this region due to the presence of, and interactions with, the nanotube inclusions.

Recent experimental work has estimated the interphase thickness for carbon

fiber-epoxy composites to be on the order of 1 µm for a 25 µm diameter fiber

(Thomason 1995; Mai, Mader et al. 1998). Because the interphase region makes up a

very small fraction of the micron-sized fiber composite, its impact on the overall
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viscoelastic response of the material is often neglected. However, recent molecular

dynamic simulations of NRPs suggest that the local changes in the polymer structure

are on the same length scale as the diameter of the NT, as shown in Figure 50 for a

SWNT/PmPV/LaRC-SI composite system. (Odegard, Gates et al. 2001b; Wise and

Hinkley 2001). In this case, the volume fraction of the interphase within an NRP will

be much larger than the interphase region in a micron-sized composite.

For the system shown in Figure 50, poly(m-phenylenevinylene) (PmPV) is

used to enhance the interfacial characteristics of the system, as it has been shown that

such molecules tend to helically wrap themselves around the nanotube (Lordi and Yao

2000). From Figure 50 we see that the local density of the polymer molecules is

greater in the vicinity of the nanotube, which from a molecular standpoint can be

viewed as reducing the molecular mobility of these polymer chains (in comparison to

those exhibiting bulk polymer behavior). It is hypothesized that such behavior will

also be exhibited in nanotube-reinforced polymer systems without the use of an

interfacial polymer, although much more work in this area is required.
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Figure 50. Equilibrium structure of a (6,6) SWNT/PmPV/LaRC-SI composite

system based on molecular dynamics simulations (Odegard, Gates et al. 2001b).

Because the nanotubes have significantly more surface area (per unit volume)

than micron-sized inclusions, a significant fraction of the polymer in NRP systems

will be in the near vicinity of an embedded nanotube, and thus may be characterized

by this non-bulk behavior. From simple geometric considerations (see Figure 42), the

volume fraction of the interphase region Vi is related to the volume fraction of the

fiber/nanotube inclusion Vf and the thickness of the interphase region t as (Fisher and

Brinson 2002)

† 

Vi = 2 t
rf

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ +

t
rf

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

2È 

Î 

Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 

Vf =bVf . (70)

Likewise, the ratio of the volume fraction of the non-bulk polymer phase (interphase)

to the total volume fraction of viscoelastic phases within the composite (interphase

and matrix) can be expressed as
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† 

Vi
Vi + Vm

=
bVf

1-Vf
. (71)

These expressions are shown graphically in Figure 51 as a function of fiber/nanotube

volume fraction for various ratios of interphase thickness t to fiber radius rf.

Representative values of (t/rf) are on the order of 0.05 for carbon fiber composites

(Thomason 1995) and 1.0 for nanotube-reinforced polymers (Wise and Hinkley 2001),

respectively.

From Figure 51, we see that for the case of nanotube-reinforced polymers

(where the ratio t/rf is on the order of 1.0), a significant portion of the NRP can be

characterized as the interphase region. In this case, the non-bulk polymer behavior of

the interphase region is expected to contribute to the overall viscoelastic response of

the material. For the case for traditional micron-sized fiber polymer composites, where

the ratio t/rf may be on the order of 0.05, the interphase region is much smaller and

often neglected in micromechanical predictions of effective properties.9 We note that

Figure 51 suggests that the interphase volume fraction will be appreciable for even

relatively low loadings of nanotube inclusions.

                                                  

9 Fiber sizings are known to significantly enhance the fiber-matrix interface in traditional polymer
matrix composites. However, because the interphase region in such systems is typically small, it is often
neglected in micromechanical predictions for the effective modulus of these materials.
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Figure 51. Interphase volume fraction (Vi) (left) and ratio of the interphase (non-

bulk) to matrix (bulk) volume fraction (Vm) (right) as a function of fiber volume

fraction Vf.

Perhaps the simplest means to model this non-bulk polymer behavior is to

assume a distinct interphase region, within which interactions between the nanotubes

and the polymer chains alter the characteristic relaxation times of the material.

Recalling the Prony series form for a viscoelastic modulus discussed previously, the

change in relaxation times of the interphase region can be modeled via the

introduction of a mobility parameter 

† 

a , which relates the mobility (and hence the

mechanical properties) of the interphase to that of the pure polymer matrix (Fisher and

Brinson 2002), such that10

                                                  

10 It is also likely that interactions between the polymer chains and the nanotubes will result in changes
in the magnitude of the time (and frequency) domain moduli of the interphase region with respect to
that of the pure polymer. Such changes could be incorporated into this model via multiplication of the
Prony coefficients Ej. Such modeling efforts will be pursued in future work.
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† 

E(t) = E• + E j e
-

t
a t j

j=1

N

Â . (72)

The effect of the mobility parameter 

† 

a  on the time domain modulus of the

material is shown schematically in Figure 52. In this manner the mobility parameter 

† 

a

can be used to qualitatively characterize the change in mechanical properties of the

non-bulk polymer phase. For 

† 

a <1 the polymer chains are more mobile, which shifts

the transition region of the time-dependent response to shorter times. For 

† 

a >1, the

opposite is true and the response of the non-bulk phase is stiffer than its bulk polymer

counterpart. By definition, 

† 

a =1 describes the bulk polymer response. Assuming such

a form for the mechanical properties of the non-bulk polymer interphase region, one

can use various micromechanical models to interpret experimental data for carbon

nanotube-reinforced polymers. Such a procedure will be demonstrated later in this

chapter.
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Figure 52. Time-dependent modulus as a function of the mobility parameter a.

Experimental Procedures

All experimental data described in this dissertation were collected using a TA

Instruments DMA 2980 dynamic mechanical analyzer with a special film tension

clamp (see Figure 53). Critical instrument specifications are as follows: temperature

range from –150 to 600 °C (using liquid nitrogen as a coolant), frequency range from

0.001 to 200 Hz, and a maximum applied force of 18 N. The film tension clamp was

designed for specimens between 5 to 30 mm in length, up to 8 mm in width, and up to

2 mm in thickness. Typical lengths of the polycarbonate samples tested were (length x

width x thickness) 10 x 6 x 0.5 mm.
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Figure 53. TA Instruments DMA 2980 with film tension clamp.

Nanotube-reinforced polycarbonate samples were provided by Dr. Linda

Schadler at RPI, who has extensive experience fabricating nano-reinforced polymer

samples. The samples were fabricated using a high-temperature molding operation that

is proprietary. Currently we have received and tested both pure polycarbonate samples

(fabricated using the same method as used for the reinforced polymer samples) and

samples with 1 and 2 wt% embedded MWNTs; additional samples with other weight

fractions of MWNTs will be tested in the future. The MWNTs used in the samples

were provided by Dr. Rodney Andrews at the University of Kentucky, and were

grown via chemical vapor deposition using Xylene-ferrocene as the carbon source.

The outer diameters of the nanotubes are on the order of ~25 nm. These samples are

believed to have an excellent dispersion of nanotubes (Schadler 2002), and based on
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Dr. Schadler’s expertise in this area (Schadler, Giannaris et al. 1998; Ajayan, Schadler

et al. 2000; Siegel, Chang et al. 2001), we believe these samples represent high-quality

nanotube-reinforced polymers.

The samples were received from Dr. Schadler in the as-molded shape and

stored for at least 24 hours in a room temperature desiccator using Drierite (Xenia,

OH) as a desiccant. For DMA analysis, the samples were cut to size using a Struers

(Cleveland, OH) Accutom-5 saw with a diamond blade (300 CA) running at 1000 rpm

and a feed speed of .05 mm/s, using water as a coolant. The cut edges were then

polished using 240 and 600 grit Carbimet grinding paper from Buehler (Lake Bluff,

IL). Then samples were then returned to the desiccator for a period of at least 24

hours, and maintained in the desiccator until removed for testing.

Three types of viscoelastic testing were conducted using the DMA 2980. For

temperature sweeps to measure the glass transition temperature, the samples were

subjected to a sinusoidal displacement of 3 µm (resulting in strains less than 0.1%) at a

constant frequency of 1 Hz. After inserting the sample into the DMA, but prior to

load, the sample was held isothermally at the initial test temperature (typically just

above room temperature) for 10 minutes so that thermal equilibrium was established.

The sinusoidal deformation was then initiated, and the temperature was ramped at

2°C/min until the final test temperature was reached (typically Tg + 30°C for the pure

polycarbonate samples and Tg + 50°C for the reinforced samples).
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For the testing of the frequency-domain response of the samples, the samples

were held isothermally at the initial test temperature (typically 100 °C) for 15 minutes.

The samples were then subjected to sinusoidal deformation at a constant amplitude of

3 µm, at discrete frequencies from 200 to 0.2 Hz (five frequencies per decade, evenly

spaced in log frequency space). After the testing at a particular temperature was

completed, the temperature was raised 5°C (taking less than 1 minute), held

isothermally for 5 minutes, and then the frequency scanning at the new test

temperature conducted. This procedure was repeated until the measurements at the

final test temperature (170 °C for the pure PC, 200 °C for the reinforced-samples) had

been obtained.11

For the physical aging tests, the DMA 2890 was used in creep mode with an

applied stress of 0.1 MPa (during the load portions of the testing). The sample was

first equilibrated at the test temperature (below Tg, Ttest=135 °C for all results

presented in this dissertation) for a nominal time of 10 minutes.12  The chamber

temperature was then increased to the rejuvenation temperature Trej and held for a

nominal length of time trej. (The two rejuvenation procedures described later in this

                                                  

11 A stark difference between the behavior of the pure and reinforced PC samples was evident in this
testing procedure. Whereas tests with the pure PC were prematurely ended ~175°C due to severe
elongation of the sample caused by flow, an identical testing methodology conducted on the reinforced
PC samples was able to go to 200 °C with no apparent degradation in sample geometry.
12 All times describing the procedure for the physical aging tests are nominal times in that they are
measured from the beginning of the temperature jump, and not once the desired temperature has been
reached.
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chapter are 160 °C for 10 minutes and 165 °C for 15 minutes; note that trej is always

greater than the actual time the sample was at the rejuvenation temperature due to

thermal lag effects.) Once the rejuvenation step has been completed, the sample is

quenched to Ttest by jumping the setpoint of the heater controller to the test

temperature, which in effect shuts off power to the heater until Ttest was reached via

ambient cooling.13 At the start of the quench step the aging time is set to zero;

load/unload tests were then conducted at an initial aging time of 22.5 minutes and then

repeated at 3/4, 1.5, 3, 6, and 12 hours as outlined in Figure 45. Because it took

approximately five minutes for the DMA chamber to establish equilibrium at Ttest, the

data collected at 22.5 minutes was not included in our analysis below (due to

nonisothermal aging effects). A preload of 0.01N was maintained on the sample

throughout both the load and unload portions of the test.

                                                  

13 Initial tests were also conducted using a liquid nitrogen cooling accessory, purchased from the DMA
manufacturer, during the quench phase of the test. However, because the time to quench was only
slightly faster using the liquid nitrogen accessory (approximately 3 minutes using the liquid nitrogen
accessory versus 5 minutes by effectively shutting off power to the heater), the liquid nitrogen
accessory was not used during the quench steps.
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Glass Transition Temperature for Nanotube-reinforced

Polycarbonate

Perhaps the most straightforward manner to evaluate changes in viscoelastic

behavior is to measure the glass transition temperature of a sample using the constant

frequency-constant amplitude temperature scan method outlined earlier in this chapter.

Using this procedure, the storage and loss moduli and the loss tangent of the material

are measured as a function of temperature; the results of such scans on the blank and

NT-reinforced polycarbonate systems are shown in Figure 54-Figure 56, respectively.

Figure 54. Storage moduli as a function of temperature for PC samples.
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Figure 55. Loss moduli as a function of temperature for PC samples.

Figure 56. Loss tangent as a function of temperature for PC samples.
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E’ at 60 °C
(MPa)

E’ at 180 °C
(MPa)

Tg from E’’
(°C)

Tg from tan d

(°C)14

PC 2090 2.9 150.0 155.2

1% MWNT 1954 9.2 152.6 158.3

2% MWNT 2640 47.6 152.3 157.3

Table 9. Comparison of storage moduli and glass transition temperatures for

polycarbonate-based samples.

In Figure 54 we see an increase in the storage modulus for the 2 wt% MWNT

sample, when compared to the response of the pure polycarbonate sample, at both low

and high temperatures. While a similar improvement is not seen with the 1 wt%

MWNT sample at low temperatures, we see that the high temperature (above Tg)

storage modulus of the sample is also greatly enhanced. (Because of the large modulus

increase at higher temperatures, we believe that this slight decrease in storage modulus

at low temperatures is due to experimental error.) Storage moduli values for each

sample at temperatures of 60 °C and 180 °C are compared in Table 9. As discussed

earlier, this drastic improvement in high temperature properties has also been

identified in the literature.

Both the loss moduli (Figure 55) and loss tangent (Figure 56) curves show

slight shifting of the peak location upon the addition of nanotubes. (It is unclear at this

                                                  

14 The peak of the loss tangent curve is typically a few degrees greater than the location of the peak in
the loss moduli data.
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time why the shift for 1 wt% MWNT is slightly larger than that for the 2 wt% sample,

and replicate sample testing has not been possible in order to verify this result. This

anomaly will be investigated in future experiments.) Also evident is a slight

broadening of the peaks of these curves, which is most apparent in the loss tangent

data in Figure 56 (which is plotted over a smaller temperature range from 100 to

200°C). As discussed previously, we believe that this broadening is indicative of an

increase in the range of molecular mobility within the system. Because this broadening

seems to predominantly occur on the high temperature side of the peaks, this suggests

that the NTs are reducing the molecular mobility of certain polymer regions within the

NRP. This is consistent with our hypothesis of a reduced mobility interphase region

surrounding the nanotube. In Figure 56, we also see a decrease in the magnitude of the

peaks of the loss tangent curves, which is due to the reduced fraction of bulk polymer

within the material. Note that the maximum value of the loss tangent decreases by a

factor of 2 with the addition of 1 wt% MWNTs, and then decreases by another factor

of 2 for the 2 wt% sample.

While the slight shift in Tg and the broadening of the loss modulus peaks (on

the high temperature side) are qualitatively sensible based on our hypothesis of a

reduced mobility polymer phase surrounding the nanotubes, quantitative predictive

models of how the mobility of the polymer chains influences the glass transition

temperature do not exist. Thus we were led to investigate the relaxation spectra of the
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NRP and the physical aging characteristics of the material. The results from these

areas of investigations are presented below.

Frequency- and Time-Domain Response of Nanotube-

reinforced Polycarbonate

Dynamic mechanical analysis was also used to study the frequency-domain

response of the polycarbonate-samples. Such tests provide another means with which

to analyze the impact of the embedded nanotubes on the effective viscoelastic

properties of the NRP. Frequency domain analysis lends itself quite nicely to

micromechanical modeling of the effective response, which is accomplished by using

appropriate elasticity solutions transformed into the frequency domain via the

Dynamic Correspondence Principle. The specifics of the data collection techniques

used to obtain the frequency domain data were discussed earlier in this chapter.

After describing the analysis of the frequency domain data and discussing the

various responses (frequency domain, time domain, and relaxation spectrum) that we

have obtained for the samples, we will demonstrate a frequency-domain

micromechanical modeling approach using the Mori-Tanaka solution for a three

dimensional random orientation of inclusions. By modeling the viscoelastic behavior

of the interphase region as simply a change in the relaxation times of the bulk
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polycarbonate response, via the mobility parameter 

† 

a , it is possible to infer the

behavior of this non-bulk polymer phase from experimental data obtained via

macroscale mechanical testing of the bulk and reinforced polycarbonate samples. Such

a model will be useful in interpreting experimental stiffness data obtained for

nanotube-reinforced polymers and assessing changes in the mobility and mechanical

behavior of the interphase region.

Analysis of frequency-domain data

Initial complex moduli data were collected over a range of frequencies (limited

by the 0.01 to 200 Hz frequency range of the DMA machine) for temperatures ranging

from approximately Tg – 50 °C to Tg + 50 °C. Then using the principle of time-

temperature superposition, the moduli at different temperatures were shifted to form a

reference curve at 150°C. Time-temperature superposition was carried out using

software provided by the DMA manufacturer (TA Instruments, Thermal Analysis®),

and a single temperature shift factor aT chosen to provide the best fit for both storage

and loss moduli data at a given temperature. An example of the raw data collected for

a pure polycarbonate sample and shifted appropriately is shown in Figure 57. The

nature of the anomalous behavior of the loss moduli curves at high frequencies is

unknown but has been seen in the literature (Ferry 1980). Interestingly, most

references to frequency-domain time-temperature superposition only consider the
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storage modulus, and thus the behavior evident here is not typically discussed in the

literature. In order to eliminate this behavior from our subsequent analysis, we will

limit the upper frequency in our analysis to 105 Hz. Further investigation of this

phenomena is warranted.

At this step in the analysis the storage and loss moduli data were fit to a 30-

term Prony series using a linear least squares solver DYNAMFIT developed at

Northwestern (Bradshaw and Brinson 1997b). The program assumes that the

relaxation times 

† 

t j are equally spaced in log time, and then calculates the Prony

coefficients 

† 

E•  and 

† 

E j  which best fit the data, equally weighing storage and loss

moduli contributions to the root mean square error (rms) of the solution. An extra

constraint imposed within the code forces all Prony coefficients Ej to be greater than

zero; while such a constraint does slightly increase the rms error describing the fit,

negative Prony coefficients are not physically reasonable and thus were not

considered. Typical rms values for the Prony series curve fit were under 10%, and

usually within 0.2% of the rms value for the Prony series fit which did not include the

positive coefficient constraint.
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Figure 57. Time-temperature shifted frequency-domain experimental data for a

pure polycarbonate sample.

An example of the Prony series fit to the experimental data for the case of pure

polycarbonate (to a maximum frequency of 105) is shown in Figure 58. Once the

Prony series terms have been obtained from the frequency-domain experimental data,

the corresponding time-domain response and relaxation spectrum can be readily

determined. The viscoelastic behavior for the blank and reinforced polycarbonate

samples was characterized using this procedure and is described below.
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Figure 58. Prony series representation of the frequency domain data.

Experimental time and frequency domain response

Using the procedure outlined above, the shifted storage and loss moduli of the

polycarbonate samples as a function of frequency for a reference temperature of

150°C are shown in Figure 59 and Figure 60, respectively. The corresponding time

response of the samples, predicted based on the Prony series coefficients found from

analysis of frequency domain data, is shown in Figure 61. Similar to the results

obtained in the temperature scan experiments, we see a large increase in the low

frequency storage modulus (and a corresponding increase in E(t) at long times) with

the use of the carbon nanotubes as a filler phase. The peaks of the loss modulus curves
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are slightly shifted to higher frequencies as the percentage of nanotubes is increased,

which is characteristic of a reduction in the effective molecular mobility of the sample.

Figure 59. Frequency domain storage modulus for PC samples. Tref = 150°C.
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Figure 60. Frequency domain loss modulus for PC samples. Tref = 150°C.

Figure 61. Time domain response for PC samples. Tref = 150°C.
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The relaxation spectra for the blank and reinforced polycarbonate samples are

shown in Figure 62. Here we see an increase in the relaxation spectrum at longer times

with increasing nanotube volume fraction. Also apparent is a slight broadening of the

primary relaxation peak towards longer times. The broadening of the primary

relaxation peak and the increase in the relaxation spectrum at longer times are both

indicative of an increased number of relaxation modes and the introduction of longer

time relaxation processes within the reinforced samples. These changes are consistent

with the hypothesis of a reduction in molecular mobility within the interphase.

Meanwhile, the location of the primary relaxation peak does not appreciably change

with the addition of the nanotubes, suggesting that the primary relaxation mechanism

within the NRP is the same as that within the bulk polymer sample. This is yet more

evidence that the nanotubes only reduce the molecular mobility of the interphase

region, and that polymer chains well separated from the nanotubes are not affected by

the presence of the nanotubes and retain the mobility of the bulk polymer sample.

These results are consistent with the three phase (NT-interphase-polymer) model

presented in Figure 42.
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Figure 62. Relaxation spectra for PC samples. Tref = 150°C.

Micromechanical modeling of NRP frequency domain behavior

One of the advantages of analyzing the frequency domain response of

nanotube-reinforced polymers is that micromechanical models are available for the

analysis and interpretation of results. This is accomplished by use of the Dynamic

Correspondence Principle, which allows suitable elasticity solutions to be extended for

the study of viscoelastic materials. One can show that there is a direct analogy

between elasticity problems in the time domain and viscoelasticity problems in the

frequency domain when the elastic moduli are replaced by their corresponding

complex viscoelastic moduli of the form 

† 

E * = ¢ E + i ¢ ¢ E , and associated field quantities
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are allowed to be complex (Hashin 1965; Hashin 1970; Fisher 1998). Thus the Mori-

Tanaka solution for a multiphase composite with viscoelastic phase materials can be

written as (see Chapter 3)

† 
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(73)

The dynamic correspondence principle has been used by a variety of

researchers to model the viscoelastic behavior of materials, and in particular has been

used in conjunction with the Mori-Tanaka method to look at the effective viscoelastic

moduli of a three phase composite with viscoelastic interphase and matrix phases

(Fisher 1998; Fisher and Brinson 2001). As shown in Figure 63, the viscoelastic Mori-

Tanaka model closely follows the results of a corresponding viscoelastic finite element

model for the effective storage and loss transverse modulus of a 60% fiber-10%

interphase-30% matrix unidirectional composite (Fisher and Brinson 2001).

Particularly encouraging is the relative agreement between the two solutions within

the transition region. Based on this result we feel that the use of a viscoelastic

implementation of the Mori-Tanaka method is warranted.15

                                                  

15 Note that in Figure 63 the viscoelastic behavior of the interphase and matrix material were described
by two distinct sets of Prony series coefficients (Fisher 1998).
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Figure 63. Comparison of Mori-Tanaka and finite element solutions for the

transverse modulus of a three phase unidirectional composite with viscoelastic

interphase and matrix phases. (Fisher 1998)

Initial micromechanical modeling results for the effective frequency domain

response for the 2 wt% nanotube-reinforced polycarbonate samples are shown in

Figure 64 and Figure 65. For the NRP composite, the viscoelastic matrix properties

were assumed equal to those obtained for the bulk polycarbonate samples tested, and a

3D random orientation of NTs was assumed. The interphase volume fraction was

chosen through a process of trial and error as 10%, and the interphase viscoelastic

response was modeled as a simple shift in relaxation times of the pure polymer using

the mobility parameter 

† 

a=1000 (also found through trial and error). For each of the

NRP samples, the volume fraction of the nanotubes was assumed to be known (based
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on the weight fraction of embedded nanotubes), and a nanotube (elastic) modulus of

200 GPa was chosen by fitting the high frequency portion of the Mori-Tanaka

effective storage modulus to the experimental storage modulus of the NRP (see Figure

65).16

Figure 64. Mori-Tanaka prediction for 2% MWNT sample loss modulus,

assuming fint=10% and a=1000.

                                                  

16 A general rule of thumb for the conversion of weight fraction to volume fraction of nanotubes is to
divide by a factor of two. This approximation was used here as the exact relationship between the
densities of the nanotubes and the polymer was not known.
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Figure 65. Mori-Tanaka prediction for 2% MWNT sample storage modulus,

assuming fint=10% and a=1000.

We are most interested in comparing the micromechanical solution with the

experimental data for the loss modulus of the material, as the mechanical properties of

the (elastic) nanotube should not factor in this analysis. In Figure 64, a comparison of

the Mori-Tanaka prediction with the experimental NRP data for the effective loss

modulus shows that qualitative agreement between the two is obtained when using an

interphase volume fraction of 10% and a mobility parameter 

† 

a=1000. We are

particularly interested in the low frequency response of the loss modulus, where the

micromechanical predictions increase from that of the pure polymer and approach the

NRP experimental data as the a increases. (For comparison, Figure 66 shows the
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Mori-Tanaka prediction for 

† 

a=100.) Referring to Figure 65, we see that the Mori-

Tanaka solution over-predicts (by an order of magnitude) the low frequency effective

NRP storage modulus that was measured experimentally. This is directly related to the

difficulties in predicting the elastic properties of NRPs using micromechanical

methods. As discussed in Chapter 3, these over-predictions could be due to a number

of factors, including poor NT-polymer interfacial behavior, inadequate NT dispersion,

and embedded nanotube waviness.

Figure 66. Mori-Tanaka prediction for 2% MWNT sample loss modulus,

assuming fint=10% and a=100.
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Figure 67 compares the Mori-Tanaka prediction and the experimental data for

the effective loss modulus for the 1% MWNT-PC sample. Using the same values for

the interphase volume fraction (10%) and the mobility parameter 

† 

a  (=1000), we again

see very good qualitative agreement between the Mori-Tanaka model and the

experimental data.

These initial modeling efforts are illustrative of the future research directions

for this work. As more data is collected, we will seek to fit the volume fraction and

viscoelastic behavior of the interphase to experimental data collected over a range of

nanotube volume fractions using the procedure demonstrated briefly above. However,

the initial work presented here demonstrates that the impact of the nanotubes on the

effective viscoelastic behavior of the NRP can be modeled using a three-phase Mori-

Tanaka model. Furthermore, given the simple model of the interphase viscoelastic

properties used here, we see that a relatively large volume fraction of interphase (10%)

with significantly reduced mobility (three orders of magnitude) provides qualitative

agreement between our micromechanical model predictions and the experimentally

obtained data. Eventually, we foresee basing models of the interphase viscoelastic

properties on nanoscale experimental data and/or molecular dynamics simulations of

the NT-polymer system.
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Figure 67. Mori-Tanaka prediction for 1% MWNT sample loss modulus,

assuming fint=10% and a=1000.

Physical Aging of Nanotube-reinforced Polycarbonate

Physical aging tests were conducted on both blank and nanotube-reinforced

polycarbonate samples to ascertain the effect of the nanotubes on the effective

physical aging characteristics of the material. The experimental procedure used to

conduct the physical aging tests was described earlier in this chapter. An isothermal

aging/test temperature of 135 °C was used for all tests, which is sufficiently close to

the nominal Tg of the polycarbonate, such that significant aging affects will take place

over relatively short periods of time.
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Two sets of rejuvenation parameters (Trej, trej) were used in this work: 160 °C

for 10 minutes and 165 °C for 15 minutes. The higher temperature / longer time

rejuvenation procedure was used after initial tests on samples rejuvenated at the lower

Trej showed evidence that full rejuvenation (i.e. a full erasure of previous thermal

history) was not achieved under these conditions. We believe this to be the case

because shift rates much smaller than one were obtained based on an analysis of the

experimental data. In all cases, shift rates decreased as the weight fraction of the

nanotubes increased.

Momentary creep compliance curves, and their shifting to form a master

reference curve at the longest aging time, for a blank polycarbonate sample

rejuvenated at 165 °C for 15 minutes were shown in Figure 46 and Figure 47,

respectively. Corresponding plots for the 2% MWNT-PC samples tested using the

same rejuvenation procedure are shown in Figure 68 and Figure 69. As expected, the

compliance values of the 2% MWNT-PC sample are smaller then those for the blank

PC, indicating a stiffer (higher modulus) response for the reinforced samples.
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Figure 68. Momentary compliance curves for 2% MWNT-PC sample

rejuvenated at 165 °C for 15 minutes.

A qualitative comparison of the momentary creep compliance curves suggests

that while the shapes of the curves are quite similar, the amount of shifting necessary

to superpose the curves at the longest aging time (aging time shift factor 

† 

at e
) is quite

different. The shift factors for the blank and NT-reinforced samples are plotted as a

function of aging time in Figure 70 and Figure 71 for the each of the two rejuvenation

methods (160 °C for 10 minutes and 165 °C for 15 minutes), respectively. The shift

rates calculated from this data are given in Table 10.
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Figure 69. Shifting of momentary compliance curves for 2% MWNT-PC sample

rejuvenated at 165 °C for 15 minutes.

Figure 70. Shift rate µ for 160 °C rejuvenation for 10 minutes.
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Figure 71. Shift rate µ for 165 °C rejuvenation for 15 minutes.

Rejuvenation

procedure
RPI PC sample Shift rate (data)

Shift rate

(PHYAGE)

Blank 0.332 0.325

1% MWNTs 0.258 0.260
160 °C for 10

minutes

2% MWNTs 0.075 0.082

Blank 0.422 0.405

1% MWNTs 0.325 0.307
165 °C for 15

minutes

2% MWNTs 0.185 0.187

Table 10. Shift rates of blank and NT-reinforced polycarbonate samples.
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The shift rates determined for each of the samples are consistent with the

hypothesis that the effective mobility of the nanotube-reinforced samples is more

restricted than that measured for the pure polycarbonate.17 As the weight fraction of

nanotubes (and thus the volume of the interphase region) increases, the effective shift

rates of the material (for a given rejuvenation procedure) decrease. From the

standpoint of free volume, this can be viewed as the NRP samples requiring longer

periods of time for the molecular rearrangements that lead to physical aging to occur.

The fact that the shift rates obtained for the higher temperature / longer time

rejuvenation are greater than those obtained for the lower temperature rejuvenation

suggests that the former erased “more” of the prior thermal history of the sample.

However, because these experimental shift rates are still much lower than unity, we

believe that full rejuvenation of the samples (particularly the nanotube-reinforced

samples) may not have been achieved. Optimal rejuvenation parameters for these

samples will be the subject of future work. Nonetheless, the following conclusions can

be drawn based on the physical aging tests conducted to date:

                                                  

17 At this moment it is impossible to rule out the possibility that the differences in rejuvenation is solely
caused by the change in effective Tg of the material due to the presence of the nanotubes. Once a full
rejuvenation protocol has been established, we will be able to analyze this possibility in greater detail.
Nonetheless, we anticipate that the embedded nanotubes will result in different physical aging behavior
between the blank and NT-reinforced samples.
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• The embedded nanotubes significantly influence the rejuvenation of the

polycarbonate samples,

• Shift rates for (partially) rejuvenated samples decrease as the weight

fraction of nanotubes increase; we attribute this to an interphase region

surrounding the nanotubes,

• The shift rate behavior can be described qualitatively using the concept

of a reduced mobility, non-bulk polymer interphase region,

• This reduced mobility interphase region is consistent with the results of

other viscoelastic testing (Tg and relaxation spectra) that have been

measured for these same polycarbonate-based samples, and

• These results suggest that changes in the physical aging behavior of the

NRP may be sensitive to changes in molecular mobility, such that

physical aging studies may be useful in evaluating such changes in

nanotube-reinforced polymer systems.

Currently we are in the process of re-evaluating the rejuvenation procedure in

order to develop a protocol which completely erases the thermal history of the

samples, without compromising the structure or properties of the samples. Once this

has been completed, physical aging tests will be re-run on each of the samples

described in this work, as well as additional samples with other weight fractions of
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nanotubes which we hope to receive shortly. Based on the preliminary physical aging

results presented here, we feel that the nanotubes will significantly alter the aging

characteristics of the NRP (with respect to the pure polymer), and as such appreciably

impact the long-term viscoelastic behavior of the NRP.

Summary

We have compared the effective viscoelastic response of pure and nanotube-

reinforced polycarbonate samples using dynamic mechanical analysis. Three types of

viscoelastic behavior were analyzed: the glass transition temperature, the frequency

response, and physical aging. The results of each of these tests demonstrate that the

effective viscoelastic behavior of the nanotube-reinforced polymer is consistent with

the hypothesis that a reduced mobility, non-bulk polymer interphase forms in the

region surrounding the nanotube. This reduction in mobility is believed to be due to

the nanostructure of the NRP, and is attributed to interactions between the polymer

chains and the nanotubes.

Preliminary micromechanical modeling suggests that this interphase region

may be quite large (several times the volume fraction of the nanotubes) and have

viscoelastic properties quite different from those of the bulk polymer (a three order of

magnitude shift in relaxation times using the simple model described here). While
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such modeling may assist in the interpretation of experimental data, the utility of the

predictions are limited due to the number of assumptions that are implicit within the

model. In the next chapter we will discuss proposed future experiments on a novel

nanotube-reinforced polymer system, based on an ordered and uniform carbon

nanotube array. The promise of such a system is that the large degree of control with

respect to the composite geometry greatly simplifies the mechanical modeling of the

effective response.
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK

Summary

Theoretical predictions of the mechanical properties of carbon nanotubes, and

in particular their predicted high strengths (on the order of 60 GPa) and moduli (~1

TPa), make them attractive candidates as a reinforcement filler material in polymer-

based structural composites. Recent experimental testing of individual nanotubes and

nanotube bundles has verified these predictions. In addition, their outstanding

electrical and thermal properties suggest that carbon nanotubes incorporated into

polymers can significantly enhance these properties as well. The possibility of

multifunctional composite materials with controllable electrical and thermal

properties, in addition to order-of-magnitude enhancements in the mechanical

behavior, has resulted in a tremendous amount of work dedicated to these material

systems within the last few years.

Initial experimental work on carbon nanotube-reinforced polymers has

demonstrated that large increases in effective moduli and strength can be attained with

the addition of small amounts of carbon nanotubes. However, modeling the effective

properties of a nanotube-reinforced polymer is made difficult because of complexities
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related to: the structure and properties of the nanotubes, the orientation and dispersion

of the nanotubes within the polymer, the characteristics of the interface and load

transfer between the NTs and the polymer, and an understanding of the impact of the

nanotubes on the molecular mobility of the polymer chains. Accurate models of how

these issues influence the effective properties of the nanotube-reinforced polymer will

be necessary in order to optimize the fabrication and effective properties of nanotube-

polymer systems.

Modeling of NRP effective behavior is complicated by the range of length

scales characteristic of these materials. It will be necessary for models developed at

these different length scales, from atomistic simulations to continuum theories, to

work in concert to accurately model the NRP mechanical response. Such an approach

is demonstrated in this work, where we have sought to extend traditional

micromechanics and viscoelastic models of composite and polymer behavior to

account for nanoscale characteristics of these materials.

Two models have been developed in this dissertation as a means to incorporate

nanoscale information into predictions of macroscale effective behavior. In Chapter 3,

we discussed a hybrid finite element-micromechanics method that allows one to

incorporate the waviness of the embedded nanotubes into micromechanics predictions

of the effective elastic moduli using a multiphase composite approach. While this

procedure was demonstrated using the Mori-Tanaka method, in general this type of
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analysis can be used with any micromechanical approach. The results of this work

show that nanotube waviness significantly reduces the NRP effective modulus

compared to predictions obtained assuming straight nanotubes.

The effective viscoelastic response of nanotube-reinforced polycarbonate was

discussed in Chapter 4. Our experimental data suggests that the viscoelastic response

of the NRP is significantly different from that of the bulk polymer; for all tests this

difference is consistent with the presence of regions of non-bulk polymer with

restricted mobility within the material. We believe that this interphase region is a

direct consequence of the size scale of the nanotubes and their nanoscale interactions

with the polymer chains. A second micromechanical-based model was developed to

describe the impact of a reduced mobility interphase on the effective viscoelastic

response of the NRP. Our results suggest that accounting for this interphase region

will be critical in developing accurate models of the viscoelastic response of the NRP.

Additional experimental work in this area is ongoing.

Each of the models presented in this dissertation are viewed as preliminary

descriptions of the NRP effective behavior, and can be extended with the addition of

nanoscale information to complement the continuum approaches used here. For

example, atomistic simulations of the interface between the nanotube and the polymer

and/or the mobility of polymer chains in the direct vicinity of the nanotubes will

provide additional details of the nanoscale response that will influence the NRP
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mechanical behavior. Experimental work at both the nano- and micro-scale will

provide additional insight into the effective behavior of these systems.

One of the inherent difficulties with modeling carbon nanotube-reinforced

polymers is the large number of parameters that are expected to impact the effective

response of the NRP, but are currently not well understood. As discussed in Chapter 2,

these issues include the dispersion and orientation of the nanotubes within the

polymer, as well as an understanding of the interfacial characteristics and load transfer

capabilities of a particular NT-polymer system. The work in this dissertation

highlights embedded nanotube waviness and the existence/properties/extent of an

interphase region surrounding the NT as two additional parameters that must also be

considered. Given the complexity of modeling these systems, it would be desirable to

develop experimental techniques capable of isolating a subset of these parameters for

in-depth study. Such a model NRP has been proposed (Ruoff 2001) and is based on an

ordered array of carbon nanotubes, which when infiltrated with a suitable polymer will

yield a nanotube-reinforced polymer with highly uniform and controllable NT

diameter, spacing, and alignment. This system will greatly facilitate the interpretation

of experimental results, and we believe will lead to breakthroughs in our

understanding of NRP behavior. This proposed avenue of future research is discussed

below.
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Aligned Carbon Nanotube Array Composites

The development of aligned carbon nanotube array (polymer) composites will

greatly facilitate experimental and theoretical work in this area. The fabrication of

such systems will involve four steps:

1) the fabrication of porous anodic alumina (PAA) to create a well-ordered,

uniform template with precise control over the pore geometries,

2) synthesis of carbon nanotubes via pyrolysis of hydrocarbon gases within

the pores of the PAA template,

3) etching of the alumina substrate to partially expose one end of the

nanotubes, and

4) infiltration of polymer as a matrix material.

This work will be a collaboration with the Ruoff group at Northwestern, and

significant progress has already been demonstrated for Steps 1 and 2 above (Xu

2002b). For completeness, the steps of the fabrication process will be outlined below;

further details of the procedure are described elsewhere (Xu 2002b).

As shown in Figure 72, the formation of PAA is achieved through a two-step

anodization process, which has been shown to leave a well-ordered pore geometry
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with controllable dimensions (Masuda, Yamada et al. 1997). The geometry of the

porous structure is controlled by various parameters in the fabrication process,

including the electrolyte used (pore diameter D  as shown in Figure 73), the

anodization voltage (interpore spacing d), the anodization time (film thickness t), and

the reaction temperature. Pore diameters between 30-230 nm, interpore spacing

between 200-460 nm, and film thickness on the order of hundreds of µm have been

reported (Kyotani, Tsai et al. 1996; Li, Muller et al. 2000). It is anticipated that the

lateral film dimensions (represented by w in Figure 73) could be 1 cm or larger (Xu

2002a).

Once a suitable template has been developed, carbon nanotubes can be grown

within the pores via pyrolysis of hydrocarbon gases. Similar methods have previously

been used to grow carbon nanotubes and are discussed in the literature (Kyotani, Tsai

et al. 1996; Che, Lakshmi et al. 1998; Li, Papadopoulos et al. 1999). This deposition

procedure has been shown to produce carbon nanotubes that closely match the

geometry of the underlying template, such that well-ordered arrays of nanotubes with

excellent alignment and spacing can be produced. An example of such an array is

shown in Figure 74.
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Figure 72. Schematic of the porous anodic alumina (PAA) fabrication method

(Xu 2002b).

Figure 73. Schematic illustration of the geometry of the PAA films.
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Once carbon nanotubes have been deposited in the pores of the PAA template,

etching procedures can be developed to dissolve the alumina and leave free standing

nanotubes (Kyotani, Tsai et al. 1996). Here, however, we wish to partially etch only

one side of the alumina template, leaving a “paint-brush” geometry where the NTs are

embedded within the alumina template at one and exposed at the other end. We

believe that given such a structure, we can fill the empty space surrounding the

exposed ends of the nanotubes with a polymer, in effecting creating a nanotube-

reinforced polymer with uniform, well-ordered, and aligned nanotubes.

Figure 74. Fabrication of ordered carbon nanotube arrays. (Li, Papadopoulos et

al. 1999).
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The advantage of the proposed nanotube-polymer system is that it eliminates,

or allows one to control, several composite parameters that are expected to influence

the effective behavior of these systems. This will allow experiments to be devised to

specifically isolate particular parameters for study. For example, experimental testing

and modeling of the proposed ordered carbon nanotube array composites would have

the following advantages:

1. The regular, aligned structure will simplify the modeling of the effective

properties.

2. Control over the carbon deposition procedure will provide consistent NT

properties and uniform NT geometry.

3. The geometry of the NTs will eliminate several NRP fabrication parameters,

including:

a. orientation of the nanotubes,

b. dispersion of the nanotubes, and

c. heterogeneity of the sample.

4. The sample configuration will facilitate experiments that isolate NT- and

matrix-dominated properties (see Figure 75). In particular, transverse (to the

long axis of the nanotubes) tension and shear tests will be more sensitive to

changes in the mechanical behavior of the interphase.
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5. The geometry of the NTs will facilitate nanoscale experimentation, particularly

NT pullout tests which can be done to evaluate the interfacial behavior of the

material (see Figure 75).

6. Control of the interpore spacing and NT diameters will allow one to vary both

the nanotube and interphase volume fractions.

Figure 75. Proposed experiments on the aligned carbon nanotube array

composites.

The simplifications brought about by the proposed model geometry, in

conjunction with appropriately designed experiments, will lead to additional insight

into the mechanical behavior of nanotube-reinforced polymers. The properties
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achievable with such a composite may also be competitive from the prospective of

practical applications.
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APPENDIX

Summary of the nanotube-reinforced polymer literature

Key: AD = arc discharge, LV = laser vaporization,
CVD = chemical vapor deposition, NA = not applicable

Paper Polymer NT Notes

(Ajayan,

Stephan et al.
1994)

Epoxy AD MWNTs Shear-induced alignment of NTs

(Ajayan,

Schadler et al.
2000)

Epoxy SWNT
bundles

Curving and stretching of the NTs on

loading; at fracture see pulling apart of the
bundles, not NT fracture

(Andrews,

Jacques et al.
2002)

Polystyrene MWNTs (0-
25% wt)

Significant increases in effective elastic
modulus

(Bower, Rosen
et al. 1999)

Thermoplastic

(polyhydroxy-
aminoether)

MWNTs Alignment via mechanical stretching above
Tg

(Bradshaw,

Fisher et al.
2002)

NA NA Numerical computation of the dilute strain

concentration tensor to account for NT
waviness

(Chen, Shaffer
et al. 2000)

Polypyrrole (PPy) AD NTs Mainly interested in electrical properties;
some impedance spectroscopy data

(Cochet, Maser
et al. 2001)

Conducting

polymer
polyaniline (PANI)

AD SWNTs

(10, 20, 30,
40, 50% wt)

"In-situ" polymerization; Raman

measurements suggest effective site-

selective interactions between the PANI and
the MWNTs facilitating charge-transfer
processes
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(Cooper, Young
et al. 2001)

Epoxy (Araldite
LY5052)

LV SWNTs;

AD SWNTs,
MWNTs (1%
wt)

Looked at differences in the Raman

responses of the NTs; interested in the use
of NTs as strain sensors

(Curran, Ajayan
et al. 1998)

PmPV AD MWNTs Polymer chains "wrap" helically about the
NTs; TEM evidence of good adhesion

(Fan, Wan et al.
1999)

Polypyrrole (PPY) CVD NTs The CNTs function as a template for PPY
polymerization.

(Fisher,

Bradshaw et al.
2002a)

NA NA Model to incorporate nanotube waviness

into micromechanical predictions of NRP
effective modulus.

(Fisher,

Bradshaw et al.
2002b)

NA NA Micromechanics predictions of NRP

effective stiffness are much greater than
experimental results

(Gong, Liu et
al. 2000)

Epoxy AD MWNTs Shift in Tg attributed to the role of the
surfactant.

(Grimes,

Mungle et al.
2000)

PEMA AD SWNT

bundles (0-
23% wt)

Effective electrical properties

(Hadjiev, Iliev
et al. 2001)

Epoxy (Epon
862/EPI-CURE W)

LV SWNTs
(1% wt)

Raman data suggests direct coupling of NT

to epoxy; load is transferred predominantly
along the nanorope axis

(Haggenmueller

, Gommans et
al. 2000)

PMMA SWNTs Alignment via combination of solvent
casting and melt processing of the NRP.

(Jia, Wang et al.
1999)

PMMA NTs CNTs participate in PMMA polymerization;

effective properties decrease for greater

than 7 wt% NTs due to residual stresses in
the matrix

(Jin, Bower et
al. 1998)

PHAE
(thermoplastic)

AD MWNTs NT alignment via mechanical stretching

above Tg; loading to 500% strain without
fracture
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(Jin, Sun et al.
2000)

PEG, P2VP, P4VP,
PVPh; PEO

AD MWNTs Interested in nonlinear optical effects; create

"polymer-coated" and "polymer-grafted"
MWNTs

(Jin, Pramoda et
al. 2001)

PMMA using a

melt-blending
process

AD MWNTs Large increases in storage modulus at high

temperature; suggest increases are due to
the amorphous nature of the polymer matrix

(Liao and Li
2001)

Polystyrene NTs Molecular mechanics model of the

interface; estimated the interfacial shear
stress to be 160 MPa

(Lordi and Yao
2000)

PmPV, PMMA,
PPA

(10,10)
SWNTs

MD work suggesting that the helical nature

of PmPV allows it to closely interact with
the NTs.

(Lourie, Cox et
al. 1998)

Epoxy (Araldite

LY564, Ciba-
Geigy)

AD MWNTs Interested in the buckling and collapse of
NTs in microtomed TEM samples

(Lourie and
Wagner 1998a)

Epoxy SWNT; AD

MWNTs;
carbon fiber

Raman analysis of the compressive stresses
caused by polymer shrinkage upon cure

(Lourie and
Wagner 1998b)

Epoxy SWNT
bundles

Aligned SWNT bundles bridging
cracks/holes in the polymer

(Lourie and
Wagner 1999)

Epoxy (Araldite

LY564, Ciba-
Geigy)

AD MWNTs Formation of damage doublets in adjacent

CNTs, comparable to those in fiber

reinforced composites; due to redistribution
of stress from a failed fiber to its unfailed
neighbors

(Lozano and
Barrera 2001)

Polypropylene Pyrograf

nanofibers,

100 nm ave.
diameter

Nanofibers raised working temperature 100

°C and dynamic modulus increased 350%,
but no change in strength

(McCarthy,

Coleman et al.
2000)

ImPV, a PPV
derivative

AD and CVD
NTs

Crystalline polymer nucleates from NT

defects; show that the polymer coats the NT
as a periodic, ordered structure.

(Odegard, Gates
et al. 2001a)

LaRC-SI polyimide

with PmPV
interface

SWNTs Equivalent continuum model of NT and

interphase as an effective fiber for
micromechanics predictions
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(Qian, Dickey
et al. 2000)

Polystyrene (PS) MWNTs (1%
wt)

~ 35% increase in modulus and ~ 25% in
ultimate stress

(Sandler,

Shaffer et al.
1999)

Epoxy CVD
MWNTs

Antistatic applications; large increases in

electrical conductivity for low volume
fractions of NTs

(Schadler,

Giannaris et al.
1998)

Epoxy (Shell Epon
828)

MWNTs (5%
wt)

Results suggest that only the outer layer of

the MWNT is loaded in tension, whereas all
tubes loaded in compression

(Shaffer and
Windle 1999)

Poly(vinyl
alocohol) (PVOH)

CVD

MWNTs (0-
60 wt%)

Minimal enhancement below Tg, significant
increase in mechanical properties above Tg

(Stéphan,

Nguyen et al.

2000)

PMMA (spin-
coating)

AD SWNTs Polymer intercalation between NTs within a
bundle

(Tang and Xu
1999)

poly(phenylacetyle
ne) (PPA)

MWNTs NTs helically wrapped by the PPA chains;

NTs protect PPA from photodegradation
under harsh laser irradiation.

(Wagner,

Lourie et al.
1998)

Urethane/diacrylate

oligomer
(EBERCRYL
4858)

AD MWNTs MWNT-polymer stress transfer efficiency

estimated to be an order of magnitude larger
than in conventional fiber-based composites

(Wood, Zhao et
al. 2000)

Urethane/diacrylate

oligomer
(EBERCRYL
4858)

SWNTs
(0.1% wt)

Use of NTs as sensitive nanoscale strain

gauges, where 0.1 wt% NT causes the
polymer to become Raman active

(Wood, Zhao et
al. 2001)

Urethane/diacrylate

oligomer
(EBERCRYL
4858)

SWNTs (flow
orientated)

Difference between mechanical and

spectroscopic data at high strain caused by
the interface yielding in shear, halting stress
transfer to the NTs

(Zhao, Wood et
al. 2001)

Urethane/diacrylate

oligomer
(EBERCRYL
4858)

SWNTs
(0.1% wt)

Interested in the use of NTs as strain
sensors
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Tensor representation using contracted notation

For a linear elastic material, the state of stress at a point can be represented by

stress components 

† 

s ij , which are related to strain components 

† 

eij  via

† 

s ij = Cijkl ekl , (74)

† 

eij = Sijkl skl (75)

where (i,j,k,l = 1, 2, 3) and Cijkl and Sijkl are referred to as the stiffness and compliance

tensors, respectively. Repeated indices imply summation over those indices.

It is standard practice in the micromechanics and composites community to

utilize contracted (alternatively called Voigt or two-index) notation in order to

simplify notation. In general such notation involves the following replacement scheme

to simplify tensor indices

† 

11 Æ1, 22 Æ 2, 33 Æ 3
23 Æ 4, 31 Æ 5, 12 Æ 6

. (76)

Using this replacement scheme, the components of the stress, strain, and stiffness

tensors can be written as
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† 

s11 = s1, s22 = s2, s33 = s3,
s23 = t23 = s4 = t4,
s13 = t13 = s5 = t5,
s12 = t12 = s6 = t6 .

, (77)

† 

e11 = e1, e22 = e2, e33 = e3,
2e23 = g23 = e4 = g4 ,
2e13 = g13 = e5 = g5,
2e12 = g12 = e6 = g6.

, (78)

† 

C1111 = C11 , C1122 = C12, C1133 = C13, C1123 = 2 C14 , C1131 = 2 C15, C1112 = 2 C16,

C 2211 = C 21 , C 2222 = C 22, C 2233 = C 23, C 2223 = 2 C 24 , C 2231 = 2 C 25, C 2212 = 2 C 26,

C 3311 = C 31 , C 3322 = C 32, C 3333 = C 33, C 3323 = 2 C 34 , C 3331 = 2 C 35, C 3312 = 2 C 36,

C 2311 = C 41 , C 2322 = C 42, C 2333 = C 43, C 2323 = 2 C 44 , C 2331 = 2 C 45, C 2312 = 2 C 46,

C 3111 = C 51 , C 3122 = C 52, C 3133 = C 53, C 3123 = 2 C 54 , C 3131 = 2 C 55, C 3112 = 2 C 56,

C1211 = C 61 , C1222 = C 62, C1233 = C 63, C1223 = 2 C 64 , C1231 = 2 C 65, C1212 = 2 C 66.

(79)

Such substitution permits the constitutive equations describing the stress-strain

response of the material to be written in contracted notation as

† 

s i = Cij ej, ei =Sij s j, (80)

where (i,j = 1,2,..6) and due to energy considerations, 

† 

Cij = Cji  and 

† 

Sij = Sji .

In general there are 36 independent constants Cij (and likewise Sij) necessary to

describe the stress-strain response of an elastic material. However, for special classes

of materials the number of elastic constants is reduced due to special symmetry
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conditions. Two common cases of material symmetry that are used throughout this

work are transversely isotropic and isotropic symmetry. For a material that is

transversely isotropic with a 2-3 plane of isotropy, the contracted stiffness tensor is of

the following form

† 

s1
s2
s3
s4
s5
s6

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

=

C11 C12 C12 0 0 0
C12 C22 C23 0 0 0
C12 C23 C22 0 0 0

0 0 0 C22 - C23
2

0 0
0 0 0 0 C55 0
0 0 0 0 0 C55

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

e1
e2
e3
e4
e5
e6

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

. (81)

For an isotropic material the constitutive equation is further simplified such that

† 

s1
s2
s3
s4
s5
s6

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

=

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0

0 0 0 C11 - C12
2

0 0

0 0 0 0 C11 - C12
2

0

0 0 0 0 0 C11 - C12
2

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

e1
e2
e3
e4
e5
e6

È 

Î 

Í 
Í 
Í 
Í 
Í 
Í 
Í 
Í 

˘ 

˚ 

˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 
˙ 

. (82)

While contracted notation can be a useful tool in that it significantly simplifies

the bookkeeping required for the tensor manipulation, care must be taken to ensure

that the tensor contraction is maintained in a consistent manner throughout the
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analysis. For example, for the contraction of the Eshelby tensor it is necessary to

include a factor of two for the shear strain components to maintain the appropriate

tensorial relationship (as demonstrated later in this Appendix). Consistent use of

tensorial shear strain 

† 

ei and engineering shear strain 

† 

gi  (where 

† 

ei = 1
2 g i) throughout

the analysis is critical.

Components of the Eshelby Sijkl tensor along the x3 axis

For an ellipsoidal inclusion aligned along the 3-axis with aspect ratio 

† 

a = L
d ,

the components of the Eshelby tensor are given as (Tandon and Weng 1986)
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† 

S1111 = S2222 =
3

8 1- n0( )
a2

a2 - 1
+

1
4 1- n0( )

1- 2 n0 -
9

4 a2 - 1( )
È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

g

S3333 =
1

2 1 - n0( )
1- 2 n0 +

3a2 - 1

a2 - 1
- 1 - 2n0 +

3a2

a2 - 1

È 

Î 
Í 

˘ 

˚ 
˙ g

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

S1122 = S2211 =
1

4 1- n0( )
a2

2 a2 - 1( )
+ 1- 2 n0 +

3

4 a2 - 1( )
È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

g
Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô 

S1133 = S2233 = -
1

2 1 - n0( )
a2

a2 - 1
+

1
4 1 - n0( )

3a2

a2 - 1
- 1- 2 n0( )

È 

Î 
Í 

˘ 

˚ 
˙ g

S3311 = S3322 = -
1

2 1- n0( )
1- 2 n0 +

1

a
2

- 1

È 
Î Í 

˘ 
˚ ˙ +

1
2 1- n0( )

1- 2 n0 +
3

2 a
2

- 1( )
È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

g

S1212 = S2121 =
1

4 1- n0( )
a

2

2 a
2

- 1( )
- 1- 2 n0 -

3

4 a
2

- 1( )
È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

g
Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô 

S3131 = S3232 =
1

4 1- n0( )
1 - 2n0 -

a
2

+ 1
a2 - 1

-
1
2

1 - 2n0 -
3 a

2
+ 1( )

a2 - 1

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 

g
Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô 

(83)

where n0  is the Poisson ratio of the matrix, and

† 

g =
a

a 2 -1( )
3/2 a a2 -1( )1/2

- cosh-1 a
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

=
a

1- a2( )
3/2 cos-1 a -a 1-a 2( )

1/2Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

(84)

for prolate and oblate shapes inclusion cross-sections, respectively. All other

components of the Eshelby tensor are zero.
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For an ellipsoidal inclusion with an infinite aspect ratio (l/d Æ ∞) parallel to

the 3-axis, the components of the Eshelby tensor simplify to:

† 

S3333 = S3311 =S3322 = 0

† 

S1111 = S2222 =
5 - 4 n0
8 1-n0( )

† 

S1122 =S2211 =
4 n0 -1
8 1-n0( )

† 

S1133 =S2233 =
n0

2 1-n0( )
(85)

† 

S1212 =
3- 4 n0
8 1-n0( )

† 

S3131 =S3232 =
1
4

.

For spheroidal inclusions the Eshelby components further simplify to:

† 

S1111 = S2222 = S3333 =
7 -5 n0

15 1- n0( )

† 

S1122 =S2233 =S3311 =
5 n0 -1

15 1- n0( )
(86)

† 

S1212 =S2323 =S3131 =
4 -5 n0

15 1- n0( )
.
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The different Eshelby components presented above are those of a fourth-order

tensor that by definition relate the (stress-free) transformation strain to the perturbed

strain in an inclusion via

† 

eij
pt =Sijkl ekl

* , (87)

where the perturbed strain 

† 

eij
pt  represents the difference between the far-field applied

strain 

† 

e ij
0  and the average strain in the inclusion 

† 

e ij
r  via 

† 

eij
pt = e ij

r - e ij
0 .

It is customary in micromechanics, and the composites field in general, to take

advantage of contracted (or two-index) notation to simplify the bookkeeping of the

tensor indices. However, specific care must be taken when contacting the Eshelby

tensor for such analyzes. The difficulty arises in contracting those terms of the

Eshelby tensor relating the shear components of the perturbed and transformation

strains, and is best described via an example.  Writing out (87) for the case of 

† 

e23
pt ,

† 

e23
pt = S2311e11

* +S2312e12
* + S2313e13

*

+S2321e21
* +S2322e22

* +S2323e23
*

+S2331e31
* +S2332e32

* +S2333e33
*

, (88)

which for a general ellipsoidal inclusion simplifies to the following non-zero

components of the Eshelby tensor



222

† 

e23
pt = S2323e23

* + S2332e32
* = 2S2323e23

* , (89)

where 

† 

e23
* = e32

*  and 

† 

S2323 = S2332 . This can be represented using contracted notation

as

† 

e4
pt =S44e4

* . (90)

where S44=2S2323. Thus the complete representation of the Eshelby tensor in

contracted notation is:

† 

S11 = S1111, S22 =S2222, S33 =S3333,
S12 =S1122, S13 = S1133, S23 =S2233,
S21 =S2211, S31 = S3311, S32 =S3322,
S44 = 2S2323, S55 = 2S1313, S66 = 2S1212.

(91)
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Inter-relations between elastic constants

Output ConstantsInput
Constants E = n = G = K = l =

E, n - -

† 

E
2 1+ n( )

† 

E
3 1-2 n( )

† 

E n

1+ n( ) 1-2 n( )

E, G -

† 

E - 2G
2G -

† 

E G
3 3G -E( )

† 

G E -2G( )
3G -E

E, K -

† 

3K - E
6K

† 

3KE
9K - E -

† 

3K 3K -E( )
9K - E

E, l -

† 

2l

E + l + R

† 

E - 3l + R
4

† 

E + 3l + R
6

-

n, K

† 

3K 1-2n( ) -

† 

3K 1-2 n( )
2 1+ n( ) -

† 

3K n

1+ n

n, l

† 

l 1+ n( ) 1- 2n( )
n

-

† 

l 1- 2n( )
2 n

† 

l 1+ n( )
3n

-

n, G

† 

2G 1+ n( ) - -

† 

2G 1+ n( )
3 1-2 n( )

† 

2G n

1- 2n

G, K

† 

9KG
3K + G

† 

3K - 2G
6K + 2G - -

† 

3K - 2G
3K

G, l

† 

G 3l + 2G( )
l + G

† 

l

2 l + G( ) -

† 

3l + 2G
3

-

K, l

† 

9K K - l( )
3K - l

† 

l

3K - l

† 

3
2

K - l( ) - -

Table 11. Inter-relations among the elastic constants. 

† 

R = E 2 + 9 l2 + 2E l
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